
  

10.11113/mjfas.v19n6.3101  989 

Rahman et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 989-1001 

 
                                                     RESEARCH ARTICLE 

 

GARCH Models and Distributions 
Comparison for Nonlinear Time Series with 
Volatilities  
Nur Haizum Abd Rahmana*, Goh Hui Jiab, Hani Syahida Zulkaflib 

aCentre for Mathematical Sciences, Universiti Malaysia Pahang Al-Sultan Abdullah, 

Lebuhraya Persiaran Tun Khalil Yaakob, 26300 Gambang, Pahang, Malaysia 

bDepartment of Mathematics and Statistics, Faculty of Science, Universiti Putra 

Malaysia, 43400, Serdang, Selangor, Malaysia 

 

 

Abstract The Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model is 

extensively used for handling volatilities. However, with numerous extensions to the standard 

GARCH model, selecting the most suitable model for forecasting price volatilities becomes 

challenging. This study aims to examine the performance of different GARCH models in 

forecasting crude oil price volatilities using West Texas Intermediate (WTI) data. The models 

considered are the standard GARCH, Integrated GARCH (IGARCH), Exponential GARCH 

(EGARCH), and Golsten, Jagannathan, and Runkle GARCH (GJR-GARCH), each with normal 

distribution, Student’s t-distribution, and Generalized Error Distribution (GED). To evaluate the 

performance of each model, the Akaike Information Criteria (AIC) and Bayesian Information 

Criteria (BIC) are used as the model selection criteria, along with forecast accuracy measures 

such as absolute error, root mean squared error (RMSE), and mean absolute error (MAE). Post-

estimation tests, including the Autoregressive Conditional Heteroskedasticity Lagrange Multiplier 

(ARCH-LM) test and the Ljung-Box test, are conducted to ensure the adequacy of all models. 

The results reveal that all GARCH models are suitable for modeling the data, as indicated by 

statistically significant estimated parameters and satisfactory post-estimation outcomes. 

However, the EGARCH (1, 1) model, particularly with Student’s t-distribution, outperforms other 

models in both data fitting and accurate forecasting of nonlinear time series. 

Keywords: GARCH, volatilities, financial data, time series. 
 

 

Introduction 
 

A time series is a sequence of findings that was documented conforming to time. A scalar process 
which can be stated as a linear sequence of past or future values or differences is known as a linear 
time series. Meanwhile, any processes that cannot be expressed linearly are known as nonlinear time 
series [1]. In simpler words, the common perception of linear time series is that there is a relatively 
steady one with no unexpected outbreak occurring as a result of its system's linearity. However, for 
some data sets, especially financial data, a rapid outbreak of volatility exists, which is impossible to 
model using linear time series. Hence, nonlinear time series models are introduced to cope with data 
which shows nonlinear behaviours like time-varying variance (volatility), unsymmetrical cycles, and 
higher-moment structure. 

 

Volatility refers to the variation or dispersion of observed returns measured over a specific unit of time 
[2]. According to Hung et al. [3], before introducing the Autoregressive Conditional Heteroskedasticity 
(ARCH) model, the model used to assume the volatility of predicted variables is deficient as it assumes 
a constant expected variance of random error. To overcome this drawback, the ARCH model was 
proposed in 1982 by Robert F. Engle. The ARCH model assumes a nonconstant conditional variance 
of random error at which it depends on the previous random errors while the unconditional variance 
remains constant [4]. Soon in 1986, Tim Bollerslev modified and expanded Engle’s ARCH model, 
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known as the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model [5]. The 
GARCH model is one of the nonlinear time series models which is commonly used in financial and 
economic data to forecast volatilities. The term heteroskedasticity means the situation of serially 
autocorrelated variance over time. Bollerslev [5] explained that a GARCH model is similarly extended 
from the ARCH model as an Autoregressive Moving Average (ARMA) process is extended from an 
Autoregressive (AR) process. Thus, the GARCH model is a model which takes both past squared 
errors and past conditional variances into account. 

 

With the development of time, more researchers studied the standard GARCH model and modified or 
extended it to fit different types of data better. Engle and Bollerslev [6] introduced the Integrated 
GARCH (IGARCH) model as they believe that the mean is not the only factor that should be considered 
in modelling. Still, the spread of data should also be considered. They proposed the IGARCH model 
with a persistent conditional variance which is the standard GARCH model but with a unit root. 
Furthermore, Nelson [7] found some disadvantages of the standard GARCH model when dealing with 
financial data and proposed a new model, namely the Exponential GARCH (EGARCH) model. The 
most distinctive contrast between EGARCH and the standard GARCH model is that the EGARCH 
model can respond asymmetrically to positive and negative volatility, where negative volatility brings a 
greater impact than positive volatility. In 1993, Lawrence Golsten, Ravi Jagannathan, and David Runkle 
introduced the Golsten, Jagannathan, and Runkle GARCH (GJR-GARCH) model, which detects an 
asymmetric response to positive and negative volatility in a similar way to the EGARCH model [8]. 
According to Nugroho et al. [9], an additional error term will be included in the current conditional 
variance of the GJR-GARCH model if there is negative volatility.  

 

The development of GARCH models increases the effectiveness in predicting shifting variability or 
variance volatility on time series, especially in evaluating financial assets [10]. For example, using the 
EGARCH model, Meher et al. [11] researched the consequences and leverage effect of COVID-19 on 
the crude oil and natural gas price volatility traded on India's Multi Commodity Exchange (MCX). The 
EGARCH model with normal distribution, Student’s t-distribution and GED were formed for crude oil 
and natural gas data, respectively. The results revealed that the EGARCH model with GED was the 
best for crude oil data, while the EGARCH model with Student’s t-distribution was the best for natural 
gas data in India. It can be concluded that the outbreak of the COVID-19 pandemic contributed to the 
asymmetric volatility in crude oil prices but not in natural gas based on the sign of asymmetric terms. 

 

In addition to utilising a single GARCH model for predicting oil price volatility, as previously discussed, 
additional studies conducted by Herrera et al. [12] and Hung et al. [13] have examined the comparative 
performances of various GARCH models in forecasting financial volatility. Herrera et al. [12] applied 
standard GARCH, EGARCH, GJR-GARCH, Fractionally Integrated GARCH (FIGARCH) and Markov 
Switching GARCH (MS-GARCH) models under normal distribution, Student’s t-distribution and GED 
to predict WTI crude oil price volatility on various horizons. The researchers concluded that the models 
with Student’s t-distribution outperformed the other distributions, and the performance of GARCH family 
models differed at different horizons. In addition, Hung et al. [13] carried out research to forecast the 
global oil price volatility by using three GARCH models, which were GARCH (1, 1), EGARCH (1, 1) 
and GJR-GARCH (1, 1) models. The estimations were made under four different types of distributions: 
normal distribution, Student’s t-distribution, GED and skewed Student’s t-distribution. The findings 
revealed that the EGARCH (1,1) model with Student’s t-distribution gave the most precise forecast 
after comparing the measures of forecast accuracy, including mean squared error (MSE), mean 
absolute error (MAE), and root mean squared error (RMSE) values for all the models. 

 

GARCH models have proven to be versatile beyond the modelling and forecasting of financial assets. 
In a study conducted by Venkatareddy and Kotreshwar [14], the GARCH model was employed to 
analyse rainfall variations across meteorological subdivisions in India. With the exception of West UP, 
the data revealed significant volatility in all ten subdivisions. The authors concluded that their research 
has provided valuable insights for policymakers in the field of rainfall risk management. Moreover, 
GARCH models have also been compared in air pollution studies due to their inherent volatility. In a 
study by Zamrus et al. [15], several GARCH family models, such as Poisson integer value GARCH 
(INGARCH), negative binomial integer value GARCH (NBINGARCH), and integer value autoregressive 
conditional heteroskedasticity (INARCH), were compared in the context of the Air Pollutant Index (API) 
of Malaysia. The findings demonstrated that NBINGARCH (1,1) outperformed conventional ARCH 
family models, namely INARCH (1,0) and INGARCH (1,1), in providing more accurate predictions for 
the observed API at all five study areas. 

 

Based on the mentioned literature, one of the difficulties in forecasting volatilities is deciding the most 
suitable GARCH models to be used. The standard GARCH model has been extended to several types, 
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such as IGARCH, EGARCH, and GJR-GARCH models. Every GARCH model has its strengths and 
weaknesses, which might lead to a different performance in forecasting price volatilities, especially 
when different data types are used. In addition, the accuracy of each family model might also differ 
according to its model specifications, even when they are applied to the same data set. There is no 
rule of thumb on which GARCH model should be used for a certain data set. Hence, a good 
understanding of the features of different GARCH models and the data sets is required before 
identifying the most adequate model to forecast the price volatilities. The objectives of this paper are 
to model and forecast the nonlinear series using different GARCH models and to compare the GARCH 
model's accuracy in forecasting the price volatility by implementing measures of forecast accuracy. 

 
Methodology 
 

ARCH Effect Test 
Commonly, it is considered a best practice to examine the residuals of the in-sample data to detect the 
existence of ARCH effects before modelling financial time series using GARCH models. The ARCH 
Lagrange multiplier (LM) test was introduced by Engle [4] in 1982 for this purpose. The regression 
model for the ARCH LM test is expressed as in Equation 1: 

 

𝜀𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑞

2

𝑞

𝑖=1

+ 𝑢𝑡 

(1) 

 

where 𝛼0 is the intercept, 𝛼𝑖 is the coefficients of the regression, 𝑞 is the number of restrictions, and 𝑢𝑡 
is the error term. The hypothesis and the test statistic are given in as follows:  

 

H0: No ARCH (𝑞) effect in the residuals 

H1: ARCH (𝑞) effects in the residuals 

 

𝐿𝑀 = 𝑛𝑅2~𝜒2(𝑞) (2) 

 

where 𝑛 is the number of observations, 𝑅2 is computed from the regression. Reject the null hypothesis 

when 𝑝–value is lesser than the level of significance and can conclude that ARCH (𝑞) effects exist in 
the residuals. This suggests that GARCH models are suitable for conducting further analysis. 

 

Garikai [16] emphasised that another alternative to test ARCH effect is through the Ljung-Box Q 
statistic. The test was introduced by Ljung and Box [17] in 1978 to check the serial residuals correlation. 
The hypothesis is given by: 

 

H0: The model does not exhibit serial correlation. 

H1: The model exhibits serial correlation. 

 

Given in Equation 3 is the test statistic. 

 

𝑄 = 𝑛(𝑛 + 2) ∑
𝜌̂𝑘

2

𝑛 − 𝑘

ℎ

𝑘=1

 

(3) 

 

where 𝑛 is the number of residuals, ℎ is the number of time lags to be tested, 𝑘 is the time lag and 𝜌̂𝑘
2 

is the residual autocorrelation at lag k. Similarly, the null hypothesis is rejected if the 𝑝–value is less 
than the level of significance. It can be concluded that the model exhibits serial correlation, and further 
analysis can be done using GARCH models. 

 

GARCH Models 
Four GARCH models are considered in this study, including the standard GARCH model, the IGARCH 
model, the EGARCH model and the GJR-GARCH model. The smallest lag order is acceptable to 
capture the shifting volatility and produce adequate results [18]. Hence, the GARCH models applied in 
this study are defined with the smallest lag order to satisfy the parsimony concept in model building. 
The model specifications are briefly discussed in this section. Dritsaki [10] explained that two equations, 
which are the mean and the variance equation, make up the GARCH models. More attention is given 
to the variance equation in contrast to the mean equation since the same equation of mean is used to 
compare the various variances. Generally, the mean equation is given by Equation 4. 
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𝑟𝑡 = 𝜇 + 𝜀𝑡, 𝜀𝑡 = 𝜎𝑡𝜂𝑡 (4) 

 

where 𝑟𝑡 is the return at time 𝑡, 𝜇 is the mean of return, and 𝜀𝑡 is the return residual at time 𝑡. The return 
residual can be split into conditional standard deviation, 𝜎𝑡 following the GARCH model conditional 

variance equation and a stochastic piece, 𝜂𝑡 which is identically and independently distributed. 

 

The standard GARCH (𝑝, 𝑞) model was introduced by Bollerslev [5] can be specified as in Equation 5. 

The degree of ARCH term is denoted by 𝑞 meanwhile the degree of GARCH term is denoted by 𝑝. 

 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

(5) 

 

where the conditional variance denoted as 𝜎𝑡
2 represents the variance at time 𝑡, which is determined 

by historical information up to time 𝑡 − 𝑗. The squared residuals at time 𝑡 − 𝑖, 𝜀𝑡−𝑖
2   often referred to as 

the ARCH term. On the other hand, 𝜎𝑡−𝑗
2  is indicate as the conditional variance at time 𝑡 − 𝑗, commonly 

known as the GARCH term. The constant term denoted as  𝛼0. The 𝛼𝑖 and 𝛽𝑗 being respective weights 

of 𝜀𝑡−𝑖
2  and 𝜎𝑡−𝑗

2  are parameters to be estimated through maximum likelihood estimation. The condition 

of 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0 must be fulfilled to ensure the positivity of conditional variance, while to ensure 

the stationarity of conditional variance, the condition ∑ 𝛼𝑖 + 𝛽𝑖
max (𝑞,𝑝)
𝑖=1 < 1, must be fulfilled. 

 

The GARCH (1,1) can be written as in Equation 6 that has the following conditional variance equation. 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2  (6) 

 

 

Standard GARCH model with a unit root is known as the IGARCH model which was introduced by 
Engle and Bollerslev [6]. The general IGARCH (𝑝, 𝑞) model can be expressed as in Equation 7. 

 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ ∑ 𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

(7) 

 

where 

 

∑ 𝛼𝑖

𝑞

𝑖=1

+ ∑ 𝛽𝑗

𝑝

𝑗=1

= 1 

(8) 

 

Rearrange Equation 8 yields Equation 9. 

 

∑ 𝛽𝑗

𝑝

𝑗=1

= 1 − ∑ 𝛼𝑖

𝑞

𝑖=1

 

(9) 

 

Substitute Equation 9 into Equation 7 yields Equation 10. 

 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

+ (1 − ∑ 𝛼𝑖

𝑞

𝑖=1

) 𝜎𝑡−𝑗
2  

(10) 

 

The IGARCH (1,1) has the following conditional variance equation as in Equation 11. 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜀𝑡−1

2 + (1 − 𝛼1)𝜎𝑡−1
2  (11) 

 

The condition 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0 must be fulfilled to ensure the positivity of conditional variance. 

 

Since the standard GARCH model and IGARCH model are unable to acquire asymmetric effects, 
Nelson  [7] introduced the EGARCH model to overcome the drawbacks. The EGARCH (𝑝, 𝑞) model 
can be written as in Equation 12. 
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ln 𝜎𝑡
2 = 𝛼0 + ∑ [𝛼𝑖 (|

𝜀𝑡−𝑖

𝜎𝑡−𝑖
| − 𝐸 |

𝜀𝑡−𝑖

𝜎𝑡−𝑖
|) + 𝛾𝑖

𝜀𝑡−𝑖

𝜎𝑡−𝑖
]

𝑞

𝑖=1

+ ∑ 𝛽𝑗 ln 𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

(12) 

 

The EGARCH (1,1) has the following conditional variance equation as in Equation 13. 

 

ln 𝜎𝑡
2 = 𝛼0 + 𝛼1 (|

𝜀𝑡−1

𝜎𝑡−1
| − 𝐸 |

𝜀𝑡−1

𝜎𝑡−1
|) + 𝛾1

𝜀𝑡−1

𝜎𝑡−1
+ 𝛽1 ln 𝜎𝑡−1

2  
(13) 

 

where 𝛼𝑖 determine the size of asymmetry effect while 𝛾𝑖 determine the sign of asymmetry effect. There 
are no sign restrictions for the parameters since the equation for the conditional variance is in log-linear 

form, 𝜎𝑡
2 can never be negative. The EGARCH model employs a standardised value of 𝜀𝑡−𝑖/𝜎𝑡−𝑖 instead 

of 𝜀𝑡−𝑖 as Nelson [7] believed that the size and persistence of the shocks can be interpreted in a more 
natural way by using standardised value. If there is a positive shock, the effect on the conditional 
variance is 𝛼𝑖 + 𝛾𝑖 whereas if there is a negative shock, the effect on the conditional variance is 𝛼𝑖 − 𝛾𝑖. 

If 𝛾𝑖 < 0, this indicates that a negative shock will have a greater influence than a positive shock. 

 

Finally, the GJR-GARCH (𝑝, 𝑞) model which was developed by Golsten et al. [19] in 1993. The GJR- 
GARCH model can capture asymmetry effects same as EGARCH model. The model is shown below. 

 

𝜎𝑡
2 = 𝛼0 + ∑(𝛼𝑖 + 𝛾𝑖𝑁𝑡−𝑖)

𝑞

𝑖=1

𝜀𝑡−𝑖
2 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2

𝑝

𝑗=1

 

(14) 

 

where 

 

𝑁𝑡−𝑖 = {
1 if 𝜀𝑡−𝑖 < 0, negative shock
0 if 𝜀𝑡−𝑖 ≥ 0, negative shock

 
(15) 

 

The following conditional variance equation for GJR-GARCH (1,1) can be written as: 

 

𝜎𝑡
2 = 𝛼0 + (𝛼1 + 𝛾1𝑁𝑡−1)𝜀𝑡−1

2 + 𝛽1𝜎𝑡−1
2  (16) 

 

where 𝛾𝑖  represents the asymmetric response parameter. The effect on the conditional variance is 𝛼𝑖 +
𝛾𝑖 if there is a negative shock, while the effect on the conditional variance is 𝛼𝑖 if there is a positive 

shock. A negative shock has a greater influence on conditional variance than positive shock when 𝛾𝑖 >
0 which contrasts with the EGARCH model. Both conditions 𝛼0 > 0, 𝛼𝑖 ≥ 0, 𝛽𝑗 ≥ 0, and 

∑ (𝛼𝑖 + 𝛾𝑖) ≥ 0
𝑞
𝑖=1  must be fulfilled to ensure the positivity of conditional variance. 

 

Test of Significance 
The significance of every estimated parameter in each GARCH model is tested by using hypothesis 
testing. It is important to determine whether the estimated parameter’s size is appreciably great enough 
to draw the conclusion that the real parameter is not zero, statistical tests are utilized. To achieve this, 
the estimated parameter to its standard error is contrasted. The hypothesis and the test statistic are 
below. 

 

H0 : The parameter is not statistically significant 

H1 : The parameter is statistically significant 

 

 

𝑡 =
𝜃

𝑠𝑒(𝜃)
 

(17) 

 

where 𝜃 is the estimated parameter. Reject the null hypothesis if the absolute value of 𝑡-statistics is 

greater than 2 or if the 𝑝–value is lesser than 𝛼 which is the level of significance. Thus, can conclude 
that the parameter is statistically significant. 

 

Model Selection 
In recent years, big data analytics, machine learning and statistical learning have all placed a lot of 
emphasis on model selection [20]. According to Fabozzi et al. [21], a variety of information-based model 
selection approaches are available to identify the best model from a group of models, including Akaike 
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Information Criteria (AIC) and Bayesian Information Criteria (BIC). The AIC was introduced by Akaike 
[22] in 1973 which applies the log-likelihood and a penalising element according to the number of 
estimated parameters. It is commonly known that the fit of models may be enhanced by including 
additional parameters. Hence, AIC seeks to strike a compromise between the goodness of fit and the 
number of parameters in the model which is called the penalty term. The formula of AIC is shown in 
Equation 18. 

 

Another information-based model selection technique that is applied in a Bayesian framework is BIC. 
BIC was developed by Schwarz [23] in 1978. BIC uses a penalising element like the AIC but has a 
larger impact as it is linked to the number of parameters and the sample size. Lower value of AIC and 
BIC is preferable that indicate better model fitting. The formula of BIC is shown in Equation 19. 

 

𝐴𝐼𝐶 = −2 ln(𝐿) + 2𝑛𝑝𝑎𝑟 (18) 

 

𝐵𝐼𝐶 = −2 ln(𝐿) + 𝑛𝑝𝑎𝑟 ln(𝑛) (19) 

 

where ln is the natural log, 𝐿 is the maximum value of the likelihood function for the model, 𝑛𝑝𝑎𝑟 is the 

total number of parameters including constant terms in the model and 𝑛 is the sample size. 

 

Dziak et al. [24] explained that the AIC model is not consistent and might overestimate the results while 
the BIC model is consistent but might underestimate the results. Generally, AIC emphasised on good 
prediction while BIC emphasised on parsimony. Hence, both of the AIC and BIC values are computed 
in this study. 

 

Measures of Forecast Accuracy 
After modelling and forecasting the nonlinear series using different GARCH models, the models are 
compared based on their accuracy by implementing measures of forecast accuracy on top of the model 
selection criteria. According to Mehdiyev et al. [25], by addressing future uncertainty, forecasts play a 
significant role in helping people make logical judgments and schedule their activities more accurately. 
Over the past three decades, several studies have utilised various accuracy metrics as an assessment 
criterion in order to quantify the effectiveness of forecasting methodologies. For instance, squared 
errors and absolute errors are the foundation for the computations of root mean squared error (RMSE) 
and mean absolute error (MAE), respectively.  

 

Let 𝑦𝑡 be the actual values at time 𝑡 and 𝑦̂𝑡 be the forecasted values at time 𝑡, the error term at time , 

𝑒𝑡 is the difference between the actual values and the forecasted values at time 𝑡. A smaller magnitude 
of absolute error indicates a more accurate model. The equation of the absolute error is shown in 
Equation 20. 

 

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 = ∑|𝑒𝑡|

𝑛

𝑡=1

= ∑|𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

 
(20) 

 

RMSE is the square root of MSE which is the root squared value of the average of squared errors. A 
smaller value of RMSE is preferable as it indicates a more accurate model. The equation of the RMSE 
is shown in Equation 21.  

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡 − 𝑦̂𝑡)2

𝑛

𝑡=1

 

(21) 

 

MAE is another measure of forecast accuracy which takes the average of the absolute errors. Similar 
to RMSE, a smaller value of MAE is preferable as it indicates a better prediction performance. The 
equation of the MAE is shown in Equation 22. 

 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑦𝑡 − 𝑦̂𝑡|

𝑛

𝑡=1

 
(22) 

 

According to Koutsandreas et al. [26], due to the errors being squared prior to averaging, RMSE has a 
significantly higher weight for large errors which made it more sensitive to outliers as compared to 
MAE. 
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Post-estimation Test 
According to Garikai [16], post-estimation tests are essential to confirm the effectiveness of the study’s 
models. Specifically, the ARCH effect tests are crucial for the volatility model. Hence, both ARCH LM 
test and Ljung Box test will be run again to investigate the existence of ARCH effects. The test 
procedures for both tests are similar as discussed in section ARCH effect test. However, since the 
purpose of running the test again is to make sure that the corresponding models are effective and do 
not show any additional ARCH effects, we would expect the null hypothesis is failed to be rejected. 
This indicates that there is no need to utilise models that are more complex because the models in use 
are sufficient. 

 
Results and Discussion 
 

Data and Preliminary Analysis 
The West Texas Intermediate (WTI) crude oil daily spot price, as reported by the U. S. Energy 
Information Administration, covering the period from 1 July 2002 to 30 June 2022, was used in this 
study. The sample is partitioned into two sections, namely, the in-sample data and the out-sample data. 
The in-sample data covers the period of 1 July 2002 to 31 December 2021, a total of 4897 data to 
estimate the GARCH models. On the other hand, the out-sample data covers the period of 3 January 
2022 to 30 June 2022, a total of 124 data to compare the accuracy of the GARCH models in forecasting 
the price volatilities. 

 

 
Figure 1: Plot of WTI crude oil spot price. 

 

 

 
Figure 2. Plot of WTI crude oil price return. 

 

 

Figure 1 presents the plot of WTI crude oil spot price from 1 July 2002 to 31 December 2021. The 
figure shows that the WTI crude oil spot prices are highly volatile and exhibit volatility clustering 
behaviour. Generally, an increase in price will continue for a period of time, and a decrease in price will 
also last for a period of time. Despite the desirable statistical property of being stationary, the WTI 
crude oil price return will be used in the study instead of the WTI crude oil spot price, to minimise the 
fluctuation amplitude. Let 𝑃𝑡 be the WTI crude oil spot price at day t, the price return is given by the 

formula 𝑟𝑡 = ln(𝑃𝑡 𝑃𝑡−1⁄ ). Figure 2 shows the plot of WTI crude oil price return which also demonstrates 
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volatility clustering characteristics. The GARCH models that will be used in this study are useful to 
address volatility clustering especially in financial data. 

 

Table 1 shows the descriptive statistics of WTI crude oil price return. The crude oil price return centred 
at 0.0003 and has a sample standard deviation of 0.0297. The negative value of skewness indicates 
that the data is not perfectly symmetrical and skewed to the left. On the other hand, since the kurtosis 
value is greater than three, the data is leptokurtic, which indicates a fatter and longer tail than a normal 
distribution. 

 

Table 1. WTI crude oil price return descriptive statistics 

 

Statistics Values 

Mean 0.0003 

Standard deviation 0.0297 

Skewness –2.2115 

Kurtosis 91.6963 

ADF test –16.3920(0.01) 

Jarque-Bera test 1764261(<2.2e-16) 

Langrange Multiplier test 20410(<2.2e-16) 

Ljung-Box test  523.6700 (<2.2e-16) 

       Note: The value inside the bracket represent for p-value 

 

 

In addition to descriptive statistics, the results of the preliminary analysis are also included in Table 1. 
The ADF test for stationarity is -16.3920 with 𝑝-value of 0.01. Since the 𝑝-value is less than 𝛼 =  0.05, 
reject the null hypothesis and conclude that the series is stationary at 5% level of significance. Due to 
the stationarity of the data, analysis on this time series data is meaningful and further study can be 
carried out. Next, the high value of Jarque-Bera (JB) statistics, 1764261 allows for the rejection of the 
null hypothesis that the data is normally distributed at 5% level of significance. Hence, it can be 
concluded that the data is not normally distributed which is in line with the high kurtosis and negative 
skewness of the data. 

 

Besides, the test statistics of the LM test for the ARCH effect is 20410 with 𝑝–value <  2.2 ×  10−16, 

also lesser than 𝛼 = 0.05. The null hypothesis that no ARCH effect exists in the residuals was rejected 
at 5% level of significance. The existence of ARCH effects supports the use of the GARCH models to 
deal with the non-constant variance in this study. Furthermore, the test statistics of the Ljung-Box test 

is 523.6700 with 𝑝–value <  2.2 ×  10−16 which is lesser than 𝛼 = 0.05. Thus, reject the null hypothesis 
and can be concluded that the model exhibits serial correlation. 

 

GARCH Models 
For the purpose of this study, GARCH models known as GARCH, IGARCH, EGARCH, and GJR-
GARCH were chosen as the preferred model. The GARCH model is chosen as the model is 
fundamental choice for modeling volatility. Meanwhile, the IGARCH model is selected because of 
persistent volatility in the data and the EGARCH model because the volatility responds differently to 
positive and negative shocks, as shown in Figure 1. The GJR-GARCH model considers both volatility 
asymmetries and shocks' impact on volatility. Table 2 shows the estimated results for all GARCH 
models based on the maximum likelihood estimation. The estimated value is presented before the 𝑝-
value, which is displayed in the bracket. All the parameters are statistically significant at 1% level of 
significance. Small values of 𝛼0 and highly significant 𝛼1 and 𝛽1 parameters of all GARCH (1, 1) models 
suggest that the fundamental basis of the present WTI crude oil returns volatility is the past squared 
errors and the past conditional variance. The overall measurement of the persistence of volatility is 
represented by the summation of 𝛼1 and 𝛽1. The summation of 𝛼1 and 𝛽1, which is very close to one, 
suggests that the volatility has a high degree of persistence. The positivity of the conditional variance 
of the GARCH (1, 1) models is achieved as 𝛼0, 𝛼1, and 𝛽1 parameters are non-negative for all types of 

distributions. Furthermore, since 𝛼1 + 𝛽1 < 1 for all types of distribution of the GARCH (1, 1) models, 
the conditional variance is stationary. 

 

For the IGARCH (1, 1) models, all the parameters are statistically significant at 1% level of significance 
with the p-values ranging from 0.0000 to 0.0011, despite their error distributions. WTI crude oil current 
volatility depends on the past squared errors, which is evident by the non-zero significant 𝛼1 parameter. 

However, it is only slightly affected by the constant since the coefficients of the significant 𝛼0 parameter 
is very close to zero for all types of the IGARCH (1, 1) models. Since the IGARCH model is actually a 
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standard GARCH model but with a unit root, the weightage of the past conditional variances, 𝛽1 can 

be simply calculated by using the formula 𝛽1 = 1 − 𝛼1. Moreover, the positive values of 𝛼0 and 𝛼1 for 
all the IGARCH (1, 1) models with different distributions warrant the positivity of the conditional 
variance. 

 

Moving on to the next family of GARCH, EGARCH, at 1% level of significance, all parameters of the 
three EGARCH (1, 1) models are significant. A remarkable phenomenon that can be observed from 
the EGARCH (1, 1) models is that the estimated values of 𝛼0 and 𝛼1 parameters are negative with the 
value of  -0.1212, -0.1260, and -0.1250 for normal distribution, Student’s t-distribution and GED, 
respectively. Since the EGARCH model is log-linear, the negative values of parameters do not affect 
the positivity of conditional variance. As the asymmetric parameter, 𝛾1 is non-zero and significant, WTI 
crude oil return exhibits asymmetry behaviour. In other words, positive and negative shocks impact the 
current volatility differently. When there is a positive shock, the effect on the conditional variance is 
0.0697, 0.0656 and 0.0652 for the EGARCH (1, 1) model with normal distribution, Student’s t-
distribution and GED, respectively. In contrast, when there is a negative shock, the effect on the 
conditional variance is -0.2305, -0.2118 and -0.2184 for the EGARCH (1, 1) model with normal 
distribution, Student’s t-distribution and GED respectively. Hence, it is clearly seen that a positive shock 
has a greater impact on the conditional variance due to the positive 𝛾1 parameter in this case. 

 

Table 2. Estimated results for GARCH models 

 

Model Parameters Normal Student’s t GED 

GARCH (1,1) 𝛼0 0.0000*** (0.0000) 0.0000*** (0.0011) 0.0000*** (0.0000) 

𝛼1 0.0988*** (0.0000) 0.0914*** (0.0000) 0.0934*** (0.0000) 

𝛽1 0.8840*** (0.0000) 0.8908*** (0.0000) 0.8888*** (0.0000) 

𝑣 - 6.4581*** (0.0000) 1.3503*** (0.0000) 

𝛼1 + 𝛽1 0.9828 0.9828 0.9828 

IGARCH (1,1) 𝛼0 0.0000*** (0.0000) 0.0000*** (0.0000) 0.0000*** (0.0000) 

𝛼1 0.1097*** (0.0000) 0.1040*** (0.0000) 0.1052*** (0.0000) 

𝑣 - 5.8581*** (0.0000) 1.3324*** (0.0000) 

EGARCH (1,1) 𝛼0 -0.1212 ***(0.0000) -0.1260 ***(0.0000) -0.1250 ***(0.0000) 

𝛼1 -0.0804***(0.0000) -0.0731***(0.0000) -0.0766***(0.0000) 

𝛽1 0.9832***(0.0000) 0.9836***(0.0000) 0.9837***(0.0000) 

𝛾1 0.1501***(0.0000) 0.1387***(0.0000) 0.1418***(0.0000) 

𝑣 - 6.7194***(0.0000) 1.3695***(0.0000) 

𝛼1 + 𝛾1 0.0697 0.0656 0.0652 

𝛼1 − 𝛾1 -0.2305 -0.2118 -0.2184 

GJR-GARCH 
(1,1) 

𝛼0 0.0000*** (0.0000) 0.0000*** (0.0000) 0.0000*** (0.0000) 

𝛼1 0.0433*** (0.0000) 0.0428*** (0.0000) 0.0420*** (0.0000) 

𝛽1 0.8879*** (0.0000) 0.8935*** (0.0000) 0.8924*** (0.0000) 

𝛾1 0.0978*** (0.0000) 0.0875*** (0.0000) 0.0915*** (0.0000) 

𝑣 - 6.7235*** (0.0000) 1.3699*** (0.0000) 

𝛼1 + 𝛾1 0.1411 0.1303 0.1335 

Note: The value inside the bracket represent for p-value 

***represent at 1% level of significance 

 

 

Apart from the EGARCH model, the GJR-GARCH model can also captures asymmetry effects in the 
series. All the parameters are significant at 1% level of significance for the GJR-GARCH (1, 1) models 
regardless of their error distributions. The non-zero and positive asymmetric response parameter, 𝛾1 
indicates that WTI crude oil return is asymmetric and a negative shock will result in a larger impact on 
conditional variance than a positive shock. This can be shown with the effect of positive shock on the 
conditional variance is 0.0433, 0.0428 and 0.0420 while the effect of negative shock on the conditional 
variance is 0.1411, 0.1303 and 0.1335 for GJR-GARCH (1, 1) model with normal distribution, Student’s 
t-distribution and GED respectively. Generally, the significant 𝛾1 parameters in both EGARCH (1, 1) 
and GJR-GARCH (1, 1) models have also proven that these models perform better than the standard 
GARCH (1, 1) model which do not treat positive and negative shocks differently. On top of that, the 

positivity of the conditional variance of the GJR- GARCH (1, 1) models are achieved since 𝛼0, 𝛼1, 𝛽1 

parameters and the summation of 𝛼1 and 𝛾1 are positive for all types of distributions. 
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Model Performance 
Table 3 summarises the results of model selection criteria which are the AIC and BIC for all 
combinations of GARCH models. Ranking within the GARCH family models is also included in the 
table. Generally, a smaller value of both AIC and BIC is preferable since it indicates a better-fitted 
model. Based on the results, it can be seen that the choice of the best model based on the two different 
criteria is compromised. On top of that, the ranking reveals that the Student’s t-distribution has the 
lowest AIC and BIC values, followed by the GED and, lastly, the normal distribution for all GARCH 
family models. These results are in accordance with the non-normality and heavy tail characteristics 
exhibited in the data. Thus, this study emphasises the significance of understanding the data 
distribution before modeling. Assuming the default normal distribution may not always align with the 
real data. 

 

From the group of models shown in Table 3, the EGARCH model with Student’s t-distribution was able 
to fit the data better with AIC, -4.8892  and BIC, -4.8826. In addition to model selection criteria, the 
forecast accuracies from all models were also identified. A total of 124 data were used to compare the 
accuracy of the GARCH models in forecasting the price volatilities. Table 4 summarises the results of 
measures of forecast accuracy for all combinations of GARCH models based on the out-sample data. 
Ranking within the GARCH family models is also included in the table. Models with smaller absolute 
error, RMSE and MAE indicate better forecast accuracy. Generally, all three criteria are similar in terms 
of choosing the most accurate model. For the GARCH (1, 1), EGARCH (1, 1) and GJR-GARCH (1, 1) 
models, Student’s t-distribution has the smallest absolute error, RMSE and MAE followed by the GED 
and the normal distribution. On the other hand, the IGARCH (1, 1) model with GED has the smallest 
absolute error, RMSE and MAE, followed by the Student’s t-distribution and the normal distribution. 
However, a similar result was found in the accuracy measure. EGARCH (1, 1) with Student’s t 
distribution performed the lowest error indicating the best-fitted model in forecasting with the absolute 
error of 2.6253, RMSE of 0.0213 and MAE of 0.0212. 

 

Table 3. Model selection criteria for GARCH models 

 

Model Distribution AIC BIC Rank 

GARCH (1,1) 

Normal -4.8093 -4.8053 3 

Student’s t -4.8746 -4.8693 1 

GED -4.8619 -4.8566 2 

IGARCH (1,1) 

Normal -4.8071 -4.8044 3 

Student’s t -4.8730 -4.8690 1 

GED -4.8602 -4.8562 2 

EGARCH (1,1) 

Normal -4.8263 -4.8209 3 

Student’s t -4.8892 -4.8826 1 

GED -4.8757 -4.8690 2 

GJR-GARCH (1,1) 

Normal -4.8212 -4.8159 3 

Student’s t -4.8814 -4.8748 1 

GED -4.8692 -4.8626 2 

 

 

Table 4. Measures of forecast accuracy for GARCH models 

 

Model Distribution Absolute Error RMSE MAE Rank 

GARCH (1,1) 

Normal 2.9444 0.0238 0.0237 3 

Student’s t 2.8358 0.0230 0.0229 1 

GED 2.8509 0.0231 0.0230 2 

IGARCH (1,1) 

Normal 3.7509 0.0306 0.0302 3 

Student’s t 3.7366 0.0305 0.0301 2 

GED 3.6769 0.0300 0.0297 1 

EGARCH (1,1) 

Normal 3.0073 0.0243 0.0243 3 

Student’s t 2.6253 0.0213 0.0212 1 

GED 2.6318 0.0213 0.0212 2 

GJR-GARCH (1,1) 

Normal 2.8904 0.0234 0.0233 3 

Student’s t 2.8057 0.0227 0.0226 1 

GED 2.8236 0.0229 0.0228 2 
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Post-estimation Test 
The post-estimation test results for all combinations of GARCH models shown in Table 5 for LM test 
and Ljung-Box test. Different time lags have been tested to more thoroughly assess and diagnose the 

fitted models' adequacy. Values presented in the table are 𝑝-values at different lag orders, Lag 3, Lag 

5, and Lag 7. The non-significance of the LM test with all 𝑝-values greater than 𝛼 = 0.05 at every lag 
of each GARCH model fails to reject the null hypothesis that no ARCH effect exists in the residuals. 
This implies that all of the models are sufficient. Furthermore, the Ljung-Box test also comes with a 
similar result: to accept the null hypothesis that the model does not exhibit serial correlation at 5% 
significance level. These results were shown in the table with all the 𝑝-values of each GARCH model 

at every lag greater than 𝛼 = 0.05. Hence, it can be concluded that all the GARCH models are adequate 
in modelling WTI crude oil price return and higher-order of GARCH models are not required. 

 

Table 5. Post-estimation test results for GARCH model 

 

GARCH (1,1) 

 Lag Normal Student’s t GED 

LM test Lag[3] 0.1923 0.2212 0.2110 

Lag[5] 0.3596 0.4148 0.3961 

Lag[7] 0.5782 0.6443 0.6233 

Ljung-Box test Lag[1] 0.2805 0.2788 0.2801 

Lag[2*(p+q)+(p+q)-1][2] 0.3732 0.3687 0.3710 

Lag[4*(p+q)+(p+q)-1][5] 0.4946 0.4922 0.4936 

IGARCH (1,1) 

 Lag Normal Student’s t GED 

LM test Lag[3] 0.1202 0.1395 0.1281 

 Lag[5] 0.2228 0.2693 0.2449 

 Lag[7] 0.3667 0.4464 0.4052 

Ljung-Box test Lag[1] 0.3806 0.3768 0.3889 

 Lag[2*(p+q)+(p+q)-1][2] 0.4701 0.4627 0.4743 

 Lag[4*(p+q)+(p+q)-1][5] 0.5646 0.5613 0.5685 

EGARCH (1,1) 

 Lag Normal Student’s t GED 

LM test Lag[3] 0.2269 0.2760 0.2583 

 Lag[5] 0.5434 0.6058 0.5855 

 Lag[7] 0.7629 0.8190 0.8041 

Ljung-Box test Lag[1] 0.2332 0.2113 0.2194 

 Lag[2*(p+q)+(p+q)-1][2] 0.3745 0.3415 0.3540 

 Lag[4*(p+q)+(p+q)-1][5] 0.4879 0.4621 0.4718 

GJR-GARCH (1,1) 

 Lag Normal Student’s t GED 

LM test Lag[3] 0.1445 0.1586 0.1543 

 Lag[5] 0.2835 0.3163 0.3071 

 Lag[7] 0.3818 0.4376 0.4200 

Ljung-Box test Lag[1] 0.2154 0.2225 0.2206 

 Lag[2*(p+q)+(p+q)-1][2] 0.3306 0.3387 0.3371 

 Lag[4*(p+q)+(p+q)-1][5] 0.4614 0.4702 0.4682 

 

 

Final Model Selection 
Given that all the GARCH models are statistically significant based on the hypothesis testing and 
effective based on the post-estimation test results, all models are suitable for the crude oil price return. 
However, the models show differences in performance based on the model selection criteria and 
measures of forecast accuracy. Table 6 below presents the overall ranking of GARCH models based 
on the two indicators. 
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Table 6. Overall ranking based on model selection criteria and measures of forecast accuracy. 

 

Rank Model 

Model Selection Criteria Measures of Forecast Accuracy 

1 EGARCH (1, 1) Student’s t EGARCH (1, 1) Student’s t 

2 GJR-GARCH (1, 1) Student’s t GJR-GARCH (1, 1) Student’s t 

3 GARCH (1, 1) Student’s t GARCH (1, 1) Student’s t 

4 IGARCH (1, 1) Student’s t IGARCH (1, 1) GED 

 

 

Across the GARCH family models, the best fitted model based on the model selection criteria is the 
EGARCH (1, 1) model with Student’s t-distribution followed by the GJR-GARCH (1, 1) model with 
Student’s t-distribution, the standard GARCH (1, 1) model with Student’s t-distribution and lastly the 
IGARCH (1, 1) model with Student’s t-distribution. On the other hand, based on the analysis of the 
measures of forecast accuracy across the GARCH family models, it can be concluded the most 
accurate model is the EGARCH (1, 1) model with Student’s t-distribution followed by the GJR-GARCH 
(1, 1) with Student’s t-distribution, the standard GARCH (1, 1) model with Student’s t-distribution and 
lastly the IGARCH (1, 1) model with GED. Hence, it can be deduced that the EGARCH (1, 1) model 
outperformed the other three GARCH family models, followed by the GJR-GARCH (1, 1) model, the 
standard GARCH (1, 1) model and lastly the IGARCH (1, 1) model. 

 

Conclusions 
 
This study demonstrated experimental research on the application of nonlinear time series models. 
GARCH model is a nonlinear time series models that is well known with its ability to capture volatilities 
in data. Hence, the standard GARCH model and three other extended GARCH models which are the 
IGARCH model, the EGARCH model and the GJR- GARCH model were used in this study. Apart from 
normal distribution, Student’s t-distribution and GED were also considered in this study. Data set used 
in this study is WTI crude oil price data. Instead of using the daily crude oil spot price, the analysis 
utilised the crude oil price return to reduce the amplitude of fluctuation. The data is then fitted into the 
12 combinations of four types of GARCH models, each with three error distributions. 
 
All the parameters in 12 combinations are statistically significant at 1% level of significance. Hence, 
the estimated parameters of each combination were used to forecast the price return for 124 days 
ahead. The performance of the GARCH models were compared by using model selection criteria and 
also the forecast accuracy measures. Results showed that the EGARCH (1, 1) model with Student’s t-
distribution has the lowest AIC and BIC values as well as the lowest absolute error, RMSE and MAE. 
Since the post-estimation results are also satisfactory, it can be concluded the EGARCH (1, 1) model 
with Student’s t-distribution outperformed the other 11 combinations. In conclusion, the EGARCH (1, 
1) model with Student’s t-distribution performs the best in both modelling WTI crude oil price volatility 
and the simulation study. The result is reasonable since the EGARCH model takes asymmetric effect 
into account and the data exhibits fat tail characteristics. 
 
The area of study that can be done with nonlinear time series models, specifically the GARCH models 
is infinite. For this study, only four of the univariate GARCH family models were considered. Hence, in 
the future, bivariate or even multivariate GARCH family models can be included to compare their 
efficiency. In future, comparison of the performance of GARCH models across different data sets can 
be conducted. 
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