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ABSTRACT

In this paper we introduced some new sequence spaces using n-normed spaces and gave some preliminary result for
matrix transformations between some sequence spaces.
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1. Introduction

P. Kostyrko et al [11] introduced the concept of Z-convergence of sequences
in a metric space and studied some properties of such convergence. Note that
T-convergence is an interesting generalization of statistical convergence.

The concept of statistical convergence was introduced by Steinhaus [19] in 1951
(see also Fast [1]) and had been discussed and developed by many authors including
2], [3], [15].

Let N denotes the set of positive integers and (X, ||.||) be a normed space. Recall

that a sequence (), oy of elements of X is called to be statistically convergent to

ne
x € X if the set A(e) = {n € N: ||x,, — z|| > ¢} has natural density zero for each
e>0.

Let us now give some definitions and notations.

A family Z C 2¥ of subsets a nonempty set Y is said to be an ideal in Y if (i)
0 eZ; (ii) A,Be€Zimply AUB € T; (iii) A € Z, B C A imply B € Z, while an
admissible ideal Z of Y further satisfies {«} € Z for each x € Y [10], [13].

Let Y # (). A non-empty family F C 2Y is said to be a filter on Y if (3) 0 ¢ F;
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(ii) A,B € FimplyANB € F; (iii) A € F, ACB C Yimply B € F. Let
T be a proper ideal in Y (i.e. Y ¢ 7), Y # (). Then the family of sets F () =
{MCY:3A€Z:M=Y\A}isafilter in Y. It is called the filter associated with
the ideal Z [12].

Given Z C 2" be a nontrivial ideal in N. The sequence (,,),,cy in X is said to
be Z-convergent to z € X, if for each ¢ > 0 the set A (¢) = {n € N: ||z, — z|| > ¢}
belongs to Z [11, 12]. There are many examples to ideal Z C 2V in [11, 12] and
basic properties of Z-convergence have been studied in these works.

Let Z C 2N be a nontrivial ideal in N and (X, ||.||) be a normed space. The
sequence z = (z,) of elements of X is said to be Z-convergence to z € X if for
each ¢ > 0 the set A(e) = {n € N: ||z, —z| > e} belongs to Z. If z = (x,,) is
Z-convergent to x then we write Z- lim x,, = x. In this case the element x € X is
called Z-limit of the sequence z = (Z:)OOE X [11, 12].

There are many examples to ideals Z C 2V in [11, 12] and basic properties of
Z-convergence have been studied in these works.

The concept of 2-normed spaces was initially introduced by Géhler [4] in the
1960’s. Since then, many researchers have studied this concept and obtained various
results, see for instance [5, 7, 17, 18].

Let n € N and X be a real vector space of dimension d, where n < d. An n-norm

on X is a function ||.,...,.|| : X x X x ... x X — R which satisfies the following four
—_—
n—times
conditions:

(i) ||z1, 2, ..., Zn|| = 0 if and only if z1,za, ..., x,, are linearly dependent;
(ii) ||z1, 2, ..., Tp || are invariant under permutation;
(iii) ||az1, 22, ...y Tn|| = || |21, T2, ..oy ||, @ € R;
(iv) ||z + 2/, 2, .., zn || < |z, T2y ooy Tp|| + |2, 22y oy Tn || -
The pair (X, ||, ...,.]|) is then called a n-normed space [6].
DEFINITION 1. [8] A sequence (zx) in n-normed space (X, |.,...,.||) is said to

be convergent to an x in X ( in the n-norm) if
lim ||z1,29,...,2n—1,2k — || =0
k—oo

for every x1,x0,...,x,_1 € X.

DEFINITION 2. [5] A sequence (zy) in n-normed space (X, ||.,...,.||) is said to

be Cauchy in X ( with respect to the n-norm)if

Um ||z1,22,...; Tn_1,2x —x|| =0
k,l—o0

for every x1,x9,....;xpn_1 € X.
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If every Cauchy sequence converges to an = in X then X is said to be complete

(with respect to n — norm). Any complete n-normed space is said to be n-Banach

space.

Let (X,|.,...,-||) is an n-normed space of dimension d > n and {a1,as,...,a,}
is a linearly independent set in X. Then the function |.,...,.[|,, on X" ! defined
by

lz1, x2, ..oy Tn—1ll o, = max {||z1, 22, ..., Tn—1, il 11 =1,...,n}

defines an (n — 1) norm on X with respect to {a1, as,...,an} [5].

DEFINITION 3. [16] Let X be a linear space. Then a map g : X — R is called
a paranorm (on X) if is satisfies the following conditions for all x,y € X :

(i) g(0) =0 (Here 8 = (0,0,...,0,...) is zero of the space)

(i) g () = g (—x)

(iti) g (x +y) < g(x) + 9 (y)

(w) g(A\"=A) — 0 (n—o0) and g(z"—x) — 0 (n—o00) imply
g(A\"z" — Az) —» 0 (n — o).

Recall that (X, ||.,...,.]|) is a n-Banach space if every Cauchy sequence in X is
convergent to some x in X in the n-norm.

The following lemma will help us throughout our study.

Lemma 1. [8] (X, ].,...,.|]) is @ n-Banach space if and only if (X, |.,...,.||) is

a Banach space.

Now, we introduce the notion of Z-convergence in n-normed spaces and give

the main results of the paper.

2. Ideal Convergence of n-Normed Spaces

Suppose hereafter that (X, ||, ..., .||) is n-normed space. Recall that we assume

X to have dimension d, where 2 < n < d < oo, unless otherwise stated.

DEFINITION 4. Let T C 2N be a nontrivial ideal in N. The sequence (vy) of X
is said to be I-convergent to x,if for each € > 0 and x1,x2,...,Tn—1 in X the set
A()={keN:|zr —z,21,22,....,cn_1]|| > €} belongs to .

If (z,,) is Z-convergent to x then we write Z- lim ||z — z, 21, %2, ..., Tp—1|| =0
n—oo
or I—klim |zk, z1, 2y ooy Tn—1l| = ||z, 21, 2, ..., Zp—1]| . The number z is Z-limit of
— 00

the sequence (xy) .
Further we will give some examples of ideals and corresponding Z-con-

vergences.
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(I) Let Z; be the family of all finite subsets of N. Then Z; is an admissible
ideal in N and 7y convergence coincides with usual convergence in [4] .
(IT) Put Zs = {A C N: § (A) = 0}. Then Z; is an admissible ideal in N and Zs

convergence coincides with the statistical convergence in [9].

REMARK 1. Note that if T is admissible ideal, then the convergence in n-normed

space (X, ||, .., .||) implies T-convergence in n-normed space (X, ||, ..., .||) -

We shall now investigate which axioms of convergence in X are satisfied by
Z-convergence in X.

(S) Every constant sequence (z,z, ..., z,...) converges to z in n-normed space
X.

(H) The limit of any convergent sequence in m-normed space X is uniquely
determined.

(F) If a sequence (x), o in X has the limit 2 in X, then each of its subsequences
has the same limit.

(U) If each subsequence of the sequence (), in X has a subsequence which

converges to « in X, then (x) converges to z in X.

PROPOSITION 1. Suppose that n-normed space X has at least two points. Let
Z C 2% be an admissible ideal.

(i) The Z-convergence in X satisfies (S),(H) and (U).

(1) If T contains an infinite set, then T-convergence in X does not satisfy (F).

PROOF. (i) (S) is obviously fulfilled. To prove (H) it is sufficient to observe
that for any Ay, A2 € 7 we have (N\ A1) N (N\Az) # () since the last two sets belong
to the filter associated with Z. If there are two limits x1,zo € X, 1 # 2, choose
€ such that

0 <2< ||z — @2, T1, T2, oo, Tp—1 |

where x1 — x2 and x1, 29, ..., T, _1 are linearly independent. And put
Ay = {keN:|ap — 1,21, 22, ..., Tn1]| > €},
As = {keN:|zp—x2,21,22, ..., Tn1] > €}
Suppose now that (U) does not hold. Then there exists €9 > 0 such that
Aeg) ={k eN: |jzx — 2,21, T2, ..., Tn_1]| > €0} € Z

for each x1, 2, ..., Tp_1 in X. But then A (gp) is an infinite set since Z is admissible.
Let A(go) = {n1 <m2 <..<n; <..}.Puty; =z, fori € N. Then {y;},.y is a
subsequence of (xy) without a subsequence Z-convergence to x in n—normed space
X.
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(ii) Suppose that A € 7 is an infinite set, A = {k1 <ka < .. <k; <..}. B =
N\A = {m; <mgy < ... <m; < ...}. The set B is also infinite since Z is non-trivial

ideal. Define (z) by choosing z1,22 € X, 1 # x2 and put xp, = x1, T, = T2

for i € N. Obviously Z- lim ||xg,,z1, T2, .oy Tn—1]| = |21, 21, %2, ..., Tp—1|| and Z-
11— 00

Hm ||, , 1, T2y ooy Tno1]|] = |22, 21, T2y ooy Tp—1]|- O

1— 00

Now Let X = R? (d > n) be equipped with the n-norm then
lx1, 2, ..., Tn_1, xn||5 := the volume of the n-dimensional parallelepiped spanned

by the vectors , 1,23, ..., Tn_1, T, Which may be given explicitly by the formula

1

<21,y > - < T1,Tp >
H$1,JZ‘27 ...,$n,1,1‘n||s =
< Tp,T1 > o < Ty, Ty >
EXAMPLE 1. Let T = Z;. Define the (x,) in n-normed space (X, ||.,...,.||) by

0,...k) ,k=1i%4ieN
T —
(0,...,0) , otherwise.

and let x = (0,...,0) and . Then for every € > 0 and =1, 22, ..., Tn-1 € X
{keN:|zy —x,x1,22, ... Tn_1] > €} C {1,4,9, 16, ..., k2, } .

We have that § ({k € N: ||xp — 2, 21,22, ..., Tn_1]| = €}) = 0, for every e > 0 and
z € X. This implies that I—klim lxk, 21,22y ooy 1| = ||®, 21, 2, ooy Tn—1|| . But,
— 00

the sequence (zy) is not convergent to x.

We next provide a proof of the fact that Z-limit operation for sequence in
n-normed space (X, ||., ..., .||) is linear with respect to summation and scalar multi-

plication.

THEOREM 1. Let Z be an admissible ideal. For each x1,Z2,...,Tn_1 in X,
(i) IfI—kli_{I;o lzp — z, 21,22,y oy Tp1]] =0 andI—kli_)n;O lye — vy, 21, @2, ooy Tper || =
0 then I—klim (zk +yk) — (+y), 21,22, o, Tn_1]| = 0;
— 00

(i) I-klirrgo la (xk — ), 21,22, ooy Tn—1]| =0, a € R;

PRrROOF. (i) Let € > 0 be given. Then set A1, Ay € T as follows:
3

9
Ay = A2 () = {k € N: llyn = y,21, 02, st | >

A=A (e) = {k eEN: |z —x, 21,22, 0y Tn—1]| =

and

I
—



238 Mehmet Giirdal and Ahmet Sahiner / Journal of Fundamental Sciences 4 (2008) 233-244

for each x1,x9,...,2,_1 in X. Let
A=A():={keN:|(zx +yx) — (x+vy),z1,22, ... Tpn_1| > €}.
Then the inclusion A C A; U Ay holds and the statement follows.

(ii) Let I—klim lzx — z, 21,22, ..., xn—1]| =0, a € R and a # 0. Then
— 00

€
{k eN: |lxp — k, 21,22, .0y Tp_1]| > |a|} <

Then by definition 2.1, we have

{k e N: |laz) — az, 1, T2, ..., Tp_1|| > €}

{k e N:la|||zr — x, 21,22, ooy Tn—1]| > €}

€
{k eEN: |z — k,x1, 22, ey Tp_1|| > W} .

Hence, the right hand side of above equality belongs to Z. Hence,

7 — lim |ja(zf — z),21,22,...,2p—1| =0,
k—oo
for every x1,x2,...,Tn_1 in X. O

Recall that we assume X to have dimension d, where n < d < oo, unless
otherwise stated. Let a = {a1,..,a,} to be a linearly independent set in X. With

respect to {ai,..,a,}, if we define the following function |., ..., .||, on X"~!
|1, ..., Tnoillo = max {||z1, ..., tn_1,a:]| ;4 =1,...,n}.
then the function ||, ..., .||, defines an (n — 1) norm on X [8].

LEMMA 2. Let T be an admissible ideal. A sequence (xy) in X is I-conver-
gent to x in X the n-norm if and only ifI-klim |x1, o, ooy Tp_o, Tk — T,a:]| = 0
— 00

for everyi=1,...,n.

PROOF. Z-convergent to x in X the n-norm then I—klim lzx — z, 21,22, ooy T ]| =
— 00
0 for every x1,x2,....,2,_1 € X and ¢ = 1,2,...,n. Every z € X can be written as
z = oa1x1 + ... + apu, for some ay, ..., a,, € R. Using the triangle inequality we have
||$1,$2,...,$n72,l‘k71‘,2” S |O[1|‘|$1,$2,...,l’n727$k7I,U1||+...

(2.1) + |an] |21, T2y ooy Tn—2, Tk — T, Uy ||

for all k£ € N.
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If A(e) = {keN: |z, 22, ..., Tpn_2,2x — T, u;]| > €} € T for every ¢ > 0 and

i =1,...,n. From the above inequality we have

{k:||lz1, 22, Tn—2, 2k — 2, 2| >} C {k:|oa|llz1, 22, s Tn-2, T — x,u1]| > €}

u..u {n : ‘O‘”‘ ||l‘1,fL‘2, vy Tn—2, T — myunH > 5} .

Since the right hand side of the above inclusion belongs to ideal, so does the left
hand side. O

From Lemma 2.3 and norm ||, ..., .||, , we have:

LEMMA 3. Let T be an admissible ideal. A sequence (x,) in X is T-conver-

gent to x in X in the n-norm if and only ifI—klim 71,22, ..., 2n_22 — 2|, = 0.
Using open balls B, (x,¢), we have the following.

LEMMA 4. Let Z be an admissible ideal. A sequence (xy) in X is I-conver-
gent to x in X in the n-norm if and only if A(e) = {k € N: x, ¢ B, (x,¢)} belongs

to ideal.
Now we introduce the concepts Z-Cauchy sequences in n-normed spaces X.

DEFINITION 5. Let T C 2" be a nontrivial ideal in N. The sequence (x,,) of X
is said to be T-Cauchy sequence in X, if for each € > 0 and z € X there exists a
number N = N (g, z) such that

{k: eN: Hmk — TN(e,2)s L1, T2, ...,xn,lH > z—:} el
where z = X1, L9, cccy Tp—1.

Further we will give some examples of ideals and corresponding Z-con-
vergences.

(I) Let Zy be the family of all finite subsets of N. Then Z; is an admissible
ideal in N and Z; Cauchy sequence coincides with usual Cauchy sequence in [18] .

(IT) Put Zs = {A C N: § (A) = 0}. Then Z; is an admissible ideal in N and Zs
Cauchy sequence coincides with the statistical Cauchy sequence in [9].

Now we give a similar result as in [8] (see Lemma 1.2).

LEMMA 5. In any n-normed space (X, |.,...,.||), any Z-Cauchy sequences is
T-convergent if and only if any I-Cauchy sequence with respect to |.,...,.[ o 5

T —convergent.

239
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ProOOF. From Lemma 2.2, 7-convergence in the n—norm is equivalent to that

in the ||., ..., .||, norm. That is,

I—klim ||.’L’17"L’2,...,$n,2,$n,1,!1}k—.’I?” = 0,Vri,29,...,Tn_9,Tp_1 € X
— 00
& I-lim |21, %2, ..., Tno2, Tk — || -
k—o0
It sufficient to show that (z) is Z-Cauchy sequence with respect to the n-norm iff
it is Z-Cauchy sequence with respect to the norm ||.,..., .||, . But it can be done

easily very similar to that in Lemma 1.2 with only mild changes. (I

Let X be real inner product space of dimension d > n then

(NI

<z1,r1 > - <T1,Tp >
|1, .y @]l =
< TpyT1 > o0 < Ty Tp >
where < .,. > denotes the inner product on X. On the other hand, Let {ey,...e,}
be an orthonormal set in X then

lz1, .., &l o = max {||z1, ..., Tn_1,6] : 1 =1,...,n}

defines an (n — 1) norm on X.
Let (X,].,...,.|]|) be any n-normed spaces and S (n — X) denotes X-valued se-
quences spaces. Clearly S (n — X) is a linear space under addition and scalar mul-

tiplication.

DEFINITION 6. We define the new sequences space as follows:

I(n—p) = {az eS(n—-X): Z||xk,x1,:r2,...,xn_1Hp’“ < oo}
k

for each x1,29,...,x,_1 in X.
LEMMA 6. I (n — p) sequences space is a linear space.

PRrROOF. Let pp > 0, (Vk), H = sup pj and ag,br € C (complex numbers).
Then
jar + bl < C {lanl™ + i}, € = max {1,271},
[16]. Hence, if |\| < L and |u| < M ; L, M integers, x,y € l (n — p) then we get

Az + py, 21, @2, s T [P < (A 2k, 21, s ot ||+ 10l Y5 215 22, o TR )P
< (M lks 21,2, o Tt || + 10l Yk, 21, 22, 0o T )P
< (L ||z, 21,22, oo Tl + M ||yk, 21, T2y ooy 1 |[)F*
< C{L @k, 21,22, -y a1 )™ + (M |lyg, 21,22, ooy T )P}
< CLY (|zg, 21, 2oy ooy Tt ||)P* + C M (|Jyp, 21, 22, oy T ||)P"
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Taking sum over k desired result is obtained. (|
k .
DEFINITION 7. Let t, = Y (|lzs,z1, %2, s zn_1||)” and T be an admissible
i=1

ideal. Then we define the new sequences space as follows:
Fn-p)={zxecSnh—-X):{neN:|tp —t,ty,...tn1| >c} €T}.

THEOREM 2. Let T an admissible ideal. 1T (n — p) sequences space is a linear

space.

ProOOF. Using properties of ideal and partial sums of sequences the proof can

easily be done similar the above Lemma 2.7. O

THEOREM 3. [ (n — p) space is a paranormed spaces with the paranorm defined
byg:l(n—p)—R,
1
M

= (Z ||.Tk,.’l'f1,l'2, “'71,”1”13!@)
k

,where 0 < pp < suppx, = H, M =max (1,H).
1

i
PrOOF. (i) g(0) = (Z |9k,x1,x2,...,xn_1||p’“) =0.
k
e
(ii) g (—z) = <Z ||—xk,:c1,9:2,...,mn1||p’“)
&

1

™M
—(;|1|||xk,:c17x2,...,xn1||Pk> ()
(iii)

1
M

g(z+y)

(Z 2k + Yk, 1, 22, ~--796n—1||pk>

1

M
S (Z('wkal‘lan,"'axn—l ||+||yk»$1»l“27-~,$n—1)pk>
1
Pr Ay M
S Z(kaal‘lana"'axnfl ||+||ykvxlvl‘Qv-Haxnle)M
1
Pk M\ ™
Pk M
S ( kayxlvtf'EQa“'v‘T’nfl H M+Hyk7x17*r27'“axnfl ) )
1 1
M\ M M\ M
S |xk7$1aw2a"-7$n71|| NI) + Z(HykJ)wl)xZ?“')xnle IM)
k
= g(= +wm

241
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(iv) Now let A" — X and g (™ — z) — 0 (n — 0o0) . We have

L
M

g\ —Az) = (Zuwz—Ax,zl,zQ,...,zn_l|“>
k

1
M

IN

H .
|A|nM (Z sz T Lk, R15 225 ey Zn_1||pk>
k
b
+ (Z)\n_)‘l ”xkazlaZZa~~~7ZTL—1||pk> .

k
First statement of the above inequality tends to zero because g(z™ —x) — 0
(n — 00). Also, since A\ — X (n — o) using Lemma 2.7 second statement of

the above inequality tends to zero as well. O

THEOREM 4. If (X, ||, ..., .|) is finite dimensional n— Banach spaces then (I (n —p), g)

is complete.

PRrROOF. Let (z™) be a Cauchy sequence in (I (n —p),g). Then for each € > 0
there exists Ny € N such that for each m,n > Ny we have
1
M

gz —z™m) = (Z |z — a2, @1, 22, ...7xn1|p’“> <e
k

Pkﬁ
")

which implies (||z™ — 2™, z1, T2, ..., Tn_1| < g, for each k. So, (") is a Cauchy

sequence in (X, ||, ....,.||) and since (X, ||.,....,.||) is n-Banach space there exists an
x in X such that ||z} — zk, 1,22, ..., Tn—1]| = 0 (n — 00) and this completes the

proof. O
THEOREM 5. If (X, ||.,...,.||) be any standard n-normed space then

l(n—p)” I El(”—P)H_ )

el

Cyeeeye

that is, v € l(n—p); | < z€lln—p)

e lln—1ys

Cyeeeye

PRrROOF. From fact 2.3 in [8] we have

ka,.'1:17$27---,$n72||00 S ||wka‘rla$2) '-'7:1:7172”3 S \/7'774”.%']@,%1,%2,...,1'”72“00

for all 21, 29, ..., 2z,—1 in X. So we get

ZHiﬂk,%thw“axnfﬂ'ZS S Z||xk7x17x2"“’xn72||gk
i k
< Y Vallakwnws, o in ]
k
H Pk
< nz Z||xk7$1,$2w-7$n72”oo
k
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as required. 0
THEOREM 6. u € loo = ux € I (n — p), where lo is bounded sequences spaces.

PROOF. Let v = (ug) € loo. Then there exists a A > 0 such that |ug| < A for
each k. We want to show (ugzy) € I (n —p). But

S lukwrs w1, @2, s 2o P =D (] @k, w1, 22,z [P
k k
< AT lwk, w1, w2, 2|7
k
< o0
and this completes the proof. O

Now we give some generalizations of subjects given in [14].

DEFINITION 8. Let A = (amp) be a non-negative matriz. Define the new

sequences space as follows:

wo(n—p) = {:c eS(n—X): ngnooz lam kTh, T1, T2y ooy T |75 = O}
k

for each x1,za,....,xn—1 in X. If x — te € wo (n —p) then we say x is wo (N — p)

summable to t, where, e = (1,1, ...).
THEOREM 7. wq (n — p) is linear.
PROOF. It can be done very similar to the proof of linearity of I (n — p) O

THEOREM 8. wq (n — p) is paranormed space by

1
M
g(.T) = sup < E ||am7kxk,x1,x2, ...,l’n1|pk>
m

k

PROOF. Again it is very similar to above one we omit it. O

THEOREM 9. If A = (am,k) is the matriz of Cesaro means of order 1 then
L(n—p) S wo(n—p).

PROOF. If A = (a, ) is the matrix of Cesaro means of order 1 then

oo

Ap () = Z @ kT, 1, T2, ey Ty |7
k=1
1 o0
< — ka7x17x27'":wn*1Hpk
m

k=1
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So, if x € I (n — p) then there exists M > 0 such that

oo
Z |2k, 21, T2y ooy 1 ||P* = M > 0.
k=1
Hence 0 < lim A, (z) < % = 0. This means = € wo (n — p). O

>

=

7

8

9

(10]
(1]

(12]

15]

[16]
(17]

(18]

(19]

m—0Q0

More generally we have the following result.

THEOREM 10. If A = (am i) is any reqular matriz then I (n — p) C wo (n —p) .
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