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Abstract Statistical percentiles are extremely important and valuable measurement tools in 

various contexts. They offer significant advantages when it comes to estimating a wide range of 

values across different fields, making them essential in statistical analysis and research. This 

importance motivates researchers to study the construction of simultaneous confidence intervals 

for ratios of percentiles of the delta-lognormal distribution. This research introduces four distinct 

methods for constructing such confidence intervals: the fiducial generalized confidence interval, 

the Bayesian-based highest posterior density credible interval using Jeffreys prior, Jeffreys rule 

prior, and Uniform prior. All methods are subjected to evaluation and comparison through 

coverage probabilities and expected lengths in Monte Carlo simulations. The simulation study 

shows that, overall, the Bayesian-based highest posterior density credible interval works better 

and more accurately than the fiducial generalized confidence interval. To further validate the 

findings of the simulation study, these methods are applied to real-world daily rainfall data 

collected from a river basin in Thailand. 

Keywords: Delta-lognormal distribution, fiducial generalized confidence interval, highest posterior 

density credible interval, Percentiles. 
 

 

Introduction 
 

Percentiles are a statistical measure that indicates the location, or position, of a value relative to the 
entire set of data. When dealing with multiple datasets, comparing percentiles alone may not provide a 
comprehensive understanding of the relationship between the groups. However, when we calculate the 
ratio of percentiles between these datasets, a clearer and more informative picture emerges regarding 
how these groups compare in terms of their distribution or specific values. This ratio represents the 
relative magnitude or proportion between the two percentiles and provides a standardized measure of 
their relationship. It enables a more nuanced comparison and deeper understanding of the interplay 
between these values. Furthermore, percentiles are advantageous because they offer robustness 
against outliers. Outliers, or extreme values that deviate substantially from the overall trend of the data, 
can have a significant impact on other statistical measurements. However, percentiles are less affected 
by outliers due to their reliance on the ranking of values. This statistical measure is particularly useful in 
fields where proportional comparisons are important, such as market research. It helps identify relative 
differences in performance, market shares, or growth rates. In healthcare, the ratio of percentiles can be 
used to compare health indicators or medical measurements between different populations. In finance, 
it can be used to assess risk and return. In economics, it is often used to analyse income or wealth 
distribution. Additionally, the ratio of percentiles also plays a significant role in academic assessments 
and educational research; see, e.g., [1]–[2].  

 

Data encompassing both zero values and positive values can be effectively modelled using the delta-
lognormal distribution. In this distribution, the number of zero observations with zero values follows a 

binomial distribution with a probability represented by 
*

i
ζ , where  

*
0 1

i
ζ . Meanwhile, the positive 
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values follow a lognormal distribution with a probability represented by iζ . This statistical technique was 

initially introduced by Aitchison [3], and subsequently, many researchers have applied this delta-
lognormal distribution to diverse datasets, demonstrating its versatility in various contexts, particularly in 
the environmental and medical aspects; see, e.g., [4]–[9].  

 

Numerous researchers have delved into the realm of simultaneous confidence intervals (SCIs) for ratios 
of parameters across a diverse array of distributions. For instance, Malley [10] presented a method for 
forming SCIs of all ratios of linear forms of the mean vectors given more groups of multivariate normal 
samples. Kumar et al. [11] investigated k independent exponential populations with varying scale and 
location parameters, where these parameters may not be known, and proposed a method to derive a 
set of SCIs for all ratios in relation to the largest scale parameter. Then, Rublik [12] offered an explicit 
formula for constructing SCIs for ratios of variances across multiple populations. Next, Sadooghi-Alvandi 
and Malekzadeh [13] introduced a novel parametric bootstrap method for creating SCIs for the ratios of 
means in various lognormal distributions. Schaarsch-midt and Djira [14] used the multivariate t quantiles 
of SCIs to come up with Fieller-type intervals for ratios of fixed effect parameters in mixed models. After 
that, Maneerat and Niwitpong [15] constructed SCIs for all possible pairwise ratios of variances of several 
zero-inflated lognormal models. Finally, Zhang et al. [16] investigated SCIs for the ratios of means of 
zero-heavy log-normal populations and proposed SCIs based on the Bonferroni adjustment principle. In 
the same year, Kaewprasert et al. [17] developed SCIs for the ratio of means in multiple delta-gamma 
populations. The study applied these intervals to estimate the ratio means for natural rainfall datasets 
from six regions in Thailand during September, which represents the peak of the rainy season. 

 

The importance of percentile ratios serves as a powerful tool, enriching our comprehension of data and 
enabling meaningful comparisons. When comparing the two populations using the difference between 
the percentiles, there might not be much of a difference. This results in problems with making clear 
inferences, and it is difficult to conclude. Therefore, simultaneously comparing the ratios of percentiles 
is a more accurate option than simultaneously comparing the differences between the percentiles when 
examining multiple populations. Importantly, no researchers studied have used simultaneous confidence 
intervals (SCIs) for ratios of percentiles within the context of the delta-lognormal distribution. 
Consequently, the main objective of this study is the reconstruction of SCIs for ratios of percentiles in 
delta-lognormal populations. We have presented four methods for constructing SCIs: Fiducial 
generalized confidence interval (FGCI), Bayesian-based highest posterior density credible interval based 
on Jeffreys prior (HPD.J), Jeffreys Rule prior (HPD.JR), and Uniform prior (HPD.U). The efficiency of 
these methods is compared using coverage probabilities along with expected lengths. Crucially, we will 
apply all five methods to the daily rainfall data collected along the river basin during the period from June 
20th to July 9th, 2023 [18]. 

 
Materials and Methods 
 

The delta-lognormal (DLN) distribution has three parameters: mean ( )
i

μ ,variance
2

( )
i

σ , and probability 

of zero observations 
*

( )
i

ζ , which are represented as ( )
2 *

, ,
i i i

μ σ ζ , where = −
*

1
i i

ζ ζ  and 
i

ζ  is the 

probability of non-zero observations. Suppose that ( )= =
1 2
, , , ; 1,2,

ij i i imi
A A A A i k and

= 1,2, ,
i

j m  be a non-negative random sample for k independent of the DLN distribution. The 

distribution function of the DLN distribution is  

( )
( )

=
=

+





*

2 *

* 2

; 0
; , ,

; 0; ,

iji

ij i i i

iji i ij i i

a
G a

aF a

ζ
μ σ ζ

ζ ζ μ σ
 

according to Tian and Wu [19], where ( )2
; ,

ij i i
F a μ σ  is the distribution function of the lognormal 

distribution. The number of zero observed values, denoted by 𝑚𝑖(0) ∼ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑚𝑖, 𝜁𝑖
∗), has a 

binomial distribution, and the number of non-zero observed values, ( )1i
m , has a log-normal distribution, 

where ( ) ( )= +
0 1i i i

m m m . Let ( )= ln
ij ij

B A  be the normal distribution, denoted by 𝐵𝑖𝑗 ∼ 𝑁(𝜇𝑖, 𝜎𝑖
2). 

Assume that the mean and variance are (1)iB and 
2

(1)i
C , respectively, obtained from the log-transformed 
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positive observations. The observed values of 
(1)iB  and 

2

(1)i
C  can also be given as 

(1)ib  and 
2

(1)i
c , 

respectively. The maximum likelihood estimator of parameter ,
i

μ
2

i
σ , and 

i
ζ are 

=

= 
(1)

(1)

1(1)

1 im

i ij

ji

b b
m

, 

( )
=

= −
−


(1)
22

(1) (1)

1(1)

1

1

i
m

i ij i

ji

c b b
m

 , and 
( )

=
1ˆ i

i

i

m

m
ζ , respectively. The estimator of the pth quantile of 

the DLN distribution is ( )=ˆ ˆexp
pi pi

q η , where 
− −

= +
−

 
 
 

*
1

(1) (1)*

ˆ
ˆ

ˆ1

i i
pi i i

i

p
B C

ζ
η

ζ
Φ . Since we are 

interested in constructing the SCIs for all pairwise ratios between the percentiles ( )
il

ω , then  

( )= = −
ˆ

ˆ ˆˆ exp
ˆ

pi

il i l

pl

q

q
ω η η  

where Φ  is the standard normal distribution function, =, 1,2, ,i l k , and  i l . 

 

Fiducial Generalized Confidence Interval 
Hannig et al. [20] presented the concept of the FGCI. They highlighted that this interval relies on the 
fiducial generalized pivotal quantities (FGPQ), which are a subset of GPQ. Thus, the FGCI method builds 

upon the foundation of FGPQs. In accordance with Thangjai et al. [8], let 
i

p  be the percentiles and 

( )− −
−

=
−

 
 
 
 

*

*

1 1

1

i

i

i

i

p Q

Q
Q

ζ

ζ

Φ Φ ,      (1) 

where ( ) ( )
−

= + +
 
 
 

*

1

0 1

1 1
; ,

2 2i
i i i iQ M X O m m

ζ
 is the quartile function of the beta distributions, while 

( ) ( )= + +
 
 
 

0 1

1 1
; ,

2 2
i i i iO M p m m  is the function of beta distribution and 

i
X  is the standard uniform 

distribution. We can find the FGPQ of iμ  as 

( )
( )

( )( ) ( )

( )

−
= −

2

1 1

1

11

1
i ii

i i

ii

m cZ
Q b

mV
μ        (2) 

and we can obtain the FGPQ of  
2

i
σ  as  

  
( )( ) ( )

( ) −

−
=2

1

2

1 1

2

1

1

i

i

i i

m

m c
Q

σ
χ

.     (3) 

Afterwards, from equation (1) to equation (3), we can calculate the FGPQ of piη as follows:  

( )

( ) ( )

( )

−
+

= +

 
 
 
 

2
1

1

1 1

i

pi

i i i

i

i i

Q Z Q m
Q Q

m V

σ

η μ

Φ
, 

where 𝑍𝑖 ∼ 𝑁(0,1) and 𝑉𝑖 ∼ √
𝜒𝑚𝑖(1)
2

(𝑚𝑖(1)−1)
. Therefore, the FGCI for the ratio of two independent 

percentiles can be expressed as ( )= −exp
il pi pl

Q Q Q
ω η η . Consequently, ( )−1 100%ε  the   two-sided 
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SCI for ilω are  

( ) ( )=  − 2 1 2,FGCI

il il il
CI Q Q

ω ω ωε ε ,     (4) 

where ( )
il

Qω ε  as the 100 ε th percentile of 
il

Q
ω

. 

 

Bayesian-based HPD 
In Bayesian statistics, HPD stands for highest posterior density, and it is a technique used to construct 
parameter estimates. It is a method of estimating the parameter values in Bayesian analysis in the form 
of the interval with the highest probability density. In this research, we will use the following prior 
distribution: 

 

Jeffreys Prior 
The prior density based on the square root of the Fisher information matrix was proposed by Jeffreys 

[21]. Consequently, Jeffreys prior is defined as ( ) 2

2

1
J i

i

P σ
σ

. The posterior distribution merges the 

likelihood function and the prior distribution. Bayesian confidence intervals rely on the posterior 
distribution. It’s a conditional distribution tied to observed sample values, used for statements about 

parameters treated as random. As a result, the posterior densities of 
2
iσ  and iμ  are  

𝜎𝐽.𝑖
2 |𝑎𝑖𝑗 ∼ 𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(

𝑚𝑖(1) − 1

2
,
(𝑚𝑖(1) − 1)𝑐𝑖(1)

2

2
) 

and  𝜇𝐽.𝑖|𝜎𝑖
2, 𝑎𝑖𝑗 ∼ 𝑁(𝑏̄𝑖(1),

𝜎𝐽.𝑖
2

𝑚𝑖(1)
), respectively. According to Thangjai et al. [9], the probability 

distributions for 
*

i
ζ  is 

( ) ( )
−

= + +
 
 
 

*

1

0 1

1 1
; ,

2 2i

J

i i i iH M X O m m
ζ

. 

We can find the posterior distributions of piη  as 

 

( )

( ) ( )

( )

−
+

= +

 
 
 
 

12
1.

.

1 1

i i iJ J i
pi J i

i i

Z m

m V

λσ
η μ

Φ
,    (5) 

where 

−

=
−

*

*1

i

i

J

i

i J

p H

H

ζ

ζ

λ . By using equation (5), we can obtain the posterior distribution of 
il

ω  as  

( )= −exp
J J J

il pi pl
ω η η . As a result, the ( )−1 100%ε  two-sided SCI for ilω  is based on the HPD-

Jeffreys prior, which is provided by  

 =  
 

. . .
,J J J

il il il

HPD J HPD J HPD J
CI L U

ω ω ω
,     (6) 

where 
.

J

il

HPD J
L
ω

 and 
.

J

il

HPD J
U

ω
 are the lower and upper bounds of the HPD interval of 

J

il
ω , respectively. 
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Jeffreys Rule Prior 

Lee [22] introduced the Jeffreys rule prior, which is imposed as ( ) 2

3

1
JR i

i

P σ
σ

. According to Maneerat  

et al. [6], the posterior densities of 
2
iσ  and iμ are  

𝜎𝐽𝑅.𝑖
2 |𝑎𝑖𝑗 ∼ 𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎 (

𝑚𝑖(1)+1

2
,
(𝑚𝑖(1)+1)𝑐𝑖(1)

2

2
), and  𝜇𝐽𝑅.𝑖|𝜎𝑖

2, 𝑎𝑖𝑗 ∼ 𝑁 (𝑏̄𝑖(1),
𝜎𝐽𝑅.𝑖
2

𝑚𝑖(1)
), 

respectively. We can calculate the posterior distributions of 
*

i
ζ  and piη  as 

 ( ) ( )
−

= + +
 
 
 

*

1

0 1

1 3
; ,

2 2i

JR

i i i iH M X O m m
ζ

and

( )

( ) ( )

( )

−
+

= +

 
 
 
 

12
1.

.

1 1

i i iJR JR i
pi JR i

i i

Z m

m V

ξσ
η μ

Φ
, 

where  

−

=
−

*

*1

i

i

JR

i

i JR

p H

H

ζ

ζ

ξ . It is possible to get the posterior distribution for 
il

ω  as 

( )= −exp .JR JR JR

il pi pl
ω η η  

Accordingly, the ( )−1 100%ε  two-sided SCI for ilω  is based on the HPD-Jeffreys rule prior, which is 

made obtainable by  

      =  
 

. . .
,JR JR JR

il il il

HPD JR HPD JR HPD JR
CI L U

ω ω ω
,        (7) 

where 
.

JR

il

HPD JR
L
ω

 and 
.

JR

il

HPD JR
U

ω
 are the lower and upper bounds of the HPD interval of 

JR

il
ω , respectively. 

 

Uniform Prior 

According to Kalkur and Rao [23], the uniform priors of 
*

i
ζ  and 

2
iσ  have a relationship that is proportional 

to 1. Therefore, the ( ) * 2
, 1U i iP ζ σ  value serves as the uniform prior for a DLN distribution. According 

to Yosboonruang, et al. [24], the posterior distributions of 
2
iσ  and iμ are  

𝜎𝑈.𝑖
2 |𝑎𝑖𝑗 ∼ 𝐼𝑛𝑣 − 𝐺𝑎𝑚𝑚𝑎(

𝑚𝑖(1) − 2

2
,
(𝑚𝑖(1) − 2)𝑐𝑖(1)

2

2
) 

and  𝜇𝑈.𝑖|𝜎𝑖
2, 𝑎𝑖𝑗 ∼ 𝑁 (𝑏̄𝑖(1),

𝜎𝑈.𝑖
2

𝑚𝑖(1)
), respectively. We can determine the posterior distributions of  

*

i
ζ

,  piη , and ilω  as follows:  

( ) ( )( )−
= + +*

1

0 1
; 1, 1

i

U

i i i i
H M X O m m

ζ
, 

( )

( ) ( )

( )

−
+

= +

 
 
 
 

12
1.

.

1 1

i i iU U i
pi U i

i i

Z m

m V

νσ
η μ

Φ
, 

and ( )= −exp
U U U

il pi pl
ω η η , where 

−

=
−

*

*1

i

i

U

i

i U

p H

H

ζ

ζ

ν . 
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Subsequently, the ( )−1 100%ε  two-sided SCI for ilω  is based on the HPD-Uniform prior, that is 

supplied by  

 =  
 

. . .
,U U U

il il il

HPD U HPD U HPD U
CI L U

ω ω ω
,     (8) 

where 
.

U

il

HPD U
L
ω

 and 
.

U

il

HPD U
U

ω
 are the lower and upper bounds of the HPD interval of 

U

il
ω , respectively. 

 

Results and Discussion 
 

In this simulation study, we conducted a performance comparison of four methods, which are denoted 
as FGCI, HPD.J, HPD.JR, and HPD.U, as described in equations (4), (6), (7), and (8), respectively. This 
comparison was carried out using the statistical software R through Monte Carlo simulations. We 
evaluated and compared the coverage probabilities (CPs) that were greater than or equal to the nominal 
confidence level of 0.95, along with the shortest expected lengths (ELs). To conduct the simulations, we 
generated 10,000 sets of random samples from the DLN distribution and 5,000 pivotal quantities for both 
FGCI and HPD. This research provides a flowchart that explains the simulation study process. It is shown 
in Figure 1. The variables in the study were set as follows: The number of samples k was either 3 or 5. 

Additionally, we configured the sample sizes and parameters as follows:  30, 50, 100, and 200; =
i

μ  0; 

=
2

i
σ  0.5 and 1.0; =

i
ζ  0.1, 0.3, and 0.5.  

 

Based on the simulation results in Table 1 and Figures 2 and 3, when k = 3, the FGCI method provides 
CPs that exceed the specified values and exhibits superior performance compared to other methods 
when the sample size is the same and sample sizes are equal to 30 and 50. As for the HPD.U method, 
it yields CPs that are close to the desired values and are stable in all cases studied, while also 
outperforming other methods when the sample sizes are equal to 100 and 200. Meanwhile, the HPD.J 
method produces CPs that are nearly in line with the specified values in almost all cases studied and 
offers better Els than both the FGCI and HPD.U methods when the sample sizes are not equal. 
Additionally, the HPD.JR method, despite yielding shorter Els than the HPD.J and HPD.U methods in all 
cases, provides CPs that are lower than the nominal confidence level of 0.95 in almost all cases as well. 

 

Based on the simulation results in Table 2 and Figures 4 and 5, when k = 5 and the sample sizes are 
equal, it was observed that for the CPs with fixed and specified criteria in the HPD.U and HPD.J methods. 
Then, the FGCI method yields CPs that closely approximate the nominal confidence level of 0.95, 
especially when the sample sizes are 30 and 50. On the other hand, the HPD.JR method consistently 
produces CPs that are lower than the specified criteria in almost all cases studied. When assessing the 
Els values, it became apparent that the FGCI method yielded the shortest intervals, followed by HPD.JR, 
HPD.J, and, finally, HPD.U. However, when the sample sizes are not equal but k = 5, it was found that, 
in all cases studied, the FGCI method still results in CPs that are lower than the nominal confidence level 
of 0.95. On the other hand, in the HPD.J, HPD.JR, and HPD.U methods, the majority of the CPs are 
close to and aligned with the specified criteria. Comparing the Els values, it is evident that HPD.JR 
consistently yields the shortest intervals among all methods, followed by HPD.J. 

 

Importantly, when considering the term of
2

i
σ , it was observed that k = 0.5 outperforms

2

i
σ  = 1.0. This 

implies that a smaller value of sigma leads to more accurate and reliable results for the statistical 

analyses under consideration. Regarding the term 
i

ζ , an increase in the value of 
i

ζ  results in higher 

Els values. This indicates that a larger i
ζ  tends to lead to wider confidence intervals, which may result 

in less precise estimations. Conversely, as the sample size increases, all methods consistently exhibit a 
decreasing trend in Els values. This suggests that larger sample sizes generally lead to more precise 
estimations and narrower confidence intervals, as indicated in Tables 1–2 and Figures 2–5. 
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Figure 1. A flowchart of the simulation study   
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Table 1. The coverage probabilities and expected lengths for the 95% SCIs for k = 3 
 

1 3
: :m m  

2 2

1 3
: :σ σ  1 3

: :ζ ζ  
Coverage probabilities Expected lengths 

FGCI HPD.J HPD.JR HPD.U FGCI HPD.J HPD.JR HPD.U 

303 0.53 
0.13 0.9515 0.9536 0.9463 0.9564 1.7893 1.9430 1.8713 1.9809 

0.33 0.9537 0.9522 0.9444 0.9554 2.1625 2.2947 2.1792 2.3617 

0.53 0.9547 0.9521 0.9439 0.9571 2.5610 2.6419 2.4713 2.7497 

1.03 0.13 0.9539 0.9518 0.9464 0.9548 2.9736 3.3134 3.0063 3.2009 

0.33 0.9527 0.9512 0.9432 0.9552 3.7971 3.8805 3.6463 4.0138 

0.53 0.9509 0.9472 0.9374 0.9520 4.8131 4.7413 4.3733 4.9822 

503 0.53 0.13 0.9507 0.9504 0.9468 0.9519 1.1620 1.3618 1.3350 1.3747 

0.33 0.9506 0.9507 0.9460 0.9536 1.3331 1.5595 1.5190 1.5800 

0.53 0.9508 0.9512 0.9456 0.9549 1.5243 1.7711 1.7129 1.8049 

1.03 0.13 0.9490 0.9487 0.9440 0.9503 1.7835 2.0674 2.0237 2.0880 

0.33 0.9504 0.9509 0.9457 0.9529 2.1042 2.4337 2.3664 2.4684 

0.53 0.9505 0.9474 0.9416 0.9507 2.4361 2.7263 2.6876 2.8442 

1003 0.53 0.13 0.9515 0.9514 0.9487 0.9518 0.7287 0.9021 0.8940 0.9060 

0.33 0.9477 0.9496 0.9463 0.9503 0.8130 1.0107 0.9993 1.0166 

0.53 0.9496 0.9492 0.9462 0.9502 0.9082 1.1315 1.1150 1.1404 

1.03 0.13 0.9488 0.9495 0.9475 0.9509 1.0687 1.3192 1.3069 1.3250 

0.33 0.9475 0.9452 0.9424 0.9500 1.2006 1.4874 1.6494 1.4960 

0.53 0.9489 0.9500 0.9480 0.9517 1.3548 1.6830 1.6582 1.6367 

2003 0.53 0.13 0.9520 0.9508 0.9508 0.9519 0.4845 0.6186 0.6160 0.6199 

0.33 0.9485 0.9489 0.9448 0.9505 0.5326 0.6839 0.6802 0.6857 

0.53 0.9489 0.9495 0.9474 0.9502 0.5923 0.7641 0.7589 0.7669 

1.03 0.13 0.9492 0.9476 0.9466 0.9500 0.6963 0.8877 0.8838 0.8896 

0.33 0.9481 0.9483 0.9471 0.9500 0.7715 0.9901 0.9847 0.9926 

0.53 0.9490 0.9501 0.9490 0.9517 0.8588 1.1069 1.0994 1.1111 

30:50: 
100 

0.53 0.13 0.9147 0.9537 0.9481 0.9557 1.5332 1.4934 1.4480 1.5155 

0.33 0.9121 0.9529 0.9477 0.9563 1.8924 1.7831 1.7092 1.8252 

0.53 0.9059 0.9590 0.9514 0.9627 2.3099 2.1032 1.9888 2.1757 

1.03 0.13 0.9134 0.9528 0.9485 0.9544 2.6495 2.3838 2.2994 2.4233 

0.33 0.9135 0.9556 0.9506 0.9585 3.4281 2.9502 2.8033 3.0339 

0.53 0.9043 0.9571 0.9506 0.9603 4.5129 3.7060 3.4564 3.7105 

50:100: 
200 

0.53 0.13 0.9065 0.9537 0.9514 0.9549 0.9477 1.0191 1.0034 1.0256 

0.33 0.9055 0.9547 0.9517 0.9560 1.0948 1.1679 1.1454 1.1792 

0.53 0.9009 0.9572 0.9524 0.9585 1.2721 1.3406 1.3076 1.3601 

1.03 0.13 0.9104 0.9534 0.9508 0.9540 1.4987 1.5293 1.5041 1.5400 

0.33 0.9067 0.9547 0.9514 0.9559 1.7737 1.7892 1.7512 1.8083 

0.53 0.9010 0.9595 0.9551 0.9607 2.1584 2.1430 2.0836 2.1789 

Notes: Bold indicates CP values greater than or equal to 0.95, and slant indicates the shortest EL values. =
1 2

: : :
k

k
m m m m  

 

      
 

 

Figure 2. Graphs comparing the performance of the proposed methods for k = 3 with respect to the (A) CPs and (B) ELs for various 
sample sizes (a=303, b=503, c=1003, d=2003, e=30:50:100, and f=50:100:200) 
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Figure 3. Graphs comparing the performance of the proposed methods for k = 3 with respect to the (C) CPs and (D) ELs for probabilities 
of non-zero 

 
Table 2. The coverage probabilities and expected lengths for the 95% SCIs for k = 5 
 

1 3
: :m m  2 2

1 3
: :σ σ  1 3

: :ζ ζ  
Coverage probabilities Expected lengths 

FGCI HPD.J HPD.JR HPD.U FGCI HPD.J HPD.JR HPD.U 

305 0.53 
0.15 0.9519 0.9516 0.9458 0.9548 1.7748 1.9261 1.8551 1.9633 

0.35 0.9526 0.9521 0.9440 0.9555 2.1647 2.2964 2.1800 2.3630 

0.55 0.9519 0.9509 0.9416 0.9558 2.5838 2.6663 2.4927 2.7752 

1.03 0.15 0.9521 0.9501 0.9442 0.9530 2.9687 3.1310 3.0023 3.1986 

0.35 0.9508 0.9501 0.9426 0.9540 3.8255 3.9165 3.6877 4.0483 

0.55 0.9533 0.9513 0.9418 0.9560 4.8470 4.7316 4.4188 5.0326 

505 0.53 0.15 0.9509 0.9511 0.9474 0.9535 1.1607 1.3603 1.3334 1.3734 

0.35 0.9518 0.9512 0.9465 0.9534 1.3315 1.5558 1.5160 1.5771 

0.55 0.9521 0.9517 0.9459 0.9550 1.5264 1.7737 1.7159 1.8070 

1.03 0.15 0.9498 0.9499 0.9466 0.9517 1.7921 2.0796 2.0362 2.1005 

0.35 0.9507 0.9489 0.9448 0.9514 2.0951 2.4198 2.3536 2.4542 

0.55 0.9531 0.9504 0.9447 0.9530 2.4638 2.8102 2.7090 2.8676 

1005 0.53 0.15 0.9512 0.9506 0.9487 0.9514 0.7290 0.9024 0.8944 0.9064 

0.35 0.9485 0.9481 0.9455 0.9500 0.8112 1.0077 0.9962 1.0135 

0.55 0.9497 0.9513 0.9482 0.9523 0.9093 1.1335 1.1170 1.1426 

1.03 0.15 0.9498 0.9497 0.9478 0.9505 1.0696 1.3203 1.3080 1.3260 

0.35 0.9495 0.9509 0.9489 0.9521 1.2030 1.4906 1.4732 1.4992 

0.55 0.9498 0.9509 0.9470 0.9513 1.3580 1.6870 1.6619 1.7007 

2005 0.53 0.15 0.9486 0.9489 0.9484 0.9509 0.4849 0.6191 0.6164 0.6204 

0.35 0.9475 0.9480 0.9472 0.9500 0.5324 0.6832 0.6796 0.6850 

0.55 0.9492 0.9493 0.9483 0.9508 0.5916 0.6303 0.7579 0.7658 

1.03 0.15 0.9476 0.9486 0.9478 0.9502 0.0447 0.8913 0.8873 0.8932 

0.35 0.9486 0.9486 0.9471 0.9508 0.7700 0.9880 0.9827 0.9907 

0.55 0.9498 0.9504 0.9491 0.9510 0.8585 1.1071 1.0996 1.1112 
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Table 2. (continue) 
 

1 3
: :m m  2 2

1 3
: :σ σ  1 3

: :ζ ζ  
Coverage probabilities Expected lengths 

FGCI HPD.J HPD.JR HPD.U FGCI HPD.J HPD.JR HPD.U 

302:50: 
1002 

0.53 0.15 0.9146 0.9536 0.9491 0.9560 1.5226 1.4943 1.4482 1.5175 

0.35 0.9129 0.9552 0.9492 0.9578 1.8730 1.7796 1.7035 1.8220 

0.55 0.9094 0.9569 0.9523 0.9601 2.2844 2.0906 1.9745 2.1643 

1.03 0.15 0.9131 0.9526 0.9489 0.9550 2.6306 2.3918 2.3065 2.4337 

0.35 0.9120 0.9532 0.9473 0.9559 3.4056 2.9627 2.8124 3.0492 

0.55 0.9080 0.9560 0.9517 0.9592 4.4443 3.6706 3.4184 3.8355 

502:100: 
2002 

0.53 0.15 0.9082 0.9512 0.9486 0.9523 0.9493 1.0273 1.0112 1.0343 

0.35 0.9001 0.9558 0.9520 0.9572 1.0873 1.1241 1.1005 1.1357 

0.55 0.9010 0.9566 0.9530 0.9588 1.2792 1.3564 1.3218 1.3770 

1.03 0.15 0.9086 0.9529 0.9502 0.9543 1.4961 1.5405 1.5146 1.1551 

0.35 0.9061 0.9556 0.9524 0.9576 1.7767 1.8102 1.7703 1.8310 

0.55 0.9008 0.9571 0.9536 0.9592 2.1374 2.1401 2.0785 2.1778 

Notes: Bold indicates CP values greater than or equal to 0.95, and slant indicates the shortest EL values. =
1 2

: : :
k

k
m m m m  

 

         
Figure 4. Graphs comparing the performance of the proposed methods for k = 5 with respect to the (E) CPs and (F) ELs for various 
sample sizes (a=305, b=505, c=1005, d=2005, e=302:50:1002, and f=502:100:2002) 

 

         
Figure 5. Graphs comparing the performance of the proposed methods for k = 5 with respect to the (G) CPs and (H) ELs for probabilities 
of non-zero 
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Application 
 
Rainfall data holds immense significance when it comes to environmental management, particularly in 
the context of river basin management. It is a pivotal component of the larger water cycle and contributes 
significantly to maintaining the delicate balance of our atmosphere. Therefore, data on weather 
conditions and water resources becomes increasingly essential to support economic and social activities, 
including agriculture, industry, transportation, energy production, and water resource management. For 
Thailand, rainfall measurements are collected as point data at various monitoring stations for both rainfall 
and weather conditions within different agencies. The collected rainfall data represents only a snapshot 
of the weather conditions at those specific measurement locations. In this research, we utilize daily 
rainfall data from June 20th to July 9th, 2023, within five river basins: The Mae Klong Basin has four 
monitoring stations: Kanchanaburi, Thong Pha Phum, Ratchaburi, and Umphang. The Sakae Krang 
Basin has three monitoring stations: Kamphaeng Phet, Nakhon Sawan, and Uthai Thani. The Tha Chin 
Basin has three monitoring stations: Nakhon Pathom, Suphan Buri, and U Thong (agricultural). The 
North Mekong Basin has three monitoring stations: Phayao, Chiang Rai, and Chiang Rai (agricultural). 
The Ping Basin has five monitoring stations: Kamphaeng Phet, Lamphun, Tak, Bhumibol Dam, and 
Chiang Mai. Table 3 displays the recorded rainfall data, while Figures 6 and 7 illustrate the histogram 
and Normal quantile-quantile (Q-Q) plot. In addition, the goodness of fit for the distribution is assessed 
using the minimum Akaike's information criterion (AIC) and the Bayesian information criterion (BIC). The 
results are presented in Table 4. The analysis indicates that the lognormal model achieved the lowest 
AIC and BIC values, suggesting that the lognormal distribution is the most appropriate fit for this dataset. 
Table 5 presents descriptive statistics for the nonzero rainfall dataset in five river basins. Based on the 
results in Table 6, which shows the SCIs for ratios of the percentiles for the rainfall dataset in five river 
basins, it was found that the HPD.JR method is the most suitable approach. Following that, the second-
best method is the HPD.J method. Moreover, these findings are consistent with the simulation results. 

 

Table 3. Data on rainfall by the river basin, June 20–July 9, 2023 
 

Data on rainfall by the river basin 

Mae Klong  Sakae Krang  Tha Chin  North Mekong  Ping 

0.0 0.5 8.3 0.0  0.1 0.0 0.0  0.0 0.0 0.0  0.0 0.0 1.2  0.1 0.0 0.0 0.0 0.0 
0.0 11.1 1.1 0.0  0.0 8.7 0.0  0.0 0.0 0.0  0.6 0.0 1.8  0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 4.2  0.2 5.0 0.5  0.0 0.0 0.0  0.0 0.0 0.0  0.2 0.0 0.0 4.2 0.0 
0.0 6.3 18.0 0.0  0.0 0.3 0.0  0.8 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.0 0.0 8.3 
0.0 6.3 0.0 0.0  0.0 1.0 0.1  0.0 0.0 0.0  33.4 35.8 26.0  0.0 0.0 0.7 0.0 14.3 
0.0 1.6 0.0 0.0  0.0 0.0 0.2  0.0 2.7 0.0  2.4 6.1 6.1  0.0 0.4 0.0 0.0 6.9 
0.0 1.8 0.0 11.8  0.0 2.2 0.7  0.0 0.4 0.0  0.7 0.0 2.2  0.0 0.1 0.0 11.8 12.4 
0.0 2.9 0.0 1.0  0.0 0.0 0.6  0.8 0.0 0.0  2.1 0.0 0.0  0.0 0.0 5.0 1.0 0.0 
0.0 0.2 34.3 0.6  1.5 0.0 0.1  0.6 0.0 1.7  0.0 47.6 2.3  1.5 0.7 1.0 0.6 34.4 

73.5 0.0 0.0 0.0  0.0 0.0 0.0  0.4 0.0 4.8  0.0 2.8 2.0  0.0 0.0 0.0 0.0 0.4 
0.7 0.0 9.7 13.3  0.8 0.4 0.0  0.4 3.2 2.6  54.0 11.2 1.2  0.8 0.7 0.0 0.0 0.0 
0.0 1.8 0.0 0.0  5.4 0.0 0.5  0.0 0.0 0.0  0.0 0.0 0.0  5.4 33.8 5.9 0.0 5.9 
4.9 22.1 19.8 3.2  8.6 0.4 5.9  2.1 0.3 2.6  0.5 0.0 0.0  8.6 0.1 7.6 0.2 7.6 
0.0 13.4 0.0 5.0  26.5 0.1 0.0  0.0 0.0 0.0  19.3 0.0 0.0  26.5 5.2 29.9 1.8 29.9 
0.0 30.5 0.0 3.0  5.3 0.5 5.0  0.3 4.2 1.8  0.0 0.8 0.0  5.3 8.8 0.5 12.4 0.5 

15.5 0.9 0.3 2.1  0.0 0.0 0.0  3.3 0.0 9.8  0.0 0.0 0.0  0.0 0.0 0.0 1.8 0.0 
0.0 0.2 0.0 2.5  0.0 0.0 0.0  0.0 1.7 4.0  0.0 0.0 0.0  0.0 0.0 0.0 0.0 0.0 
0.8 0.0 0.0 0.2  0.0 0.0 0.0  0.0 0.0 0.0  0.0 0.0 0.8  0.0 0.0 3.5 0.0 3.5 

112.7 5.6 0.0 2.3  0.0 2.8 0.3  0.0 2.0 39.4  0.0 1.6 0.6  0.0 36.7 0.0 0.0 0.0 
2.0 0.0 0.0 2.2  0.0 0.0 0.0  0.6 0.0 0.3  0.0 0.6 0.2  0.0 0.0 0.0 0.0 0.0 

 

Table 4. Data on rainfall by the river basin, June 20–July 9, 2023 
 

Model 
Mae Klong Sakae Krang Tha Chin North Mekong Ping 

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC 

Normal 376.98 380.46 175.99 178.65 176.24 178.68 227.80 230.40 323.99 327.51 

Lognormal 266.85 270.32 105.20 107.86 105.40 107.84 162.45 165.04 244.61 248.13 

Cauchy 307.39 310.87 135.40 138.06 123.24 125.68 186.22 188.81 302.12 305.65 

Logistic 350.32 353.79 161.95 164.61 152.77 155.20 223.85 226.44 316.05 319.57 

Exponential 286.73 288.47 119.32 120.65 116.49 117.71 179.11 180.40 258.27 260.03 

Gamma 276.50 279.97 112.31 114.97 116.19 118.62 171.07 173.67 246.66 250.18 
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Figure 6. Histogram graph of the log-transformed positive rainfall datasets  

 
Figure 7. Normal Q-Q of the log-transformed positive rainfall datasets 

 

Table 5. The summary of statistics for the non-zero rainfall datasets in five river basins 
 

River basin mᵢ mᵢ₍₁₎ mᵢ₍₀₎ ζ^_i^* η^_i 
Mae Klong 80 42 38 0.4750 3.3291 

Sakae Krang 60 28 32 0.5333 1.9196 

Tha Chin 60 25 35 0.5833 1.8625 

North Mekong 60 21 33 0.5500 3.0102 

Ping 100 43 57 0.5700 2.9203 
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Table 6. The SCIs for ratios of the percentiles for the rainfall datasets in five river basins 
 

Methods 
Confidence interval for 

il
ω  

Length of intervals 
Lower Upper 

FGCI 0.4251 6.0960 5.6708 

HPD.J 0.2894 5.5554 5.2659 

HPD.JR 0.2702 5.1721 4.9019 

HPD.U 0.2778 5.5783 5.3005 

 

 

Conclusions 
 
In conclusion, this study contributes to the understanding of confidence interval construction methods 
for SCIs for ratios of the percentiles of the delta-lognormal distribution, which were proposed using four 
methods: FGCI, HPD.J, HPD.JR, and HPD.U. The research defines diverse sample sizes, parameter 
values, and Monte Carlo simulations to ensure comprehensive analysis. Additionally, the efficiency of 
these methods has been compared using cumulative coverage probability and the expected length of 
the confidence intervals. The results of the simulation study revealed that, for equal sample sizes, the 
FGCI method demonstrated better performance when dealing with small sample sizes. However, as the 
sample size increases, the HPD.U method shows superior efficiency compared to the other methods. 
Furthermore, for unequal sample sizes, all three HPD methods exhibit stability in terms of coverage 
probability; notably, HPD.JR consistently yields the shortest expected length across almost all cases 
studied. Importantly, it becomes evident that with increasing sample sizes, the confidence intervals tend 
to become more efficient. Overall, based on the findings, the HPD method outperforms the FGCI method. 
Consequently, the HPD method is recommended for constructing simultaneous confidence intervals for 
ratios of the percentiles of the delta-lognormal distribution.  
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