Fekete-Szegö Functional for Classes $X_q^n(\varphi)$ and $Y_q^n(\varphi)$

Tseu Suet Yie, Aini Janteng*
Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Malaysia

Abstract Two new subclasses of analytic functions are proposed by applying q-differential operator which is denoted as $M_q^n f(z)$. Throughout this study, we acquired the initial coefficients a_2 and a_3 and the upper bound for the functional $|a_3 - \mu a_2^2|$ of the functions f in the classes $X_q^n(\varphi)$ and $Y_q^n(\varphi)$.

Keywords: Analytic function, Univalent function, q-differential operator, Fekete-Szegö functional, Subordination.

Introduction

The class for all analytic functions $f(z)$ within the open unit disk $\mathbb{U} = \{z: z \in \mathbb{C}, |z| < 1\}$ and normalized by the conditions $f(0) = 0$ and $f'(0) = 1$ is represented as A. According to Atassi [2], if $f(z)$ has a derivative at each point of R and if $f(z)$ is single valued, then a function $f(z)$ is known to be analytic within region R of the complex plane. Moreover, a function $f(z)$ is known to be analytic at a point z with the condition of z is an interior point of some region where $f(z)$ is analytic. Meanwhile, Kai [9] stated that for each $f \in A$, f has a Taylor series expansion written in the form

$$f(z) = z + a_2 z^2 + a_3 z^3 + \cdots = z + \sum_{j=2}^{\infty} a_j z^j, \quad a_j \in \mathbb{C}, z \in \mathbb{U}. \quad (1.1)$$

The definition of subordination according to Jeyaraman & Suresh [6] is as if f and g are in A, the function f is said to be subordinate to g or (equivalently) g is said to be superordinate to f, $f < g \text{ in } \mathbb{U}$ or $f(z) < g(z) \quad (z \in \mathbb{U})$

if a Schwarz function, $\omega(z)$, analytic in \mathbb{U} with $|\omega(z)| < 1$ and $\omega(0) = 0$ for all $z \in \mathbb{U}$ is exist. For example,

$$f(z) = g(\omega(z)) \quad (z \in \mathbb{U}).$$

In particular, several researchers have done the research about the coefficients, $|a_2|$ and $|a_3|$, and the upper bound for $|a_3 - \mu a_2^2|$ which is known as Fekete-Szegö functional of function f. For example, Alsoboh and Darus [1], Aouf and Orhan [3], Janteng et al. [4], Janteng and Halim [5] and Pinhong et al. [11]. Therefore, this study is going to introduce new subclasses of analytic functions and further determine the upper bound for the Fekete-Szegö functional of functions f for particular subclasses of analytic univalent functions which is defined by subordination and q-differential operator. Jackson [7] was the earliest researcher developed the q-integral and q-derivative more systematically.

However, Ramachandran et al. [12] stated that the q-derivative operator for function f as
\[D_qf(z) = \begin{cases} \frac{f(qz) - f(z)}{(q - 1)z}, & z \neq 0, 0 < q < 1 \\ f'(0), & z = 0 \end{cases} \]

for functions \(f \) which are differentiable at \(z = 0 \).

Then, Koekoek and Koekoek [8] further defined \(D_q^nf \) as

\[D_q^nf = D_q(D_q^{n-1}f) \]

for \(n = 1, 2, 3, \ldots \) where \(D_q^0 \) denotes the identity operator.

For the used of \(D_qf(z) \), Seoudy and Aouf [13] introduced the subclasses \(S_q^\alpha(A) \) and \(C_q^\alpha(A) \) of the class \(A \) for \(0 \leq \alpha < 1 \) which are defined by

\[S_q^\alpha(A) = \left\{ f \in A : \frac{zqD_qf(z)}{f(z)} > \alpha, z \in \mathbb{U} \right\}, \]

\[C_q^\alpha(A) = \left\{ f \in A : \frac{D_q\left(zD_qf(z)\right)}{D_qf(z)} > \alpha, z \in \mathbb{U} \right\}. \]

Selvaraj et al. [14] noted that

\[f \in C_q^\alpha(A) \iff zD_qf \in S_q^\alpha(A), \]

Alsoboh and Darus [1] proposed \(q \)-differential operator of a function \(f \) in the form of (1.1) and denoted by \(M_q^\alpha(f) \) as

\[M_q^\alpha(f)(z) = f(z), \quad M_q^\alpha(zf)'(z) = zD_qf(z) = z + \sum_{j=2}^\infty j \eta [j]_q z^j, \]

\[M_q^\alpha(zD_qf(z)) = zD_q\left(M_q^{\alpha-1}f(z)\right) = z + \sum_{j=2}^\infty \eta [j]_q z^j \tag{1.2} \]

where \([j]_q \equiv \frac{1-q^j}{1-q}\) which was defined by Jackson [7].

By using the \(q \)-differential operator in (1.2) and the principle of subordination, we propose two new subclasses, \(X_q^n(\varphi) \) and \(Y_q^n(\varphi) \), of \(A \).

Let \(P \) to be denoted as class of all functions \(\varphi \) that is analytic and univalent in \(\mathbb{U} \).

The definitions of classes \(X_q^n(\varphi) \) and \(Y_q^n(\varphi) \) where \(\varphi \in P \) are given respectively.

Definition 1.1 A function \(f \in A \) is categorized in the class \(X_q^n(\varphi) \) if the following subordination condition hold

\[D_q\left(M_q^n f(z)\right) < \varphi(z), \quad \varphi \in P, n \in N, 0 < q < 1, z \in \mathbb{U}. \]

Definition 1.2 A function \(f \in A \) is categorized in the class \(Y_q^n(\varphi) \) if the following subordination condition hold

\[(1 - \delta) zD_q(M_q^n f(z)) + \delta \left(1 + \frac{qzD_q\left(D_q M_q^n f(z)\right)}{D_q(M_q^n f(z))} \right) < \varphi(z), \quad \varphi \in P, n \in N, 0 < q < 1, 0 \leq \delta \leq 1 \text{ and } z \in \mathbb{U}. \]

Next, the lemma that is used to validate the main results in order to get the upper bound for the Fekete-Szegő functional for \(f \in X_q^n(\varphi) \) and \(f \in Y_q^n(\varphi) \) is as below.

Lemma 1.1 ([10]) If \(p(z) = 1 + c_1z + c_2z^2 + \cdots \) is a function with positive real part in \(\mathbb{U} \) and \(\gamma \) is a complex number, then

\[|c_2 - \gamma c_1^2| \leq 2 \max\{1, |2\gamma - 1|\}. \]

The result is sharp for the functions given by
\[p(z) = \frac{1 + z^2}{1 - z^2} \quad \text{and} \quad p(z) = \frac{1 + z}{1 - z}. \]

Main Results

Theorem 2.1
Let \(\varphi(z) = 1 + B_1z + B_2z^2 + B_3z^3 \ldots \) with \(B_1 \neq 0 \), and \(f \) is given by (1.1) be in the class \(X^n_q(\varphi) \) and \(\mu \) is a complex number, then

\[|a_3 - \mu a_2^2| \leq \frac{B_1}{[3]_q^{n+1}} \max \left\{ 1, \left| \frac{B_2}{B_1} - \frac{[3]_q^{n+1} B_1}{[2]_q^{2n+2}} \right| \right\} \]

Proof.
If \(f \in X^n_q(\varphi) \), then Schwarz function \(\omega(z) \) is exist with \(\omega(0) = 0 \) and \(|\omega(z)| < 1 \) in \(\mathbb{U} \) such that

\[D_q \left(M^n_q f(z) \right) = \varphi(\omega(z)). \]

(2.1)

The function \(p(z) \) is defined as

\[p(z) = \frac{1 + \omega(z)}{1 - \omega(z)} = 1 + p_1z + p_2z^2 + \ldots \]

(2.2)

We see that \(\text{Re}(p(z)) > 0 \) and \(p(0) = 1 \) with \(\omega(z) \) as Schwarz function. Let

\[g(z) = D_q \left(M^n_q f(z) \right) = 1 + d_1z + d_2z^2 + \ldots \]

(2.3)

From equations (2.1), (2.2) and (2.3), we get that

\[g(z) = \varphi \left(\frac{p(z) - 1}{p(z) + 1} \right) \]

By equation (2.2), we solve \(\omega(z) \) in terms of \(p(z) \), we get that

\[\omega(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{p_1z + p_2z^2 + \ldots}{2 + p_1z + p_2z^2 + \ldots}. \]

where

\[\frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left(p_1z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \left(p_3 + \frac{p_1 p_2}{4} - p_1 p_2 \right) z^3 + \ldots \right). \]

(2.4)

From equations \(\varphi(z) \) and (2.4), we get that

\[g(z) = \varphi \left(\frac{1}{2} \left(p_1z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \left(p_3 + \frac{p_1 p_2}{4} - p_1 p_2 \right) z^3 + \ldots \right) \right) \]

\[= 1 + \frac{1}{2} B_1 \left(\frac{1}{2} \left(p_1z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \ldots \right) \right)^2 + \ldots \]

\[= 1 + \frac{1}{2} B_1 p_1z + \left(\frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right) + \frac{1}{4} B_2 p_1^2 \right) z^2 + \ldots. \]

(2.5)

From (2.3) and (2.5), we obtain

\[d_1 = \frac{1}{2} B_1 p_1, \quad \text{and} \quad d_2 = \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right) + \frac{1}{4} B_2 p_1^2. \]

From (1.2), a computation shows that

\[M^n_q f(z) = z + [2]_q a_2 z^2 + [3]_q a_3 z^3 + \ldots. \]

(2.6)

According to the definition of \(D_q f \) stated by Ramachandran et al. [12], we obtain
\[D_q \left(M_q^n f(z) \right) = 1 + (q + 1)[2]_q^n a_2 z + (q^2 + q + 1)[3]_q^n a_3 z^2 + \ldots \] \hspace{1cm} (2.7)

According to the definition of \([j]_q\) by Jackson [7], let \(j = 0, 1, 2\) and 3, we obtain that

when \(j = 0\),
\[[0]_q = \frac{1 - q^0}{1 - q} = 0 \]

when \(j = 1\),
\[[1]_q = \frac{1 - q^1}{1 - q} = 1 \]

when \(j = 2\),
\[[2]_q = \frac{1 - q^2}{1 - q} = 1 + q \] \hspace{1cm} (2.8)

when \(j = 3,\)
\[[3]_q = \frac{1 - q^3}{1 - q} = q^2 + q + 1 \] \hspace{1cm} (2.9)

Substitute (2.8) and (2.9) into (2.7), we obtain

\[D_q \left(M_q^n f(z) \right) = 1 + [2]_q^{n+1} a_2 z + [3]_q^{n+1} a_3 z^2 + \ldots \] \hspace{1cm} (2.10)

Then, compared (2.3) to (2.10), we obtain
\[d_1 = [2]_q^{n+1} a_2 \]
and
\[d_2 = [3]_q^{n+1} a_3 \]
or equivalently we have
\[d_1 = \frac{1}{2} B_1 p_1 = [2]_q^{n+1} a_2, \]
\[a_2 = \frac{B_1 p_1}{2[2]_q^{n+1}} \]
and
\[d_2 = \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right) + \frac{1}{4} B_2 p_1^2 = [3]_q^{n+1} a_3, \]
\[a_3 = \frac{B_1}{2[3]_q^{n+1}} \left(p_2 - \frac{p_1^2}{2} \right) + \frac{B_2 p_1^2}{4[3]_q^{n+1}}. \]

Now,
\[a_3 - \mu a_2^2 = \frac{B_1}{2[3]_q^{n+1}} \left(p_2 - \frac{p_1^2}{2} \right) + \frac{B_2 p_1^2}{4[3]_q^{n+1}} - \mu \left(\frac{B_1 p_1}{2[2]_q^{n+1}} \right)^2, \]
\[a_3 - \mu a_2^2 = \frac{B_1 p_2}{2[3]_q^{n+1}} - \frac{B_2 p_1^2}{4[3]_q^{n+1}} + \frac{B_2 p_1^2}{4[3]_q^{n+1}} - \frac{B_2 p_1^2}{4[3]_q^{n+1}}, \]
\[a_3 - \mu a_2^2 = \frac{B_1}{2[3]_q^{n+1}} \left(p_2 - \frac{p_1^2}{2} + \frac{B_2 p_1^2}{2B_1} \right) - \frac{B_2 p_1^2}{2B_1} - \frac{[3]_q^{n+1} \mu B_1}{2[2]_q^{n+1}}, \]
\[a_3 - \mu a_2^2 = -\frac{B_1}{2[3]_q^{n+1}} \left(p_2 - \frac{p_1^2}{2} - \frac{B_2 p_1^2}{2B_1} - \frac{[3]_q^{n+1} \mu B_1}{2[2]_q^{n+1}} \right). \]

consider
\[\gamma = \frac{1}{2} \left(1 - \frac{B_2 p_1^2}{B_1} + \frac{[3]_q^{n+1} \mu B_1}{[2]_q^{n+1}} \right). \]

Therefore,
\[a_3 - \mu a_2^2 = -\frac{B_1}{2[3]_q^{n+1}} \left(p_2 - \gamma p_1^2 \right). \]

By applying Lemma 1.1, it shows that
\[|a_3 - \mu a_2^2| \leq \frac{B_1}{|3_q|^{n+1}} \max \left\{ 1; \frac{B_2}{B_1} - \frac{|3|^{q+1} \mu B_1}{|2|^{2n+2}} \right\} \]

The proof of Theorem 2.1 is done.

Taking \(n = 0 \) into Theorem 2.1, we acquire the corollary below.

Corollary 2.1
Let \(\varphi(z) = 1 + B_1z + B_2z^2 + B_3z^3 \ldots \) with \(B_1 \neq 0 \), and \(f \) is given by (1.1) be in the class \(X_q(\varphi) \) and \(\mu \) is a complex number, then

\[|a_3 - \mu a_2^2| \leq \frac{B_1}{|3_q|} \max \left\{ 1; \frac{B_2}{B_1} - \frac{|3_q| \mu B_1}{|2_q|} \right\}. \]

Now, we show the results for class \(Y_q^n(\varphi) \).

Theorem 2.2
Let \(\varphi(z) = 1 + B_1z + B_3z^2 + B_3z^3 \ldots \) with \(B_1 \neq 0 \), and \(f \) is given by (1.1) be in the class \(Y_q^n(\varphi) \) and \(\mu \) is a complex number, then

\[|a_3 - \mu a_2^2| \leq \frac{B_1}{2 \left(1 - \delta \right)(|3_q^n|(|3_q| - 1) + \delta q|3|^{n+2})} \max \left\{ 1; \frac{B_2}{B_1} - \frac{\delta |3_q^n|(|3_q| - 1) + \delta q|3|^{n+3} - \mu \left((1 - \delta)(|3_q^n|(|3_q| - 1) + \delta q|3|^{n+2}) \right)}{\delta |3_q^n|(|3_q| - 1) + \delta q|3|^{n+3} - \mu \left((1 - \delta)(|3_q^n|(|3_q| - 1) + \delta q|3|^{n+2}) \right)} \right\}. \]

Proof.
If \(f \in Y_q^n(\varphi) \), then Schwarz function \(\omega(z) \) is exist with \(\omega(0) = 0 \) and \(|\omega(z)| < 1 \) in \(\mathbb{U} \) such that

\[(1 - \delta) \frac{z d_q^\omega f(z)}{M_q^\omega f(z)} + \delta \left(1 + \frac{z d_q^\omega f(z)}{M_q^\omega f(z)} \right) = \varphi(\omega(z)). \] \hspace{1cm} (2.11)

We see that \(Re(p(z)) > 0 \) and \(p(0) = 1 \) with \(\omega(z) \) as Schwarz function. Let

\[g(z) = (1 - \delta) \frac{z d_q^\omega f(z)}{M_q^\omega f(z)} + \delta \left(1 + \frac{z d_q^\omega f(z)}{M_q^\omega f(z)} \right) = 1 + d_1z + d_2z^2 + \ldots \] \hspace{1cm} (2.12)

From equations (2.2), (2.11) and (2.12), we get

\[g(z) = \varphi \left(\frac{p(z) - 1}{p(z) + 1} \right). \]

By equation (2.2), we solve \(\omega(z) \) in terms of \(p(z) \), we get

\[\omega(z) = \frac{p(z) - 1}{p(z) + 1} = \frac{p_1z + p_2z^2 + \ldots}{1 + 2p_1z + p_2z^2 + \ldots}. \]

Where

\[\frac{p(z) - 1}{p(z) + 1} = \frac{1}{2} \left(p_1z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \left(p_3 + \frac{p_1^3}{4} - p_1p_2 \right) z^3 + \ldots \right). \] \hspace{1cm} (2.13)

From equations \(\varphi(z) \) and (2.13), we get

\[g(z) = \varphi \left(\frac{p(z) - 1}{p(z) + 1} \right) \]

\[= \varphi \left(\frac{1}{2} \left(p_1z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \left(p_3 + \frac{p_1^3}{4} - p_1p_2 \right) z^3 + \ldots \right) \right) \]

\[= 1 + B_1 \left(\frac{1}{2} \left(p_1z + \left(p_2 - \frac{p_1^2}{2} \right) z^2 + \ldots \right) \right)^2 + \ldots \]
\[= 1 + \frac{1}{2} B_1 p_1 z + \left(\frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2}\right) + \frac{1}{4} B_2 p_1^2\right) z^2 + \ldots. \quad (2.14) \]

From (2.2) and (2.14), we obtain
\[d_1 = \frac{1}{2} B_1 p_1, \]
and
\[d_2 = \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2}\right) + \frac{1}{4} B_2 p_1^2. \]

Case 1 for the equation \((1 - \delta) \frac{zD_q(M_q^n f(z))}{M_q^n f(z)}\), we substitute (2.6) and (2.10) into the equation and obtain
\[
(1 - \delta) \frac{zD_q(M_q^n f(z))}{M_q^n f(z)} = (1 - \delta) \left(\frac{z(1 + [2]_q^n a_2 z + [3]_q^n a_3 z^2 + \ldots)}{z + [2]_q^n a_2 z^2 + [3]_q^n a_3 z^3 + \ldots}\right)
\]
\[= (1 - \delta)(1 + [2]_q^n([2]_q - 1)a_2 z + ([3]_q^n([3]_q - 1)a_3 - [2]_q^n([2]_q - 1) a_2^2) z^2 + \ldots) \quad (2.15)\]

Case 2 for the equation \(\delta \left(1 + \frac{qzD_q(D_qM_q^n f(z))}{D_q(M_q^n f(z))}\right)\), by Alsoboh and Darus [1],
\[
\delta \left(1 + \frac{qzD_q(D_qM_q^n f(z))}{D_q(M_q^n f(z))}\right) = \delta(1 + q a_2 [2]_q^{3+2}z + q(a_3[3]^{n+2} - a_2^2[2]_q^{2n+3}) z^2 + \ldots) \quad (2.16)\]

Therefore, a computation of (2.15) and (2.16) shows that
\[
(1 - \delta) \frac{zD_q(M_q^n f(z))}{M_q^n f(z)} + \delta \left(1 + \frac{qzD_q(D_qM_q^n f(z))}{D_q(M_q^n f(z))}\right)
\]
\[= (1 - \delta)(1 + [2]_q^n([2]_q - 1)a_2 z + ([3]_q^n([3]_q - 1)a_3 - [2]_q^n([2]_q - 1) a_2^2) z^2 + \ldots)
\]
\[+ \delta(1 + q a_2 [2]_q^{3+2}z + q(a_3[3]^{n+2} - a_2^2[2]_q^{2n+3}) z^2 + \ldots)
\]
\[= 1 + \left((1 - \delta)[2]_q^n([2]_q - 1)a_2 + \delta q a_2 [2]_q^{3+2} z + (1 - \delta)([3]_q^n([3]_q - 1)a_3 - (1 - \delta)[2]_q^n([2]_q - 1)a_2^2 + \delta q(a_3[3]^{n+2} - a_2^2[2]_q^{2n+3})\right) z^2 + \ldots \quad (2.17)\]

Then, compared (2.14) to (2.17), we get
\[d_1 = (1 - \delta)[2]_q^n([2]_q - 1)a_2 + \delta q a_2 [2]_q^{3+2},\]
\[d_1 = a_2 \left((1 - \delta)[2]_q^n([2]_q - 1) + \delta q [2]_q^{3+2}\right) \]

and
\[d_2 = (1 - \delta)([3]_q^n([3]_q - 1)a_3 - (1 - \delta)[2]_q^n([2]_q - 1)a_2^2 + \delta q(a_3[3]^{n+2} - a_2^2[2]_q^{2n+3}),\]
\[d_2 = a_3 \left((1 - \delta)([3]_q^n([3]_q - 1) + \delta q[3]^{n+2}) - a_2^2((1 - \delta)[2]_q^n([2]_q - 1) + \delta q [2]_q^{3+2}\right) \]

or equivalently we have
\[d_1 = \frac{1}{2} B_1 p_1 = a_2 \left((1 - \delta)[2]_q^n([2]_q - 1) + \delta q [2]_q^{3+2}\right),\]
\[B_1 p_1 = \frac{a_2}{2 \left((1 - \delta)[2]_q^n([2]_q - 1) + \delta q [2]_q^{3+2}\right)}, \]

and

\[10.11113/mjfas.v20n2.3228] 440
\[d_2 = \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right) + \frac{1}{4} B_2 p_1^2 \]
\[= a_3 ((1 - \delta)([3]_{\bar{m}})^n([3]_q - 1) + \delta q [3]^{n+2}) - a_3^2 ((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+3}). \]

\[a_3 (1 - \delta)([3]_{\bar{m}})^n([3]_q - 1) + \delta q [3]^{n+2} \]
\[= \left(\frac{B_1 p_1}{2 \left((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+2} \right)} \right)^2 \left((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+3} \right) \]
\[+ \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right) + \frac{1}{4} B_2 p_1^2, \]

\[a_3 = \frac{1}{(1 - \delta)([3]_{\bar{m}})^n([3]_q - 1) + \delta q [3]^{n+2}} \left(\frac{B_1^2 p_1^2 ((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+3})}{4 \left((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+2} \right)^2} \right) \]
\[+ \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right) + \frac{1}{4} B_2 p_1^2. \]

Now,

\[a_3 - \mu a_3^2 = \frac{1}{(1 - \delta)([3]_{\bar{m}})^n([3]_q - 1) + \delta q [3]^{n+2}} \left(\frac{B_1^2 p_1^2 ((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+3})}{4 \left((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+2} \right)^2} \right) \]
\[+ \frac{1}{2} B_1 \left(p_2 - \frac{p_1^2}{2} \right) + \frac{1}{4} B_2 p_1^2 - \mu \left(\frac{B_1 p_1}{2 \left((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+2} \right)} \right)^2 \]
\[- \delta [2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+3} - \mu \left((1 - \delta)([3]_{\bar{m}})^n([3]_q - 1) + \delta q [3]^{n+2} \right) \]
\[+ \left(\frac{B_1 p_2 - B_1 p_1^2}{2} + \frac{1}{4} B_2 p_1^2 \right), \]

\[a_3 - \mu a_3^2 = \frac{1}{(1 - \delta)([3]_{\bar{m}})^n([3]_q - 1) + \delta q [3]^{n+2}} \left(p_2 \left(\frac{B_1}{2} \right) \right) \]
\[+ p_1^2 \left(\frac{B_1}{2 \left((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+2} \right)} \right)^2 \left((1 - \delta)[2]_{\bar{m}}^n([2]_q - 1) + \delta q [2]_{\bar{m}}^{n+3} \right) \]
\[- \mu \left((1 - \delta)([3]_{\bar{m}})^n([3]_q - 1) + \delta q [3]^{n+2} \right) \right) \left(\frac{B_2 - B_1}{4} \right). \]
\[
\alpha_3 - \mu \alpha_2^2 = \frac{B_1}{2 (1 - \delta)([3]_q^n)([3]_q - 1) + \delta q[3]^{n+2}} \left(p_2 - p_1^2 \right) - \frac{B_1}{2 \left(1 - \delta \right) [2]^n ([2]_q - 1) + \delta q[2]^{n+2}} \left(1 - \frac{B_2}{2B_1} - \frac{1}{2} \right).
\]

Consider
\[
\gamma = - \frac{B_1}{2 \left(1 - \delta \right) [2]^n ([2]_q - 1) + \delta q[2]^{n+2}} \left(1 - \frac{B_2}{2B_1} - \frac{1}{2} \right).
\]

Therefore,
\[
\alpha_3 - \mu \alpha_2^2 = \frac{B_1}{2 \left(1 - \delta \right) [3]_q^n ([3]_q - 1) + \delta q[3]^{n+2}} \left(p_2 - \gamma p_1^2 \right).
\]

By applying Lemma 1.1, it shows that
\[
\left| \alpha_3 - \mu \alpha_2^2 \right| \leq \frac{B_1}{2 \left(1 - \delta \right) [3]_q^n ([3]_q - 1) + \delta q[3]^{n+2}} \left(\max \left\{ 1; \frac{B_1}{(1 - \delta) [2]^n ([2]_q - 1) + \delta q[2]^{n+2}} \left(1 - \delta \right) [2]_q^n ([2]_q - 1) + \delta q[2]^{n+3} - \mu \left(1 - \delta \right) [3]_q^n ([3]_q - 1) + \delta q[3]^{n+2} \right) - \frac{B_2}{B_1} \right) \right).
\]

The proof of Theorem 2.2 is done.

Taking \(\delta = 1 \) into Theorem 2.2, we acquire the corollary below.

Corollary 2.2 \(([1])\) Let \(\varphi(z) = 1 + B_1 z + B_2 z^2 + B_3 z^3 \ldots \) with \(B_1 \neq 0 \), and \(f \) is given by (1.1) be in the class \(Y_q^n(\varphi) \) and \(\mu \) is a complex number, then
\[
\left| \alpha_3 - \mu \alpha_2^2 \right| \leq \frac{B_1}{2q[3]^{n+2}} \max \left\{ 1; \frac{B_2}{B_1} + \frac{1}{[2]_q} - \mu \left(\frac{[3]_q^{n+2}}{[2]_q^{n+4} q} \right) \right\}.
\]

Conclusions

In conclusion, we acquired the initial coefficients \(\alpha_2 \) and \(\alpha_3 \) and the upper bound for the functional \(\left| \alpha_3 - \mu \alpha_2^2 \right| \) of the functions \(f \) in the class \(X_q^n(\varphi) \) and class \(Y_q^n(\varphi) \).
Conflicts of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Acknowledgment

The authors would like to thank all reviewers for their comments and suggestions on this article.

References