Ideal convergence in n-normal spaces and some new sequence spaces via n-norm

Mehmet Gürdal* and Ahmet Şahiner

Department of Mathematics, Suleyman Demirel University, 32260, Isparta, Turkey.

*To whom correspondence should be addressed. E-mail address: gurdal@fef.sdu.edu.tr

Received 18 September 2007 http://dx.doi.org/10.11113/mjfas.v4n1.32

ABSTRACT

In this paper we introduced some new sequence spaces using n-normed spaces and gave some preliminary result for matrix transformations between some sequence spaces.

2000 Mathematics Subject Classification. Primary 40A05, 40A45; Secondary 46A70.

| Natural density | Statistical convergence | Statistical cauchy sequence | 12-convergence | 2-normed spaces | 12-convergence | 12-convergence

1. Introduction

P. Kostyrko et al [11] introduced the concept of \mathcal{I} -convergence of sequences in a metric space and studied some properties of such convergence. Note that \mathcal{I} -convergence is an interesting generalization of statistical convergence.

The concept of statistical convergence was introduced by Steinhaus [19] in 1951 (see also Fast [1]) and had been discussed and developed by many authors including [2], [3], [15].

Let $\mathbb N$ denotes the set of positive integers and $(X, \|.\|)$ be a normed space. Recall that a sequence $(x_n)_{n\in\mathbb N}$ of elements of X is called to be statistically convergent to $x\in X$ if the set $A(\varepsilon)=\{n\in\mathbb N:\|x_n-x\|\geq\varepsilon\}$ has natural density zero for each $\varepsilon>0$

Let us now give some definitions and notations.

A family $\mathcal{I} \subset 2^Y$ of subsets a nonempty set Y is said to be an ideal in Y if (i) $\emptyset \in \mathcal{I}$; (ii) $A, B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$; (iii) $A \in \mathcal{I}$, $B \subset A$ imply $B \in \mathcal{I}$, while an admissible ideal \mathcal{I} of Y further satisfies $\{x\} \in \mathcal{I}$ for each $x \in Y$ [10], [13].

Let $Y \neq \emptyset$. A non-empty family $\mathcal{F} \subset 2^Y$ is said to be a filter on Y if $(i) \emptyset \notin \mathcal{F}$;

(ii) $A, B \in \mathcal{F}$ imply $A \cap B \in \mathcal{F}$; (iii) $A \in \mathcal{F}$, $A \subset B \subset Y$ imply $B \in \mathcal{F}$. Let \mathcal{I} be a proper ideal in Y (i.e. $Y \notin \mathcal{I}$), $Y \neq \emptyset$. Then the family of sets $\mathcal{F}(\mathcal{I}) = \{M \subset Y : \exists A \in \mathcal{I} : M = Y \setminus A\}$ is a filter in Y. It is called the filter associated with the ideal \mathcal{I} [12].

Given $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N} . The sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be \mathcal{I} -convergent to $x \in X$, if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : ||x_n - x|| \ge \varepsilon\}$ belongs to \mathcal{I} [11, 12]. There are many examples to ideal $\mathcal{I} \subset 2^{\mathbb{N}}$ in [11, 12] and basic properties of \mathcal{I} -convergence have been studied in these works.

Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N} and $(X, \|.\|)$ be a normed space. The sequence $x = (x_n)$ of elements of X is said to be \mathcal{I} -convergence to $x \in X$ if for each $\varepsilon > 0$ the set $A(\varepsilon) = \{n \in \mathbb{N} : \|x_n - x\| \ge \varepsilon\}$ belongs to \mathcal{I} . If $x = (x_n)$ is \mathcal{I} -convergent to x then we write \mathcal{I} - $\lim_{n \to \infty} x_n = x$. In this case the element $x \in X$ is called \mathcal{I} -limit of the sequence $x = (x_n) \in X$ [11, 12].

There are many examples to ideals $\mathcal{I} \subset 2^{\mathbb{N}}$ in [11, 12] and basic properties of \mathcal{I} -convergence have been studied in these works.

The concept of 2-normed spaces was initially introduced by Gähler [4] in the 1960's. Since then, many researchers have studied this concept and obtained various results, see for instance [5, 7, 17, 18].

Let $n \in \mathbb{N}$ and X be a real vector space of dimension d, where $n \leq d$. An n-norm on X is a function $\|.,...,.\|:\underbrace{X \times X \times ... \times X}_{n-times} \to \mathbb{R}$ which satisfies the following four

conditions:

- (i) $||x_1, x_2, ..., x_n|| = 0$ if and only if $x_1, x_2, ..., x_n$ are linearly dependent;
- (ii) $||x_1, x_2, ..., x_n||$ are invariant under permutation;
- (iii) $\|\alpha x_1, x_2, ..., x_n\| = |\alpha| \|x_1, x_2, ..., x_n\|, \alpha \in \mathbb{R};$
- (iv) $||x + x', x_2, ..., x_n|| \le ||x, x_2, ..., x_n|| + ||x', x_2, ..., x_n||$.

The pair $(X, \|., ..., .\|)$ is then called a *n*-normed space [6].

DEFINITION 1. [8] A sequence (x_k) in n-normed space $(X, \|., ..., .\|)$ is said to be convergent to an x in X (in the n-norm) if

$$\lim_{k \to \infty} ||x_1, x_2, ..., x_{n-1}, x_k - x|| = 0$$

for every $x_1, x_2, ..., x_{n-1} \in X$.

DEFINITION 2. [5] A sequence (x_k) in n-normed space (X, ||., ..., .||) is said to be Cauchy in X (with respect to the n-norm) if

$$\lim_{k,l \to \infty} ||x_1, x_2, ..., x_{n-1}, x_k - x_l|| = 0$$

for every $x_1, x_2, ..., x_{n-1} \in X$.

If every Cauchy sequence converges to an x in X then X is said to be complete (with respect to n – norm). Any complete n-normed space is said to be n-Banach space.

Let $(X, \|., ..., .\|)$ is an *n*-normed space of dimension $d \ge n$ and $\{a_1, a_2, ..., a_n\}$ is a linearly independent set in X. Then the function $\|., ..., .\|_{\infty}$ on X^{n-1} defined by

$$||x_1, x_2, ..., x_{n-1}||_{\infty} := \max\{||x_1, x_2, ..., x_{n-1}, a_i|| : i = 1, ..., n\}$$

defines an (n-1) norm on X with respect to $\{a_1, a_2, ..., a_n\}$ [5].

DEFINITION 3. [16] Let X be a linear space. Then a map $g: X \to \mathbb{R}$ is called a paranorm (on X) if is satisfies the following conditions for all $x, y \in X$:

(i)
$$g(\theta) = 0$$
 (Here $\theta = (0, 0, ..., 0, ...)$ is zero of the space)

$$(ii) g(x) = g(-x)$$

(iii)
$$g(x+y) \le g(x) + g(y)$$

(iv)
$$g(\lambda^n - \lambda) \rightarrow 0 \quad (n \rightarrow \infty)$$
 and $g(x^n - x) \rightarrow 0 \quad (n \rightarrow \infty)$ imply $g(\lambda^n x^n - \lambda x) \rightarrow 0 \quad (n \rightarrow \infty)$.

Recall that $(X, \|., ..., .\|)$ is a n-Banach space if every Cauchy sequence in X is convergent to some x in X in the n-norm.

The following lemma will help us throughout our study.

LEMMA 1. [8] $(X, \|., ..., .\|)$ is a n-Banach space if and only if $(X, \|., ..., .\|)$ is a Banach space.

Now, we introduce the notion of \mathcal{I} -convergence in n-normed spaces and give the main results of the paper.

2. Ideal Convergence of n-Normed Spaces

Suppose hereafter that $(X, \|., ..., .\|)$ is *n*-normed space. Recall that we assume X to have dimension d, where $2 \le n \le d < \infty$, unless otherwise stated.

DEFINITION 4. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N} . The sequence (x_k) of X is said to be \mathcal{I} -convergent to x, if for each $\varepsilon > 0$ and $x_1, x_2, ..., x_{n-1}$ in X the set $A(\varepsilon) = \{k \in \mathbb{N} : ||x_k - x, x_1, x_2, ..., x_{n-1}|| \ge \varepsilon\}$ belongs to \mathcal{I} .

If (x_n) is \mathcal{I} -convergent to x then we write \mathcal{I} - $\lim_{n\to\infty} \|x_k-x,x_1,x_2,...,x_{n-1}\|=0$ or \mathcal{I} - $\lim_{k\to\infty} \|x_k,x_1,x_2,...,x_{n-1}\|=\|x,x_1,x_2,...,x_{n-1}\|$. The number x is \mathcal{I} -limit of the sequence (x_k) .

Further we will give some examples of ideals and corresponding \mathcal{I} -convergences.

- (I) Let \mathcal{I}_f be the family of all finite subsets of \mathbb{N} . Then \mathcal{I}_f is an admissible ideal in \mathbb{N} and \mathcal{I}_f convergence coincides with usual convergence in [4].
- (II) Put $\mathcal{I}_{\delta} = \{A \subset \mathbb{N} : \delta(A) = 0\}$. Then \mathcal{I}_{δ} is an admissible ideal in \mathbb{N} and \mathcal{I}_{δ} convergence coincides with the statistical convergence in $[\mathbf{9}]$.

Remark 1. Note that if \mathcal{I} is admissible ideal, then the convergence in n-normed space $(X, \|., ..., .\|)$ implies \mathcal{I} -convergence in n-normed space $(X, \|., ..., .\|)$.

We shall now investigate which axioms of convergence in X are satisfied by \mathcal{I} -convergence in X.

- (S) Every constant sequence (x, x, ..., x, ...) converges to x in n-normed space X.
- (H) The limit of any convergent sequence in n-normed space X is uniquely determined.
- (F) If a sequence $(x_k)_{k\in\mathbb{N}}$ in X has the limit x in X, then each of its subsequences has the same limit.
- (U) If each subsequence of the sequence $(x_k)_{k\in\mathbb{N}}$ in X has a subsequence which converges to x in X, then (x_k) converges to x in X.

PROPOSITION 1. Suppose that n-normed space X has at least two points. Let $\mathcal{I} \subset 2^X$ be an admissible ideal.

- (i) The \mathcal{I} -convergence in X satisfies (S),(H) and (U).
- (ii) If \mathcal{I} contains an infinite set, then \mathcal{I} -convergence in X does not satisfy (F).

PROOF. (i) (S) is obviously fulfilled. To prove (H) it is sufficient to observe that for any $A_1, A_2 \in \mathcal{I}$ we have $(\mathbb{N} \setminus A_1) \cap (\mathbb{N} \setminus A_2) \neq \emptyset$ since the last two sets belong to the filter associated with \mathcal{I} . If there are two limits $x_1, x_2 \in X$, $x_1 \neq x_2$, choose ε such that

$$0 < 2\varepsilon < ||x_1 - x_2, x_1, x_2, ..., x_{n-1}||$$

where $x_1 - x_2$ and $x_1, x_2, ..., x_{n-1}$ are linearly independent. And put

$$A_1 = \{k \in \mathbb{N} : ||x_k - x_1, x_1, x_2, ..., x_{n-1}|| \ge \varepsilon\},\$$

$$A_2 = \{k \in \mathbb{N} : ||x_k - x_2, x_1, x_2, ..., x_{n-1}|| \ge \varepsilon\}.$$

Suppose now that (U) does not hold. Then there exists $\varepsilon_0 > 0$ such that

$$A\left(\varepsilon_{0}\right)=\left\{k\in\mathbb{N}:\left\Vert x_{k}-x,x_{1},x_{2},...,x_{n-1}\right\Vert \geq\varepsilon_{0}\right\}\notin\mathcal{I}$$

for each $x_1, x_2, ..., x_{n-1}$ in X. But then $A(\varepsilon_0)$ is an infinite set since \mathcal{I} is admissible. Let $A(\varepsilon_0) = \{n_1 < n_2 < ... < n_i < ...\}$. Put $y_i = x_{n_i}$ for $i \in \mathbb{N}$. Then $\{y_i\}_{i \in \mathbb{N}}$ is a subsequence of (x_k) without a subsequence \mathcal{I} -convergence to x in n-normed space X.

(ii) Suppose that $A \in \mathcal{I}$ is an infinite set, $A = \{k_1 < k_2 < ... < k_i < ...\}$. $B = \mathbb{N} \setminus A = \{m_1 < m_2 < ... < m_i < ...\}$. The set B is also infinite since \mathcal{I} is non-trivial ideal. Define (x_k) by choosing $x_1, x_2 \in X$, $x_1 \neq x_2$ and put $x_{k_i} = x_1, x_{m_i} = x_2$ for $i \in \mathbb{N}$. Obviously \mathcal{I} - $\lim_{i \to \infty} \|x_{k_i}, x_1, x_2, ..., x_{n-1}\| = \|z_1, x_1, x_2, ..., x_{n-1}\|$ and \mathcal{I} - $\lim_{i \to \infty} \|x_{m_i}, x_1, x_2, ..., x_{n-1}\| = \|z_2, x_1, x_2, ..., x_{n-1}\|$.

Now Let $X = \mathbb{R}^d$ $(d \ge n)$ be equipped with the *n*-norm then

 $||x_1, x_2, ..., x_{n-1}, x_n||_S :=$ the volume of the *n*-dimensional parallelepiped spanned by the vectors $, x_1, x_2, ..., x_{n-1}, x_n$ which may be given explicitly by the formula

$$||x_1, x_2, ..., x_{n-1}, x_n||_S = \begin{vmatrix} \langle x_1, x_2 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \vdots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{vmatrix}^{\frac{1}{2}}$$

Example 1. Let $\mathcal{I} = \mathcal{I}_{\delta}$. Define the (x_n) in n-normed space $(X, \|., ..., .\|)$ by

$$x_k = \begin{cases} (0, ..., k) &, k = i^2, i \in \mathbb{N} \\ (0, ..., 0) &, otherwise. \end{cases}$$

and let x=(0,...,0) and . Then for every $\varepsilon>0$ and $x_1,x_2,...,x_{n-1}\in X$

$$\{k \in \mathbb{N} : ||x_k - x, x_1, x_2, ..., x_{n-1}|| \ge \varepsilon\} \subset \{1, 4, 9, 16, ..., k^2, ...\}.$$

We have that $\delta\left(\left\{k \in \mathbb{N} : \|x_k - x, x_1, x_2, ..., x_{n-1}\| \geq \varepsilon\right\}\right) = 0$, for every $\varepsilon > 0$ and $z \in X$. This implies that \mathcal{I} - $\lim_{k \to \infty} \|x_k, x_1, x_2, ..., x_{n-1}\| = \|x, x_1, x_2, ..., x_{n-1}\|$. But, the sequence (x_k) is not convergent to x.

We next provide a proof of the fact that \mathcal{I} -limit operation for sequence in n-normed space $(X, \|., ..., .\|)$ is linear with respect to summation and scalar multiplication.

THEOREM 1. Let \mathcal{I} be an admissible ideal. For each $x_1, x_2, ..., x_{n-1}$ in X,

(i) If
$$\mathcal{I}$$
- $\lim_{k\to\infty} \|x_k - x, x_1, x_2, ..., x_{n-1}\| = 0$ and \mathcal{I} - $\lim_{k\to\infty} \|y_k - y, x_1, x_2, ..., x_{n-1}\| = 0$ then \mathcal{I} - $\lim_{k\to\infty} \|(x_k + y_k) - (x + y), x_1, x_2, ..., x_{n-1}\| = 0$;
(ii) \mathcal{I} - $\lim_{k\to\infty} \|a(x_k - x), x_1, x_2, ..., x_{n-1}\| = 0$, $a \in \mathbb{R}$;

PROOF. (i) Let $\varepsilon > 0$ be given. Then set $A_1, A_2 \in \mathcal{I}$ as follows:

$$A_{1} = A_{1}(\varepsilon) := \left\{ k \in \mathbb{N} : ||x_{k} - x, x_{1}, x_{2}, ..., x_{n-1}|| \ge \frac{\varepsilon}{2} \right\}$$

and

$$A_{2}=A_{2}\left(\varepsilon\right):=\left\{ k\in\mathbb{N}:\left\Vert y_{n}-y,x_{1},x_{2},...,x_{n-1}\right\Vert \geq\frac{\varepsilon}{2}\right\}$$

for each $x_1, x_2, ..., x_{n-1}$ in X. Let

$$A = A(\varepsilon) := \{k \in \mathbb{N} : ||(x_k + y_k) - (x + y), x_1, x_2, ..., x_{n-1}|| \ge \varepsilon\}.$$

Then the inclusion $A \subset A_1 \cup A_2$ holds and the statement follows.

(ii) Let
$$\mathcal{I}$$
- $\lim_{k\to\infty} ||x_k-x,x_1,x_2,...,x_{n-1}|| = 0, a\in\mathbb{R}$ and $a\neq 0$. Then

$$\left\{k \in \mathbb{N} : \|x_k - k, x_1, x_2, ..., x_{n-1}\| \ge \frac{\varepsilon}{|a|}\right\} \in \mathcal{I}.$$

Then by definition 2.1, we have

$$\begin{aligned} & \{k \in \mathbb{N} : \|ax_k - ax, x_1, x_2, ..., x_{n-1}\| \ge \varepsilon \} \\ & = & \{k \in \mathbb{N} : |a| \|x_k - x, x_1, x_2, ..., x_{n-1}\| \ge \varepsilon \} \\ & = & \left\{k \in \mathbb{N} : \|x_k - k, x_1, x_2, ..., x_{n-1}\| \ge \frac{\varepsilon}{|a|} \right\}. \end{aligned}$$

Hence, the right hand side of above equality belongs to \mathcal{I} . Hence,

$$\mathcal{I} - \lim_{k \to \infty} \|a(x_k - x), x_1, x_2, ..., x_{n-1}\| = 0,$$

for every $x_1, x_2, ..., x_{n-1}$ in X.

Recall that we assume X to have dimension d, where $n \leq d < \infty$, unless otherwise stated. Let $a = \{a_1, ..., a_n\}$ to be a linearly independent set in X. With respect to $\{a_1, ..., a_n\}$, if we define the following function $\|..., ..., \|_{\infty}$ on X^{n-1}

$$||x_1,...,x_{n-1}||_{\infty} := \max\{||x_1,...,x_{n-1},a_i|| : i = 1,...,n\}.$$

then the function $\|.,...,.\|_{\infty}$ defines an (n-1) norm on X [8].

LEMMA 2. Let \mathcal{I} be an admissible ideal. A sequence (x_k) in X is \mathcal{I} -convergent to x in X the n-norm if and only if \mathcal{I} - $\lim_{k\to\infty} \|x_1,x_2,...,x_{n-2},x_k-x,a_i\|=0$ for every i=1,...,n.

PROOF. \mathcal{I} -convergent to x in X the n-norm then \mathcal{I} - $\lim_{k\to\infty}\|x_k-x,x_1,x_2,...,x_{n-1}\|=0$ for every $x_1,x_2,...,x_{n-1}\in X$ and i=1,2,...,n. Every $z\in X$ can be written as $z=\alpha_1x_1+...+\alpha_nu_n$ for some $\alpha_1,...,\alpha_n\in\mathbb{R}$. Using the triangle inequality we have

$$||x_1, x_2, ..., x_{n-2}, x_k - x, z|| \leq |\alpha_1| ||x_1, x_2, ..., x_{n-2}, x_k - x, u_1|| + ...$$

$$+ |a_n| ||x_1, x_2, ..., x_{n-2}, x_k - x, u_n||$$

$$(2.1)$$

for all $k \in \mathbb{N}$.

If $A(\varepsilon) = \{k \in \mathbb{N} : ||x_1, x_2, ..., x_{n-2}, x_k - x, u_i|| \ge \varepsilon\} \in \mathcal{I}$ for every $\varepsilon > 0$ and i = 1, ..., n. From the above inequality we have

$$\{k: \|x_1, x_2, ..., x_{n-2}, x_k - x, z\| \ge \varepsilon \} \subseteq \{k: |\alpha_1| \|x_1, x_2, ..., x_{n-2}, x_k - x, u_1\| \ge \varepsilon \}$$

$$\cup ... \cup \{n: |\alpha_n| \|x_1, x_2, ..., x_{n-2}, x_k - x, u_n\| \ge \varepsilon \}.$$

Since the right hand side of the above inclusion belongs to ideal, so does the left hand side. \Box

From Lemma 2.3 and norm $\|.,...,.\|_{\infty}$, we have:

LEMMA 3. Let \mathcal{I} be an admissible ideal. A sequence (x_n) in X is \mathcal{I} -convergent to x in X in the n-norm if and only if \mathcal{I} - $\lim_{k\to\infty} ||x_1,x_2,...,x_{n-2},x_k-x||_{\infty} = 0$.

Using open balls $B_u(x,\varepsilon)$, we have the following.

LEMMA 4. Let \mathcal{I} be an admissible ideal. A sequence (x_k) in X is \mathcal{I} -convergent to x in X in the n-norm if and only if $A(\varepsilon) = \{k \in \mathbb{N} : x_k \notin B_u(x, \varepsilon)\}$ belongs to ideal.

Now we introduce the concepts \mathcal{I} -Cauchy sequences in n-normed spaces X.

DEFINITION 5. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a nontrivial ideal in \mathbb{N} . The sequence (x_n) of X is said to be \mathcal{I} -Cauchy sequence in X, if for each $\varepsilon > 0$ and $z \in X$ there exists a number $N = N(\varepsilon, z)$ such that

$$\left\{k \in \mathbb{N} : \left\|x_k - x_{N(\varepsilon, z)}, x_1, x_2, ..., x_{n-1}\right\| \ge \varepsilon\right\} \in \mathcal{I}$$

where $z = x_1, x_2, ..., x_{n-1}$.

Further we will give some examples of ideals and corresponding \mathcal{I} -convergences.

- (I) Let \mathcal{I}_f be the family of all finite subsets of \mathbb{N} . Then \mathcal{I}_f is an admissible ideal in \mathbb{N} and \mathcal{I}_f Cauchy sequence coincides with usual Cauchy sequence in [18].
- (II) Put $\mathcal{I}_{\delta} = \{A \subset \mathbb{N} : \delta(A) = 0\}$. Then \mathcal{I}_{δ} is an admissible ideal in \mathbb{N} and \mathcal{I}_{δ} Cauchy sequence coincides with the statistical Cauchy sequence in [9].

Now we give a similar result as in [8] (see Lemma 1.2).

Lemma 5. In any n-normed space $(X, \|., ..., .\|)$, any \mathcal{I} -Cauchy sequences is \mathcal{I} -convergent if and only if any \mathcal{I} -Cauchy sequence with respect to $\|., ..., .\|_{\infty}$ is \mathcal{I} -convergent.

PROOF. From Lemma 2.2, \mathcal{I} -convergence in the n-norm is equivalent to that in the $\|.,...,\|_{\infty}$ norm. That is,

$$\begin{split} \mathcal{I}\text{-}\lim_{k \to \infty} \|x_1, x_2, ..., x_{n-2}, x_{n-1}, x_k - x\| &= 0, \forall x_1, x_2, ..., x_{n-2}, x_{n-1} \in X \\ &\Leftrightarrow & \mathcal{I}\text{-}\lim_{k \to \infty} \|x_1, x_2, ..., x_{n-2}, x_k - x\|_{\infty} \,. \end{split}$$

It sufficient to show that (x_k) is \mathcal{I} -Cauchy sequence with respect to the n-norm iff it is \mathcal{I} -Cauchy sequence with respect to the norm $\|.,...,.\|_{\infty}$. But it can be done easily very similar to that in Lemma 1.2 with only mild changes.

Let X be real inner product space of dimension $d \geq n$ then

$$\|x_1, ..., x_n\|_S = \begin{vmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \end{vmatrix}^{\frac{1}{2}}$$
 $\langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle$

where $\langle ..., ... \rangle$ denotes the inner product on X. On the other hand, Let $\{e_1, ... e_n\}$ be an orthonormal set in X then

$$||x_1,...,x_n||_{\infty} := \max\{||x_1,...,x_{n-1},e_i|| : i = 1,...,n\}$$

defines an (n-1) norm on X.

Let $(X, \|., ..., .\|)$ be any *n*-normed spaces and S(n - X) denotes X-valued sequences spaces. Clearly S(n - X) is a linear space under addition and scalar multiplication.

Definition 6. We define the new sequences space as follows:

$$l(n-p) = \left\{ x \in S(n-X) : \sum_{k} ||x_k, x_1, x_2, ..., x_{n-1}||^{p_k} < \infty \right\}$$

for each $x_1, x_2, ..., x_{n-1}$ in X.

Lemma 6. l(n-p) sequences space is a linear space.

PROOF. Let $p_k > 0$, $(\forall k)$, $H = \sup p_k$ and $a_k, b_k \in \mathbb{C}$ (complex numbers). Then

$$|a_k + b_k|^{p_k} \le C \left\{ |a_k|^{p_k} + |b_k|^{p_k} \right\}, \quad C = \max \left\{ 1, 2^{H-1} \right\},$$

[16]. Hence, if $|\lambda| \leq L$ and $|\mu| \leq M$; L, M integers, $x, y \in l (n-p)$ then we get

$$\begin{split} \|\lambda x + \mu y, x_1, x_2, ..., x_{n-1}\|^{p_k} & \leq \quad (|\lambda| \, \|x_k, x_1, ..., x_{n-1}\| + |\mu| \, \|y_k, x_1, x_2, ..., x_{n-1}\|)^{p_k} \\ & \leq \quad (|\lambda| \, \|x_k, x_1, x_2, ..., x_{n-1}\| + |\mu| \, \|y_k, x_1, x_2, ..., x_{n-1}\|)^{p_k} \\ & \leq \quad (L \, \|x_k, x_1, x_2, ..., x_{n-1}\| + M \, \|y_k, x_1, x_2, ..., x_{n-1}\|)^{p_k} \\ & \leq \quad C \, \{(L \, \|x_k, x_1, x_2, ..., x_{n-1}\|)^{p_k} + (M \, \|y_k, x_1, x_2, ..., x_{n-1}\|)^{p_k} \} \\ & \leq \quad C L^H \, (\|x_k, x_1, x_2, ..., x_{n-1}\|)^{p_k} + C M^H \, (\|y_k, x_1, x_2, ..., x_{n-1}\|)^{p_k} \, . \end{split}$$

Taking sum over k desired result is obtained.

DEFINITION 7. Let $t_k = \sum_{i=1}^k (\|x_i, x_1, x_2, ..., x_{n-1}\|)^{p_i}$ and \mathcal{I} be an admissible ideal. Then we define the new sequences space as follows:

$$l^{\mathcal{I}}(n-p) = \{x \in S(n-X) : \{n \in \mathbb{N} : ||t_k - t, t_1, ..., t_{n-1}|| \ge \varepsilon\} \in \mathcal{I}\}.$$

Theorem 2. Let \mathcal{I} an admissible ideal. $l^{\mathcal{I}}(n-p)$ sequences space is a linear space.

Proof. Using properties of ideal and partial sums of sequences the proof can easily be done similar the above Lemma 2.7. \Box

THEOREM 3. l(n-p) space is a paranormed spaces with the paranorm defined by $g: l(n-p) \to \mathbb{R}$,

$$g(x) = \left(\sum_{k} \|x_k, x_1, x_2, ..., x_{n-1}\|^{p_k}\right)^{\frac{1}{M}}$$

,where $0 < p_k \le \sup p_k = H, M = \max(1, H)$.

PROOF. (i)
$$g(\theta) = \left(\sum_{k} \|\theta_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}}\right)^{\frac{1}{M}} = 0.$$

(ii) $g(-x) = \left(\sum_{k} \|-x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}}\right)^{\frac{1}{M}}$
 $= \left(\sum_{k} |-1| \|x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}}\right)^{\frac{1}{M}} = g(x)$
(iii)

$$g(x+y) = \left(\sum_{k} \|x_{k} + y_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}}\right)^{\frac{1}{M}}$$

$$\leq \left(\sum_{k} (\|x_{k}, x_{1}, x_{2}, ..., x_{n-1}\| + \|y_{k}, x_{1}, x_{2}, ..., x_{n-1}\|)^{p_{k}}\right)^{\frac{1}{M}}$$

$$\leq \left(\sum_{k} (\|x_{k}, x_{1}, x_{2}, ..., x_{n-1}\| + \|y_{k}, x_{1}, x_{2}, ..., x_{n-1}\|)^{\frac{p_{k}}{M}M}\right)^{\frac{1}{M}}$$

$$\leq \left(\sum_{k} \left(\|x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{\frac{p_{k}}{M}} + \|y_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{\frac{p_{k}}{M}}\right)^{M}\right)^{\frac{1}{M}}$$

$$\leq \left(\sum_{k} \left(\|x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{\frac{p_{k}}{M}}\right)^{M}\right)^{\frac{1}{M}} + \left(\sum_{k} \left(\|y_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{\frac{p_{k}}{M}}\right)^{M}\right)^{\frac{1}{M}}$$

$$= g(x) + g(y).$$

(iv) Now let $\lambda^n \to \lambda$ and $g(x^n - x) \to 0 \ (n \to \infty)$. We have

$$g(\lambda^{n}x^{n} - \lambda x) = \left(\sum_{k} \|\lambda^{n}x_{k}^{n} - \lambda x, z_{1}, z_{2}, ..., z_{n-1}\|^{p_{k}}\right)^{\frac{1}{M}}$$

$$\leq |\lambda|^{n\frac{H}{M}} \left(\sum_{k} \|x_{k}^{n} - x_{k}, z_{1}, z_{2}, ..., z_{n-1}\|^{p_{k}}\right)^{\frac{1}{M}}$$

$$+ \left(\sum_{k} |\lambda^{n} - \lambda| \|x_{k}, z_{1}, z_{2}, ..., z_{n-1}\|^{p_{k}}\right)^{\frac{1}{M}}.$$

First statement of the above inequality tends to zero because $g(x^n-x)\to 0$ $(n\to\infty)$. Also, since $\lambda^n\to\lambda$ $(n\to\infty)$ using Lemma 2.7 second statement of the above inequality tends to zero as well.

Theorem 4. If $(X, \|., ..., .\|)$ is finite dimensional n-B anach spaces then (l(n-p), g) is complete.

PROOF. Let (x^n) be a Cauchy sequence in (l(n-p),g). Then for each $\varepsilon > 0$ there exists $N_0 \in \mathbb{N}$ such that for each $m,n > N_0$ we have

$$g(x^{n} - x^{m}) = \left(\sum_{k} \|x_{k}^{n} - x_{k}^{m}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}}\right)^{\frac{1}{M}} < \varepsilon$$

which implies $(\|x^n-x^m,x_1,x_2,...,x_{n-1}\|^{p_k})^{\frac{1}{M}}<\varepsilon$, for each k. So, (x^n) is a Cauchy sequence in $(X,\|.,...,\|)$ and since $(X,\|.,...,\|)$ is n-Banach space there exists an x in X such that $\|x_k^n-x_k,x_1,x_2,...,x_{n-1}\|\to 0$ $(n\to\infty)$ and this completes the proof.

Theorem 5. If $(X, \|., ..., .\|)$ be any standard n-normed space then

$$l\left(n-p\right)_{\parallel.,...,\parallel_{\infty}} \equiv l\left(n-p\right)_{\parallel.,...,\parallel_{(n-1)S}},$$

that is, $x \in l(n-p)_{\parallel \dots, \parallel_{\infty}} \Leftrightarrow x \in l(n-p)_{\parallel \dots, \parallel_{(n-1)S}}$

PROOF. From fact 2.3 in [8] we have

$$\left\| x_{k}, x_{1}, x_{2}, ..., x_{n-2} \right\|_{\infty} \leq \left\| x_{k}, x_{1}, x_{2}, ..., x_{n-2} \right\|_{S} \leq \sqrt{n} \left\| x_{k}, x_{1}, x_{2}, ..., x_{n-2} \right\|_{\infty}$$

for all $z_1, z_2, ..., z_{n-1}$ in X. So we get

$$\sum_{k} \|x_{k}, x_{1}, x_{2}, ..., x_{n-2}\|_{\infty}^{p_{k}} \leq \sum_{k} \|x_{k}, x_{1}, x_{2}, ..., x_{n-2}\|_{S}^{p_{k}}$$

$$\leq \sum_{k} \left[\sqrt{n} \|x_{k}, x_{1}, x_{2}, ..., x_{n-2}\|_{\infty} \right]^{p_{k}}$$

$$\leq n^{\frac{H}{2}} \sum_{k} \|x_{k}, x_{1}, x_{2}, ..., x_{n-2}\|_{\infty}^{p_{k}}$$

as required. \Box

Theorem 6. $u \in l_{\infty} \Rightarrow ux \in l(n-p)$, where l_{∞} is bounded sequences spaces.

PROOF. Let $u=(u_k)\in l_\infty$. Then there exists a A>0 such that $|u_k|\leq A$ for each k. We want to show $(u_kx_k)\in l$ (n-p). But

$$\sum_{k} \|u_{k}x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}} = \sum_{k} [\|u_{k}\| \|x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|]^{p_{k}}$$

$$\leq A^{H} \sum_{k} \|x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}}$$

$$\leq \infty$$

and this completes the proof.

Now we give some generalizations of subjects given in [14].

DEFINITION 8. Let $A = (a_{m,k})$ be a non-negative matrix. Define the new sequences space as follows:

$$w_0(n-p) = \left\{ x \in S(n-X) : \lim_{m \to \infty} \sum_{k} \|a_{m,k}x_k, x_1, x_2, ..., x_{n-1}\|^{p_k} = 0 \right\}$$

for each $x_1, x_2, ..., x_{n-1}$ in X. If $x - te \in w_0(n-p)$ then we say x is $w_0(n-p)$ summable to t, where, e = (1, 1, ...).

Theorem 7. $w_0(n-p)$ is linear.

PROOF. It can be done very similar to the proof of linearity of l(n-p)

Theorem 8. $w_0(n-p)$ is paranormed space by

$$g(x) = \sup_{m} \left(\sum_{k} \|a_{m,k} x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}} \right)^{\frac{1}{M}}$$

Proof. Again it is very similar to above one we omit it.

THEOREM 9. If $A = (a_{m,k})$ is the matrix of Cesaro means of order 1 then $l(n-p) \subseteq w_0(n-p)$.

PROOF. If $A = (a_{m,k})$ is the matrix of Cesaro means of order 1 then

$$A_{m}(x) = \sum_{k=1}^{\infty} \|a_{m,k}x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}}$$

$$\leq \frac{1}{m} \sum_{k=1}^{\infty} \|x_{k}, x_{1}, x_{2}, ..., x_{n-1}\|^{p_{k}}$$

So, if $x \in l(n-p)$ then there exists M > 0 such that

$$\sum_{k=1}^{\infty} \|x_k, x_1, x_2, ..., x_{n-1}\|^{p_k} = M > 0.$$

Hence
$$0 \le \lim_{m \to \infty} A_m(x) \le \frac{M}{m} = 0$$
. This means $x \in w_0(n-p)$.

More generally we have the following result.

THEOREM 10. If $A = (a_{m,k})$ is any regular matrix then $l(n-p) \subseteq w_0(n-p)$.

References

- [1] H. FAST, Sur la convergence statistique, Colloq. Math. 2 (1951), 241 244.
- [2] A.R. FREEDMAN and J.J. SEMBER, Densities and summability, Pasific J. Math. 95 (1981), 293 – 305.
- [3] J.A. FRIDY, On statistical convergence, Analysis 5 (1985), 301 313.
- [4] S. GÄHLER, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26 (1963), 115 – 148.
- [5] H. GUNAWAN, On *n*-Inner Products, *n*-Norms, and The Cauchy-Schwarz Inequality, *Scientiae Mathematicae Japonicae Online*, **5** (2001), 47 54.
- [6] H. GUNAWAN, The space of p-summable sequences and its natural n-norm, Bull. Aust. Math. Soc. **64**(1) (2001) 137 147.
- [7] H. GUNAWAN and M. MASHADI, On Finite Dimensional 2-normed spaces, Soochow J. of Math., 27(3) (2001), 321 – 329.
- [8] H. GUNAWAN, and M. MASHADI, On n-normed spaces, Int. J. Math. Math. Sci., 27 (10) (2001), 631 639.
- [9] M. GÜRDAL and S.PEHLİVAN, The Statistical Convergence in 2-Banach Spaces, Thai Journal of Math., $\mathbf{2}(1)(2004)$, 107-113.
- [10] J.L. KELLEY, General Topology, Springer-Verlag, New York 1955.
- [11] P. KOSTYRKO, M. MACAJ and T. SALAT, \mathcal{I} -Convergence, Real Analysis Exchange, **26** (2) (2000), 669 686.
- [12] P. KOSTYRKO, M. MACAJ, T. SALAT and M. SLEZIAK, *I*-Convergence and Extremal *I*-Limit Points, *Math. Slovaca*, **55** (2005), 443 – 464.
- $[13]\,$ C. KURATOWSKI, Topologie I., PWN Warszawa 1958.
- [14] I.J. MADDOX, Paranormed sequence spaces generated by infinite natrices, $Proc.\ Camb.\ Phil.\ Soc.$, **64** (1968), 335 340.
- [15] H.I. MILLER and C. ORHAN, On almost convergent and statistically convergent subsequences, Acta Math. Hungar., 93 (1-2) (2001), 135-151.
- [16] I.J. MADDOX, Elements of Functional Analysis, Cambridge at the Uni. Press 1970.
- [17] C. PARK and T.M. RASSIAS, Isometries on linear n-normed spaces, J. Inequal. Pure Appl. Math., 7(5) (2006), 1 – 7.
- [18] W. RAYMOND, Y. FREESE and J. CHO, Geometry of linear 2-normed spaces, Huntington, N.Y. Nova Science Publishers 2001.
- [19] H. STEINHAUS, Sur la convergence ordinarie et la convergence asymptotique, Colloq. Math. 2 (1951), 73 – 74.