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Abstract Group decision making plays a crucial role in organizational and community contexts, 

facilitating the exchange of expert opinions to arrive at effective decisions. The concept of 

preference, reflecting an individual's subjective evaluation of criteria or alternatives, forms a 

foundational element in this process. This study focuses on transforming non-fuzzy preferences, 

such as preference ordering and utility functions, into fuzzy preference relations (FPR) to address 

the uncertainty and uniformity inherent in expert preferences. To further enhance decision-making, 

we assess and visualize the similarity among the experts' uniform preferences. Integrating the K-

means clustering algorithm into the fuzzy group decision making model allows for the 

predetermination of an appropriate number of groups based on the available alternatives. By 

aggregating individual preferences, we present a final ranking of alternatives. The enhanced 

methodology, as demonstrated through comparative analysis, showcases its ability to yield 

positive benefits when applied to decision-making applications. 
 

Keywords: Transformation of Preferences, Fuzzy Preference Relation, K-Means Clustering, Similarity 

of Opinion, Fuzzy Group Decision Making. 
 

 

Introduction 
 

Group decision-making (GDM) model involves forming decisions as a team by gathering information and 
ideas from individuals with varied experiences, knowledge, and expertise to establish an agreement on 
a specific course of action. In GDM, it is important to consider not only the best alternative, but also the 
group consensus. Therefore, all experts involved in the process of making decisions must be satisfied 
with the final solution. This approach can be effective for problem-solving because it encourages diverse 
perspectives and fosters creativity. Fuzzy GDM is a process for making group decisions when fuzzy tools 
can be employed to convert imprecise and ambiguous information into fuzzy relationships, such as fuzzy 
objectives, constraints, and preferences. It can be used to design a decision-making process that 
considers how various individuals' preferences may interact with one another. 
 

In decision-making, diverse preference representation formats are used, such as preference relations, 
preference ordering, utility functions and many more. Fuzzy preference relation, as proposed by Chiclana 
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et al. [6] is a model used to make uniform information from various preference representation formats in 
multipurpose decision-making. Cabrerizo et al. [3] introduced the idea of information granularity as a 
method to approximate missing values and enhance the consistency of fuzzy preference relations. On 
the other hand, preference ordering involves process of arranging alternatives, indicating which ones are 
considered the best and which ones are considered the worst [5]. A utility function is a function used to 
determine the relationship between the fulfilment level of decision makers and the criterion employed in 
the decision outcome [13]. 

 

Social Network Analysis (SNA) in GDM is one of the recent concepts used to evaluate the similarity of 
perspectives among decision-makers or experts. This approach can help decision-makers to understand 
the network position and its impact on decision-making. The network structure shows the similarities of 
experts’ opinion, the composition of clusters, and the way in which the clustering results are mapped to 
the experts’ opinion similarities [8]. 

 

Clustering refers to the procedure of grouping a collection of items into subgroups based on their 
similarities, such that the items belonging to the same cluster exhibits a high level of resemblance to 
each other, while differing from items in other clusters [10]. Various clustering techniques have been 
developed and can be used in decision making. There are two main types of clustering algorithms, 
supervised and unsupervised. Researchers used different techniques of clustering methods including 
Hierarchical Clustering, Density-Based Clustering, K-Means clustering and many more. K-Means 
clustering algorithm is an unsupervised data analysis or data mining technique used for clustering data 
through a partitioning system [12]. The K-means technique endeavours to classify data into multiple 
groups, where the items within a group exhibit similar characteristics to each other, but differ from items 
in the other groups. Clustering algorithms have many applications including in grouping customers based 
on their purchasing behaviours or stock market companies based on their financial performance [9]. 

 

This study aims to address the uncertainty of human preferences by converting non-fuzzy preferences, 
which are utility function and preference ordering into Fuzzy Preference Relations (FPR). We integrate 
the K-means clustering algorithm incorporated into group decision-making model proposed by [8]. The 
K-means algorithm will determine an appropriate number of groups based on the number of alternatives 
or criteria. This improved methodology can help researchers in collecting opinions and map the clustering 
results based on their similarities of opinions. The advantage of utilization of K-Means algorithm in this 
research is the number of clusters can be pre-determined by considering the number of alternatives. 

 

The paper follows a structured format, beginning with an introduction section that provides an overview 
of the topic. This is followed by subsequent sections on Methodology, Results and Discussion, and 
Comparative Analysis, which delve into further details of findings. Lastly, the Conclusion section is 
summarising the proposed work. 

 
Methodology 
 
In general, this study enhances the decision making model by Kamis et al. [8], and we have illustrated 
the framework of our proposed methodology in Figure 1. Initially, experts will discuss on the problem and 
provide their evaluations over alternatives in terms of non-fuzzy preferences, such as utility function and 
preference ordering. The different evaluation formats are intended to encompass a range of 
characteristics, aiming to standardize the information. The non-fuzzy evaluations are then transformed 
into a uniform fuzzy-based representation format, namely as Fuzzy Preference relations (FPR). The use 
of FPR as a base-format to convey an expert's viewpoint on a set of alternatives, emerges as a valuable 
tool for aggregating experts' preferences into a unified group preference. We employ the cosine similarity 
function to measure the degree of similarity among experts' preferences, which help experts to assess 
how closely aligned their preferences over alternatives. The experts with similar opinion need to be 
placed in a similar cluster, thus we implement the K-Means clustering algorithm. In this study, K-Means 
clustering algorithm is chosen because the number of clusters are depending on the number of 
alternatives in order to interpret the clustering results with ranking of alternatives. K-Means has capability 
to explicitly control over the desired number of clusters, therefore clusters provide prior knowledge or 
domain for understanding and making decisions. The uniform preferences from individual experts will be 
aggregated to a collective one and the final ranking of alternatives can be determined. The clustering 
results and the alternatives’ ranking will be analysed and discussed. The coloured boxes represent the 
improvement works done in this study. 
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Figure 1. Framework of the proposed methodology 

 

 

The specific methodology for this research is elaborated below. Let 𝐸 represents a group of experts, 

where 𝐸 = {𝑒1,𝑒2,…,𝑒𝑚} and 𝐴 represents a set of alternatives, where  𝐴 = {𝑎1,𝑎2,…,𝑎𝑛}. 

 

Transformation of Expert Preferences 
The transformation step needs to be taken into account when different non-fuzzy preference 
representation formats are involved. In this case, each expert conveys his/ her preferences over 
alternatives in terms of preference ordering and utility functions. This different information might difficult 
to handle, especially in implementing decision making process, such as in measuring the preference 
similarities, clustering algorithm and aggregation phase.  In order to carried out these processes, these 
different formats must be firstly in a uniform form.  

 

The definitions of preference ordering and utility function are stated below, with their respective 
transformation functions to FPR context.  

 

i. Preferences Ordering [7] 

 

An expert denoted as 𝑒𝑘 expresses their preferences on the alternatives as an individual preference 

ordering, 𝑜𝑘 = {𝑜𝑘(1),… , 𝑜𝑘(𝑛)} where 𝑜𝑘(. ) represents a permutation function over the index set 

denoted as {1, … , 𝑛}, for the expert, 𝑒𝑘.  

 

The preference ordering, 𝑜𝑘 is converted to FPR format, 𝑟𝑖𝑗
𝑘 by applying the following transformation 

function: 
 

𝑟𝑖𝑗
𝑘 =

1

2
(1 +

𝑜𝑘(𝑗)

𝑛−1
−

𝑜𝑘(𝑖)

𝑛−1
),                                                              (1) 
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where 𝑛 denotes the number of alternatives. 

 

ii. Utility Function [7] 

 

Let 𝑈𝑘 be a set of preferences of expert 𝑒𝑘, 𝑒𝑘  𝜖 𝐸 on alternative 𝐴 represented as utility values where 

𝑒𝑘𝑈𝑘 = {𝑢𝑖
𝑘 , 𝑖 = 1,… , 𝑛}; 𝑢𝑖

𝑘 reflects the performance of alternatives based on expert 𝑒𝑘 opinion.  

 

It is possible to transform a utility function into FPR by obtaining the expert 𝑒𝑘 preference value of 

alternative 𝑎𝑖 over 𝑎𝑗, 𝑟𝑖𝑗
𝑘. The utility function, 𝑢𝑘 is converted to FPR format, 𝑟𝑖𝑗

𝑘 by applying the following 

transformation function: 

𝑟𝑖𝑗
𝑘 = 𝑙 (

𝑢𝑖
𝑘

𝑢𝑗
𝑘) =

𝑢𝑖
𝑘

𝑢𝑗
𝑘

𝑢𝑖
𝑘

𝑢𝑗
𝑘+

𝑢𝑖
𝑘

𝑢𝑗
𝑘

=
(𝑢𝑖

𝑘)
2

(𝑢𝑖
𝑘)

2
+(𝑢𝑗

𝑘)
2 , 𝑖 ≠ 𝑗                                          (2) 

 

 

iii. Fuzzy Preference Relations 

 

Definition 1 [4] A Fuzzy preference relation on 𝐴  refers to a fuzzy binary relation 𝑅  that captures the 

preference intensity of experts for alternative  𝑖   over alternative  𝑗  . It is required that 𝜇𝑅(𝑎𝑖 , 𝑎𝑗) = 𝑟𝑖𝑗, 

and satisfy the conditions of 𝜇𝑅(𝑎𝑖 , 𝑎𝑗) = 0.5 ∀𝑎𝑖
∈ 𝐴 and  𝑟𝑖𝑗 + 𝑟𝑗𝑖 = 1,∀𝑎𝑖,𝑎𝑗

∈ 𝐴.  

 

Let represent 𝑅𝑛 × 𝑛 be the set of 𝑛 × 𝑛   matrices 𝑅  that are generated from all fuzzy preference relations 

on  𝐴  : 

                                   𝑅 = [

𝑟11 𝑟12 … 𝑟1𝑛

𝑟21 𝑟22 … 𝑟2𝑛

⋮
𝑟𝑛1

⋮
𝑟𝑛2

⋱ …
… 𝑟𝑚𝑛

]                                                         (3) 

 

verify that: 0 ≤ 𝑟𝑖𝑗 ≤ 1 and 𝑟𝑖𝑗 + 𝑟𝑗𝑖 = 1 for 𝑖, 𝑗 ∈ {1,2,… , 𝑛}. 

 

 

Cosine Preference Similarity Measure 
In order to measure the closeness of expert opinions, the similarity function is used. In this study, the 
cosine preference similarity measure is defined as: 

 

Definition 2 [8] The measurement of cosine preference similarity between preference of expert 𝑒𝑟 and 

𝑒𝑠 is: 

 

                𝐶𝑄𝑟𝑠 = 𝐶𝑄(𝑒𝑟 , 𝑒𝑠) =
∑ (𝑒𝑟,𝑒𝑠)

𝑛(𝑛−1)
2

𝑖=1

√∑ (𝑒𝑟)
𝑛(𝑛−1)

2
𝑖=1

∙√∑ (𝑒𝑠)
𝑛(𝑛−1)

2
𝑖=1

                                                 (4) 

 

K-Means Clustering Algorithm  
The initial algorithm of the K-means clustering was presented by Lloyd [11]. The K-Means algorithm 
utilises distance-based metrics to evaluate the similarity among data points. It works by dividing a set of 
data into K clusters based on measurements, each represented by a cluster centre or centroid. K-Means 
algorithm has been widely used as a partitional algorithm [1] [2]. It commonly utilises the Euclidean 
distance measure, which is expressed as:  

 

                            √∑ (𝑥𝑖 − 𝑦𝑖)
2𝑑

𝑖=1                                                                               (5) 

 

where in a d-dimensional Euclidean space, the points  𝑥𝑖 and 𝑦𝑖 are cosidered. The objective function 
known as the Sum of Squared Error (SSE) is to be minimized. It can be expressed using the following 
equation: 

 

                          𝑆𝑆𝐸 = ∑ ∑ (𝑋𝑖 − 𝑐𝑘)2
𝑋𝑖∈𝐶𝑘

𝑑
𝑖=1                                                              (6) 

 

The cluster centroid 𝑐𝑘 can be revised as: 
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                                            𝑐𝑘 =
∑ 𝑋𝑖𝑋𝑖∈𝑐𝑘

𝑐𝑘
                                                                   (7)  

 

The K centroids are iteratively updated to minimize the average squared distance separating each data 
point and its nearest centroid [11]. 

 

Aggregation of Preferences   
Individual preferences can be combined into a collective preference using an OWA-based aggregation 

operation.  

 

Definition 3 [14]. An OWA operator of dimension n can be defined as a mathematical function ∅:ℝ𝑛 →

ℝ that is in addition to a weighting vector, 𝑉 = (𝑣1, … , 𝑣𝑚). The operator satisfies the conditions 𝑣𝑖 ∈ [0,1] 

and ∑ 𝑣𝑖 = 1𝑛
𝑖=1 , which can be expressed as follows:  

 

                             ∅(𝑟1, … , 𝑟𝑚) = ∑ 𝑣𝑖 . 𝑟𝜎(𝑖)
𝑚
𝑖=1 ,                                                           (8) 

 

where  𝜎: {1, … ,𝑚} → {1,… ,𝑚} be a permutation such that 𝑟𝜎(𝑖) ≥ 𝑟𝜎(𝑖+1), ∀𝑖= 1,… ,𝑚 − 1. 

 

In the case of a regular increasing monotone (RIM) quantifier,𝑄(𝑘): [0,1] → [0,1] such that 𝑄(0) = 0 and  

𝑄(1) = 1. The weights of the linguistic OWA operator influenced by quantifier are calculated using the 

following expression can be stated as: 

 

                           𝑣𝑖 = 𝑄 (
𝑖

𝑚
) − 𝑄 (

𝑖−1

𝑚
) , 𝑖 = 1,… ,𝑚.                                                   (9) 

 

The operator for induced ordered weighted averaging (IOWA) is additional capabilities of the OWA 

operator. The rearrangement of arguments in this operator is influenced by an additional mechanism an 

order-inducing variable, which based on the ordered position of the arguments. 

 

Definition 4 [15]. The IOWA operator, denoted as a function of dimension 𝑛, ∅𝑤: (ℝ × ℝ)𝑛 → ℝ is defined 

by a set of weighting vector, 𝑉 = (𝑣1, … , 𝑣𝑚). It satisfies the conditions of 𝑣𝑖 ∈ [0,1] and  ∑ 𝑣𝑖 = 1𝑛
𝑖=1 , and 

it aggregates the set of second arguments {⟨𝑢1, 𝑟1⟩, … , ⟨𝑢𝑛 , 𝑟𝑛⟩ using the following function: 

 

                       ∅𝑤{⟨𝑢1, 𝑟1⟩, … , ⟨𝑢𝑛, 𝑟𝑛⟩} = ∑ 𝑣𝑖 . 𝑟𝜎(𝑖)
𝑛
𝑖=1                                                  (10) 

 

Ranking of Alternatives 
The application of the Quantifier Guided Dominance Degree (QGDD), utilising the OWA operator as 

described in Definition 4 is used to rank the alternatives.  

 

Definition 5 [7]. When considering a collective preference relation, 𝑅𝑐 = 𝑟𝑖𝑗
𝑐  for a set of alternatives 𝐴 =

{𝑎1, 𝑎2, … , 𝑎𝑛}, the quantifier guided dominance degree, QGDD (𝑎𝑖), is employed to assess the degree 

of dominance of one alternative 𝑎𝑖 over the rest of the alternatives in a fuzzy majority as follows: 

 

                    𝑄𝐺𝐷𝐷(𝑎𝑖) = 𝜙𝑄(𝑟𝑖𝑗
𝑐 , 𝑗 = 1, … , 𝑛, 𝑗 ≠ 𝑖)                                                    (11) 

 

where the value of 𝜙𝑄 is determined based on the linguistic quantifier 𝑄, which signifies the 

representation of fuzzy majority in relation to an OWA operator. 

 
Results and Discussion 
 

Hypothetically, a group of 30 experts, 𝑒 = {𝑒1, 𝑒2, … , 𝑒30} provides their evaluations over the set of 6 

alternatives involved, 𝐴 = {𝐴1,𝐴2, … , 𝐴6}. Some experts give their evaluations in terms of preference 

ordering, such as expert 1 (𝑂1). The preference ordering is transformed into FPR using Equation (1), as 

shown in matrix 𝑃1. 
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𝑂1 =   {5,2,1,3,6,4}                                 𝑃1 =

[
 
 
 
 
 

1 0.2 0.1 0.3 0.6 0.4
0.8 1 0.4 0.6 0.9 0.7
0.9 0.6 1 0.7 1 0.8
0.7 0.4 0.3 1 0.8 0.6
0.4 0.1 0 0.2 1 0.3
0.6 0.3 0.2 0.4 0.7 1 ]

 
 
 
 
 

 

 

Other expert, such as Expert 2 evaluates the alternatives in the form of utility function. Thus, 𝑈2 can be 

transformed into FPR using Equation (2), as demonstrated in matrix 𝑃2. 

 

𝑈2 =    {0.7,0.6,0.4,0.5,0.3,0.2}                                           𝑃2 =

[
 
 
 
 
 

1 0.6 0.8 0.7 0.8 0.9
0.4 1 0.7 0.6 0.8 0.9
0.2 0.3 1 0.4 0.6 0.8
0.3 0.4 0.6 1 0.7 0.9
0.2 0.2 0.4 0.3 1 0.7
0.1 0.1 0.2 0.1 0.3 1 ]

 
 
 
 
 

 

 

From the similarity of experts’ preferences measured using Equation (4), the K-Means clustering 
algorithm can be implemented. Given the presence of 6 alternatives, we have pre-determined the 
creation of 6 clusters. This decision is essential to ensure that the clustering outcomes correspond 
effectively to the alternative rankings. In our future research, we intend to establish a connection between 
the ranking results and the members within their respective clusters, thereby facilitating an in-depth 
analysis of the relationships among experts, their opinions, clusters, and rankings.  

 

With the utilization of 6 clusters, the K-Means algorithm initiates the process by selecting an initial set of 
6 cluster centroids. Data points are then assigned to the cluster whose centroid is in closest proximity, 
determined by the Euclidean distance metric (Equation (5)). Once all data points find their respective 
clusters, the centroids of these clusters are updated to reflect the mean of the data points within each 
cluster (Equation (6)). This iterative centroid adjustment process, outlined in Equation (7), aims to 
minimize the average squared distance between each data point and its closest centroid, ensuring that 
the centroids accurately represent the data within their clusters. The visualisation of clustering result is 
presented in Figure 2 below: 

 

 
 

Figure 2. K-means clustering results based on experts’ preference similarities 
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Figure 2 visually demonstrates the distinct placement of expert 𝑒1 and 𝑒2, who are positioned separately 
and are at a greater distance from the other experts. These two experts hold differing opinions compared 
to other experts in the network. Other experts are clustered closely to each other, meaning that their 
preferences are similar. In order to clearly interpret the clustering result, we list the associated experts 
cluster in Table 1. 

 

Table 1. 6 clusters with their associated experts 

 

Cluster Cluster members (expert) 

1 𝑒7, 𝑒8, 𝑒13, 𝑒14, 𝑒17, 𝑒18, 𝑒21, 𝑒22, 𝑒27, 𝑒29 

2 𝑒2, 𝑒19, 𝑒23, 𝑒25 

3 𝑒1, 𝑒3, 𝑒9, 𝑒15, 𝑒16, 𝑒24, 𝑒30 

4 𝑒10, 𝑒12 

5 𝑒5, 𝑒11, 𝑒26, 𝑒28 

6 𝑒4, 𝑒6, 𝑒20 

 

Using Equation (8-10), the collective preference relation, 𝑃𝑐 is obtained as follows: 

 

𝑃𝑐 =

[
 
 
 
 
 

1 0.469 0.467
0.531 1 0.502
0.533
0.495
0.407
0.505

0.498
0.462
0.378
0.469

1
0.462
0.373
0.467

    

0.505 0.592 0.495
0.538 0.621 0.530
0.538

1
0.413
0.512

0.626
0.587

1
0.596

0.533
0.488
0.404

1 ]
 
 
 
 
 

. 

 

The alternatives are ranked (Equation 11) and arranged in descending order as follows: 

 

𝐴3 ≻ 𝐴2 ≻ 𝐴6 ≻ 𝐴4 ≻ 𝐴1 ≻ 𝐴5. 

 

Based on final ranking of alternative, the results indicate that the most preferred alternative is 𝐴3, followed 

by 𝐴2, 𝐴6, 𝐴4, and 𝐴1. The least preferred alternative is 𝐴5. 

 
Comparative Analysis 
 
The main aim of this paper is to improve the existing group decision making model, introduced by Kamis 
et al. [8]. Several elements have been compared between both methods, as depicted in Table 2 below: 
 

Table 2. The comparisons of Kamis et al. [8] and the proposed work 

 

Comparison elements 
Original method 
(Kamis et al. [8]) 

Our proposed 
model 

Consideration of non-fuzzy 
preference formats 

 

No 

 

Yes 

Transformation of non-fuzzy to fuzzy 
preferences 

No 
 

Yes 

Clustering algorithms 
Agglomerative 

hierarchical 
clustering 

K-Means 

Predetermine number of clusters No 
 

Yes 

 
 
For the purpose of achieving our main objective, several important factors have been taken into 
consideration. In this study, we incorporate expert evaluations in the form of non-fuzzy preferences, 
specifically preference ordering and utility function. This step is an addition to the original method 
proposed by Kamis et al. [8]. We find it essential to include this element in our work because not all 
individuals (experts) are well-versed in or familiar with the concept of fuzzy set theory. When people need 
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to evaluate or rate something, they often prefer to use ordering or assign direct values to the evaluation 
set (utility function). Thus, this procedure offers flexibility to people with no knowledge on fuzzy set theory, 
enabling them to smoothly conduct the evaluation process.  
 
Instead of its simplicity, non-fuzzy preferences unable to accommodate the inherent imprecision or 
vagueness of human preferences. Experts rely on making clear-cut distinctions and rankings, without 
acknowledging the existence of gradations or varying degrees of preference. For instance, when experts 
order criteria or alternatives, they may rank them from the best to the worst, without quantifying the 
difference in preference between them. This limitation can be addressed by incorporating fuzzy-based 
representation formats, such as fuzzy preference relations (FPR). In order to transform preference 
ordering and utility functions into FPR, specific transformation functions must be used. This procedure 
has been applied in our study but was not considered in Kamis et al. [8] decision-making model. 
 
In the study by Kamis et al. [8], they employed the agglomerative hierarchical clustering algorithm to 
group experts based on their similarity of opinion. The resulting clusters were used to assess the 
consensus within the group and to establish a feedback mechanism when the consensus level was 
insufficient. The optimal number of clusters was determined by the highest degree of cluster consensus, 
meaning that the original decision-making model did not specify the number of clusters in advance. In 
our current study, we opted for the K-means clustering technique because it allows for the initial 
determination of the number of clusters, aligning with our aim to have the same number of clusters with 
respect to the number of alternatives. 

 
Conclusion 
 
This study modified the group decision-making model based on preference similarity network clustering 
proposed by Kamis et al. [8]. To accommodate different preference representation formats, we include 
a transformation procedure in the study. Experts are requested to express their preferences regarding a 
set of alternatives using preference ordering and utility function. In order to standardize the preference 
formats, a uniform context using FPR is presented. This step helps the researchers or experts to handle 
the uncertainty and vagueness of human preferences in decision making process. 
 
The K-means clustering algorithm is widely used in partitioning objects into subgroups. Determining 
appropriate number of clusters for a data set is an essential process before adopting K-means. This 
study focuses on partitioning experts based on their preference similarities and mapping the clustering 
results with the pre-determined number of alternatives. Clusters with associated experts are clearly 
presented, the individual experts’ preferences are successfully aggregated into a collective one and the 
ranking of alternatives are obtained. 
 
This work can be extended, where the mapping of clusters with alternatives needs to be taken into 
account. Other clustering algorithms or aggregation operators can be explored further. Additionally, this 
proposed model can be used as an alternative tool in solving many decision making problems. 
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