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Abstract Malaysia can convert agricultural wastes (biomass) into biofuel to reduce fossil fuel 

dependency and solve the disposal problem. As one of the largest palm oil producers, Malaysia 

has an abundance of palm oil biomass, but the biomass has high humidity, low energy density, 

and is scattered geographically. Establishing collection facilities with pretreatment operations is 

suggested to collect the biomass and improve its quality. Nevertheless, the facility placement and 

vehicle routing decisions significantly affect the total cost and operational efficiency. Hence, this 

study develops a model to address the location-routing problem and quantifies the pretreatment 

operation to customize the process in the biomass supply chain. This research also addresses 

sustainability from all dimensions through multi-objective optimization. The model minimizes costs, 

reduces negative social impacts by considering population densities, and measures environmental 

performance through CO2 emissions. The study first optimized each objective function separately 

and then conducted a multi-objective optimization using a weighted sum approach. Optimizing 

each objective function individually will achieve the best outcome for each dimension, but 

enhancing one objective would impair the others. However, multi-objective optimization shows 

some compensation for the performances where economic, social, and environmental indicator 

values decreased by 0.36%, 6.58%, and 15.28%, respectively. The results demonstrate that the 

model adjusts the locational and routing decisions based on different goals. 

Keywords: Location-routing problem, biomass supply chain, palm oil biomass supply chain, mixed 

integer linear programming, multi-objective optimization. 
 

 

Introduction 
 

Malaysia is rich in agricultural products, but their wastes cause disposal problems where they are 
disposed of at landfill sites, burned, or incinerated directly at farms. Modern technology provides an 
alternative for dealing with these wastes by converting them into biofuels (biomass energy), which could 
also help Malaysia become less dependent on fossil fuels. Nevertheless, the geographical scattering of 
biomass resource sites, coupled with biomass characteristics like high moisture content, bulkiness, and 
low energy content, has caused transportation, storage, and energy conversion difficulties. It is 
necessary to have an appropriate structure biomass supply chain (BSC) to coordinate all parties in the 
industry and manage the biomass characteristics problem. In BSC, decisions such as facility location, 
allocation, and vehicle routing affect the efficacy of biomass energy production and total cost. 
Researchers have shown considerable interest in BSC models. Nonetheless, these BSC models have 
traditionally solved facility location and vehicle routing problems separately, which may cause 
suboptimality in the solution [1].  
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As one of the largest palm oil producers [2], [3], the palm oil industry in Malaysia generates tons of waste 
from the oil extraction process from fresh fruit bunches (FFB). The palm oil wastes are empty fruit 
bunches (EFB), palm oil mill effluent (POME), palm kernel shell (PKS), and mesocarp fiber (MF). 
Generally, PKS and MF are incinerated at mills to generate steam and electricity for disposal instead of 
optimally used to produce energy [4], whilst EFB is used either directly as mulch [5] or in combination 
with POME for mulching [6], [7]. This study proposes using EFB as the feedstock for solid biofuel 
production due to its abundant availability and establishing collection facilities to collect EFB from mills 
to resolve the issue of geographically scattered resources. However, the locational decision of the 
collection facilities affects establishment and transportation costs, and the tour trips (routing) of vehicles 
from collection facilities to mills also influence transportation costs. Since the facility location and vehicle 
routing decisions are significant in BSC, it is necessary to have an optimization model to address the 
location-routing problem (LRP) simultaneously. 
 

Although using EFB as biomass energy can bring advantages, its characteristics cause problems in BSC 
management and energy conversion. The bulkiness of EFB consumes more space for transportation 
and storage, and burning it results in the emission of substantial white smoke, which is high in water 
vapor and fly ash due to high humidity [4]. Hence, this study proposes to equip collection facilities with 
pretreatment operations such as pelletizing to reduce the humidity content in biomass and transform it 
into a compact form of higher energy density [8]. The pellet forms of EFB could increase the efficiency 
of transportation, storage, and combustion. Nevertheless, few BSC articles considered including and 
quantifying the pretreatment operation in the optimization models. Thus, this study quantifies the 
pretreatment operation in the optimization model, which tailors the LRP to the conversion process in 
BSC. 
 

While most BSC models prioritize economic performance, specifically cost-effectiveness, it is crucial to 
recognize that decisions within the BSC also influence the environment and surrounding community. 
Transportation activities release CO2, which is one of the causes of global warming. The CO2 emissions 
relate not only to travel distance but also in relation to vehicle load, which influences fuel consumption. 
This study proposes to relate CO2 emissions to travel distance and vehicle loading to measure 
environmental sustainability. Apart from environmental sustainability, social sustainability should also be 
a concern of the BSC. Commonly, the facilities might release harmful chemicals, produce heat, and 
create noise, which makes facility establishments unwelcome by the local community. The decisions on 
facility placement should address this negative social impact when designing the network structure. This 
research addresses social performance by reducing the population affected by locational decisions. 
Facility establishments should prioritize areas with the fewest people living in the vicinity, resulting in 
fewer individuals being exposed to potential pollutants. This approach prevents the concentration of 
adverse environmental impacts on the population, potentially mitigating the negative social 
consequences associated with facility location decisions. 
 

Overall, this study builds a mixed-integer linear programming model to optimize the locational decisions 
of collection facilities and vehicle routing decisions of trucks collecting EFB from mills. This study 
quantifies the pretreatment operation in the model and simultaneously addresses the sustainability of 
the BSC by optimizing the economic, environmental, and social performances. In a nutshell, this 
research proposes a multi-objective LRP model to manage BSC that converts EFB into solid biofuels 
(palm pellets).  
 

The novelties of this study are as follows. Firstly, the proposed mathematical model is versatile and 
applicable to optimize facility locations, biomass allocation, and vehicle routing in any BSC network. 
Secondly, the model can handle both single-objective and multi-objective scenarios, providing a 
foundational framework for addressing diverse sustainability goals in BSC networks. Thirdly, the 
incorporation of pretreatment operations, specifically pelletizing, into the collection facilities distinguishes 
the proposed model from general LRP models. Additionally, the model is not confined to networks 
featuring collection facilities with pelletizing technology. It can be applied to optimize networks with 
various facilities utilizing different technologies. The structure of this paper is as follows. Section 2 
provides a literature review. Section 3 defines the problem and introduces the mathematical model. 
Section 4 presents the results and discussion. Finally, Section 5 outlines the conclusions and limitations. 

 

Literature Review 
 

In recent years, articles contributing to the BSC have increased substantially. Table 1 lists and analyzes 
the relevant literature, their goals (objective functions), and decisions to be optimized to evidence the 
gap in the works. 
 

A substantial amount of research has been conducted on solving locational and allocation decisions 
simultaneously. Works that focus on the location-allocation problem are described as follows. Sarker et 
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al. [9] and [10] solved a location-allocation problem of the bio-methane gas supply chain constituted by 
multiple residues, hubs, and reactors. Saadati and Hosseininezhad [11] designed a bagasse-based 
bioethanol supply chain for locating hubs by considering road and rail transport. Serrano-Hernandez and 
Faulin [12] optimized the number and capacity of biorefineries and different storage policies. Some 
researchers also used the Geographic Information System (GIS) to solve the location-allocation problem 
(e.g., Schröder et al. [13]; Zhang et al. [14]; Soha et al. [15]; Sahoo et al. [16]; Jayarathna et al. [17]; 
Razm et al. [18]; Zhang et al. [19]).  

 

Table 1. Articles Relevant to the Biomass Supply Chain 

 

Reference LD AD RSD PO Eco Env Soc Obj 

León-Olivares et al. [20] ● ●   ●   Min total cost 

Castro-Peña et al. [21] ● ●   ●   Min total cost 

Galanopoulos et al. [22] ● ●   ●   Max annual profit 

San Juan et al. [23] ● ●  ● ● ●  Min total cost, Min CO2 emissions 

Chugh et al. [24] ● ●   ●   Max net present value 

Rabbani et al. [25] ● ●   ● ● ● 
Min total cost, Min greenhouse gas 

emissions, Max job creation 

Park et al. [26] ● ●   ● ●  Min total cost, Min CO2 emissions 

Gital Durmaz and Bilgen 
[27] 

● ●   ●   Max profit, Min total distance 

Rabbani et al. [28] ● ●   ● ● ● 
Min total cost, Min environmental impact, 

Max job creation 

Ganev et al. [29] ● ●   ● ● ● 
Min total cost, Min total CO2 emissions, Job 

creation as a constraint 

Mahjoub et al. [30] ● ●   ●   Min total cost, Max the energy produced 

Ivanov [31] ● ●   ●   Min total cost 

Hosseinalizadeh et al. 
[32] 

● ●   ● ●  Min total cost, Min fuel emissions 

Sarker et al. [9] ● ●   ●   Min total cost 

Sarker et al. [10] ● ●   ●   Min total cost 

Saadati and 
Hosseininezhad [11] 

● ●   ● ●  Min total cost, Min CO2 emissions 

Serrano-Hernandez and 
Faulin [12] 

● ●   ●   Min total cost 

Schröder et al. [13] ● ●   ●   Max return on investment 

Zhang et al. [14] ● ●   ● ●  Min total cost and emission cost 

Soha et al. [15] ● ●   ●   Min amount of manure to be transported 

Sahoo et al. [16] ● ●   ●   Min total cost or Min total distance 

Jayarathna et al. [17] ● ●   ●   Min total distance 

De Meyer et al. [33] ● ●  ● ●   Max net energy output 

Arabi et al. [34] ● ●   ●   Min total cost 

Arabi et al. [35] ● ●  ● ● ●  Max total profit, Max carbon absorption 

Mohseni and Pishvaee 
[36] 

● ●   ●   Min total cost 

Ghaderi et al. [37] ● ●   ● ● ● 
Min total cost, Min environmental impact, 
Max employment and economic indicators 

Razm et al. [18] ● ●   ●   Min total cost 

Zhang et al. [19] ● ●   ●   Min total cost 

Kwon and Han [38] ● ●   ●   Min ethanol levelized cost 

Zhao and Li [39] ●    ● ●  Min total logistics cost, Min CO2 emissions 

Salleh et al. [40] ●    ●   Min total distance 

Woo et al. [41] ●    ●   Min transportation cost 

Sahoo et al. [42] ●    ●   Min total distance 

Laasasenaho et al. [43] ●    ●   Min total distance 

Rivera-Cadavid et al. [44]  ●   ●   Max total profit 

Wang et al. [45]  ●   ●   Min total distance 

Tiammee and Likasiri 
[46] 

 ●   ● ● ● 
Max total profit, Min total transportation cost, 

Min environmental 
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Reference LD AD RSD PO Eco Env Soc Obj 

She et al. [47]  ●   ● ●  

Max net revenue of log sales, Max net 
revenue of bioenergy, Max GHG emission 

savings of log, Max GHG emissions savings 
of bioenergy 

How and Lam [48]  ●   ● ●  
Max net profit, Max satisfaction degree of 

environmental sustainability 

Torjai and Kruzslicz [49]   ●  ●   Min number of trucks or Min total trucks’ idle 

Soares et al. [50]   ●  ●   Min total transportation cost 

Pinho et al. [51]   ●  ●   Min total distance, Min remaining distance 

Fokkema et al. [52]   ●  ●   Min transportation time 

Malladi et al. [53]   ●  ●   Min transportation cost 

Cárdenas-Barrón and 
Melo [54] 

  ●  ●   Min transportation distance and cost 

Vahdanjoo et al. [55]   ●  ●   Min distance 

Zamar et al. [56]   ●  ●   Max energy returned 

Cao, Wang, et al. [57] ● ● ●  ●   Min total cost 

Cao, Zhang, et al. [1] ● ● ●  ●   Min total cost 

Li et al. [58] ● ● ●  ●   Min total cost 

Habibi et al. [59] ● ● ●  ●   Min total cost 

Asadi et al. [60] ● ● ●  ● ●  Min total cost, Min total system pollution 

Morales Chavez et al. 
[61] 

● ● ●  ● ● ● 
Max net present value, Min environmental 
impact, Max positive impact (job creation 
and food security) 

Note: LD = Locational Decision, AD = Allocation Decision, RSD = Routing or Scheduling Decision, PO = Pretreatment Operation, Eco = Economic 
Performance, Env = Environmental Performance, Soc = Social Performance, Obj = Objectives 

 

 

Some available studies focus mainly on a single type of decision in the BSC problem. The articles that 
concentrate on locational decisions are reported as follows. Zhao and Li [39] solved the problem of 
identifying the location of the power plants. Salleh et al. [40] used a least-square regression method to 
identify a location for biomass processing facility. The combination of multi-criteria analysis and GIS is 
also commonly used by researchers in solving the locational problem (e.g., Woo et al. [41]; Sahoo et al. 
[42]; Laasasenaho et al. [43]). The papers that optimize the allocation decision are described as follows. 
Rivera-Cadavid et al. [44] developed a model to identify the plots of the day whose sugarcane wastes 
should be transported. Wang et al. [45] presented a model for assessing biomass supply and calculating 
co-firing ratios for each retrofit power plant. Tiammee and Likasiri [46] solved the distribution and disposal 
problems of corn kernels and residues. She et al. [47] inspected the wood residue salvage operations 
under sequential and integrated scenarios. How and Lam [48] proposed considering vehicle capacity 
constraints in planning biomass allocation. 

 

Besides, some articles examine the routing or scheduling decision alone. Torjai and Kruzslicz [49] 
developed a model to schedule trucks to deliver biomass from satellite storage locations to a central 
biorefinery. Soares et al. [50] investigated the synchronization of trucks’ movement and operation in a 
full truck pick and delivery problem. Pinho et al. [51] propounded a predictive control model to plan 
vehicle routing. Fokkema et al. [52] proposed a continuous-time inventory routing model for a biogas 
logistic network. Malladi et al. [53] developed a model to plan the transshipment and routing of the forest 
SC. Cárdenas-Barrón and Melo [54] solved reverse logistics’ selective and periodic inventory routing 
problem in managing waste vegetable oil collection. Vahdanjoo et al. [55] formulated and solved the bale 
collection problem with a vehicle routing model. Zamar et al. [56] considered biomass availability and 
moisture contents in planning the route for the sawmill residue collection problem. 

 

Table 1 shows that few articles investigate location, allocation, and routing decisions simultaneously 
(e.g., Cao, Wang, et al. [57]; Cao, Zhang, et al. [1]; Li et al. [58]; Habibi et al. [59]; Asadi et al. [60]; 
Morales Chavez et al. [61]). Table 1 also indicates that few optimization models incorporate the 
pretreatment operation. San Juan et al. [23] incorporated the feedstock quality and quantified the 
pretreatment into the model. De Meyer et al. [33] proposed including pretreatment operation and biomass 
loss in the model. Arabi et al. [35] considered the pretreatment rate and deterioration percentage in their 
algae-based SC model. Besides, the objective functions listed in Table 1 also demonstrate that not many 
articles inspect the sustainability of the BSC. A sustainable BSC would aim to optimize economic, 
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environmental, and social performance simultaneously, but these goals might often conflict [62]. Aside 
from that, minimizing the total cost, minimizing CO2 emissions, and optimizing job creation are the 
famous metrics for evaluating economic, environmental, and social performances. 

 

The following observations are identified in the literature:  

a) Few studies have considered optimizing locational, allocation, and routing decisions simultaneously. 

b) There is a limited multi-objective location routing model for the BSC problem. 

c) No existing location-routing model optimizing the BSC performance considers minimizing CO2 
emission and reducing the negative social impact of facility establishment. 

d) Few BSC research projects include the pretreatment operation and quantify them into the model. 

 

This research aims to fill the gaps found in the existing literature by developing a sustainable LRP model. 
The model is designed to identify the optimal decisions for opening collection facilities and tour trips of 
trucks visiting mills. These tour trips are the vehicle routing that will consider the truck loading along 
routes. The proposed BSC network also includes the pretreatment operation in the collection facilities 
and quantifies it as an additional parameter. Lastly, the suggested model is also a multi-objective model 
that addresses the sustainability of BSC by minimizing the total cost (economic performance), CO2 

emissions (environmental performance), and total affected population (social performance).  

 

This research shares similarities with the study conducted by Cao, Wang, et al. [57], addressing a single 
economic objective two-echelon location-routing problem within a BSC network structure involving 
resource sites, collection facilities, and biorefineries. However, there are notable distinctions in the 
proposed model. Firstly, the proposed model focuses on a multi-objective problem within a single 
echelon network comprising resource sites and collection facilities. Consequently, this act allows the 
model to address scenarios requiring consideration of sustainable goals. Secondly, the notable 
difference resides in the model constraints, where additional constraints related to connecting the 
transverse route with facility assignment, vehicle load capacities, and subtour elimination have been 
introduced. The additional constraints are crucial to depict the interdependencies among facility 
assignment, vehicle routing, and vehicle loads in the pursuit of minimizing costs, CO2 emissions, and the 
affected population. Moreover, the model incorporates parameterization of pretreatment operations. 

 

This study also bears some resemblance to the research by Karaoglan and Altiparmak [63], which 
addressed a cost minimization single-echelon LRP in a general distribution network with depots and 
customers. Their model involved an unlimited fleet of homogeneous vehicles and scenarios 
encompassing both pickup and delivery demands from customers. However, the proposed model in this 
research differs by limiting the fleet size of homogeneous vehicles in the BSC and considering only 
pickup demands from resource sites (customers). Consequently, there are variations in the model 
constraints. The proposed model stipulates that a facility must serve at least one resource site (customer) 
when open and relates biomass flow to vehicle loads, focusing solely on the pickup scenario. 
Additionally, there are slight differences in subtour elimination constraints. Moreover, this proposed 
model deals with multi-objective functions and integrates pretreatment operations, aspects not included 
in Karaoglan and Altiparmak [63]'s work. 

 

Less closely related research works are found in studies conducted by Theeraviriya et al. [64] and [65], 
which addressed the LRP in the palm oil supply chain. Theeraviriya et al. [64] focused on a single-
echelon network involving palm oil fields and palm oil collection centers. Meanwhile, Theeraviriya et al. 
[65] extended their study to a two-echelon network, including palm oil fields, depots, and extraction 
plants, considering direct shipment scenarios. Both studies focus on collecting palm oil or FFB rather 
than biomass or waste, the collection centers or depots are used for collecting purposes without pre-
equipped pretreatment operations. Additionally, both studies targeted a single economic objective, 
specifically total cost minimization. In Theeraviriya et al. [64], fuel consumption costs dependent on road 
conditions and vehicle types were considered as one of the cost components. In Theeraviriya et al. [65], 
emission and congestion costs were included. Even if the emission cost was employed to quantify the 
environmental impact, it only related to the rate of fuel consumption brought on by the road conditions. 
Notably, they did not investigate CO2 emissions caused by vehicle loads along the route, as suggested 
by this proposed research. Moreover, the negative social impact was overlooked in these studies. Lastly, 
substantial differences in model constraints exist between the current proposed model and the models 
in the articles of Theeraviriya et al. [64] and [65]. 

 

This research has introduced innovative contributions to the field of interest in the following ways. First, 
the developed model could be applied to all kinds of BSC networks intended to optimize the decisions 
of facility locations, allocation, and vehicle routing simultaneously. Second, the model could be optimized 
individually for the proposed objective functions and produce optimal decisions for situations considering 
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conflicting sustainable goals. In addition, this model can be viewed as a framework of the multi-objective 
LRP optimization model for the BSC. Finally, the suggested model incorporates the changes in biomass 
characteristics resulting from pretreatment operation, which tailors the model to the procedure in BSC 
and is hence distinct from the general LRP model. 

 
Problem Definition and Mathematical Model 
 

This section describes the problem definition, assumption, and mathematical model, including the 
equations for performance indicators, model constraints, and multi-objective optimization. 

 

Problem Definition and Assumption 
This paper designs a BSC model that only considers two main players in the palm oil industry: mills 
(resource sites) and collection facilities. Figure 1 shows an overview of the investigated palm oil BSC. 
The EFB will be pre-processed into wet short fibers (WSF) by sieving and separation in the mills. Then, 
trucks collect the WSF from mills and deliver it to an assigned collection facility. In the collection facility, 
the WSF will be pretreated by pelletizing technology to produce solid biofuels, palm pellets. Since the 
locations of the collection facilities affect the total cost and the surrounding population, it is necessary to 
determine their optimal locations. In addition, optimizing the route used by trucks visiting the mills is 
important to reduce total costs and CO2 emissions. The act of optimizing locational and routing decisions, 
along with the minimization of costs, total population, and CO2 emissions, has made the investigated 
BSC fall under the multi-objective location routing problem (MOLRP).  

 

 
Figure 1. An overview of the investigated palm oil biomass supply chain 

 

 

This research proposes a MOLRP model and quantifies the pretreatment operation into the model. This 
study has customized the model to the processing in palm oil BSC and made a disparity from the general 
LRP model. Figure 2 illustrates the network consisting of mills and collection facilities by nodes, and the 
routes between facilities are portrayed by arcs. Tables 2, 3, and 4 present the sets, decision variables, 
and parameters of the MILP model, respectively. The assumptions for the proposed model are stated as 
follows: 

(a) Each mill can only be visited by one truck. 

(b) A truck will start its route from an opened collection facility and back to the same facility after picking 
up the biomass from the mills.  

(c) A truck could visit different mills if the total loading is less than the truck capacity. 

(d) The candidate locations of collection facilities and their capacities are known.  

(e) There is no flow between collection facilities. 
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Table 2. Sets 

 

Notation Description 

𝑀 Mills 

𝐶 Collection Facilities 

𝐻 Trucks 

 

Table 3. Decision Variables 

 

Notation Description 

𝑧𝑖 1, if collection facility 𝑖 is opened; 0, otherwise. 

𝛼𝑖𝑗   1, if mill 𝑖 is assigned to collection facility 𝑗; 0, otherwise. 

𝑥𝑖𝑗ℎ 1, if truck ℎ travels from node 𝑖 to node 𝑗; 0, otherwise. 

𝐿𝑃𝑖𝑗ℎ Loading on truck ℎ from node 𝑖 to node 𝑗 

𝑞𝑗
𝐶 Amount of biomass received by collection facility 𝑗  

𝑞𝑗
𝐶𝑃 Amount of pretreated biomass produced in collection facility 𝑗 

 

Table 4. Parameters 

 

Notation Description Unit 

𝑞𝑖
𝐺 Amount of biomass generated in mill 𝑖   metric ton/day 

𝑞𝑖
𝑀 Amount of preprocessed biomass produced by sieving and separation in mill 𝑖                             metric ton/day 

𝑡𝑖
𝑀 Capacity of mill 𝑖   metric ton FFB/hour 

𝑡𝑖
𝐶 Capacity of pretreatment in collection facility 𝑖          metric ton/day 

𝑐ℎ Capacity of truck ℎ                                                     metric ton 

𝑑𝑖𝑗 Distance between nodes 𝑖 and 𝑗                                km 

𝑓𝑖
𝐸𝐶  Establishment cost of collection facility                     RM/day 

𝑓𝑖
𝑃𝐶 Unit operating cost of pretreating the biomass RM/metric ton 

𝑣ℎ Cost per km of truck ℎ                                               RM/km 

𝜌𝐺  Biomass generation rate EFB/FFB 

𝜌𝑀𝑂 Rate of the biomass used for mulching and other purposes - 

𝜃𝑆 Conversion rate for separating and sieving EFB into WSF WSF/EFB 

𝜃𝑃 Conversion rate for pelletizing the biomass pellets/WSF 

𝛾ℎ1 CO2 emission rate per kilometer kgCO2/km                                                     

𝛾ℎ2 CO2 emission rate per metric ton per kilometer kgCO2/metric ton-km 

𝑃𝑜𝑝𝑖 The surrounding population at the collection facility people 

𝑤 Daily operating hours hour 

 



 

10.11113/mjfas.v20n2.3085 254 

Yeng et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 247-265 

 
 

Figure 2. A network representation of the investigated location-routing problem 

 

 

The Sustainable Performance Indicators 
The cost function (Equation (1)) is calculated by adding the cost of opening collection facilities (first term), 
the cost of pretreating the biomass (2nd term), and the transportation cost of collection routes (last term). 

 

Minimize 𝑓1 = ∑ 𝑓𝑖
𝐸𝐶

𝑖∈𝐶 𝑧𝑖 + ∑ 𝑓𝑖
𝑃𝐶

𝑖∈𝐶 𝑞𝑖
𝑐 + ∑ ∑ ∑ 𝑣ℎℎ∈𝐻𝑗∈𝑀∪𝐶𝑖∈𝑀∪𝐶 𝑑𝑖𝑗𝑥𝑖𝑗ℎ   (1) 

 

This study uses the total number of people living in the vicinity of collection facilities as a measure of 
social performance metric (this concept was adopted from Tirkolaee et al. [66]’s work of solving LRP in 
applications other than BSC). Locations with lower surrounding populations are favored for facility 
placement, indirectly reducing the concentration of adverse social impacts on local communities. Using 
Equation (2), it is less likely that collection facilities would be opened in densely populated areas. 

 

Minimize 𝑓2 = ∑ 𝑃𝑜𝑝𝑖𝑧𝑖𝑖∈𝐶         (2) 

 

For environmental performance, this research only considers CO2 released from transportation activities 
and assumes that emissions from the pretreatment operation are negligible. Equation (3) minimizes total 
CO2 emissions consisting of two components. These two terms could represent CO2 emissions under 
two different situations, trucks with loading and empty trucks. In the first term, this study proposes to 
consider the proportionality of CO2 emissions with trucks’ loading and travel distance, which this concept 
was adapted from Roni et al. [67]. The second term captures CO2 emissions from the travel distance of 
empty trucks (trucks with no loading). 

 

Minimize 𝑓3 = ∑ ∑ ∑ 𝛾ℎ2
ℎ∈𝐻𝑗∈𝑀∪𝐶𝑖∈𝑀 𝑑1𝑖𝑗𝐿𝑃𝑖𝑗ℎ + ∑ ∑ ∑ 𝛾ℎ1

ℎ∈𝐻𝑗∈𝑀𝑖∈𝐶 𝑑𝑖𝑗𝑥𝑖𝑗ℎ   (3) 

 

Model Constraints 
Equation (4) ensures that each mill must be visited by one truck exactly once. Equation (5) guarantees 
the balance of incoming and outgoing arcs of each node. Equation (6) states that a maximum of one 
truck can transport biomass from a mill to a collection facility. Equation (7) asserts no path between the 
same node, while Equation (8) ensures no connection between collection facilities. Equation (9) implies 
that at least one mill is served if a collection facility is opened.  

 
∑ ∑ 𝑥𝑖𝑗ℎ = 1ℎ∈𝐻𝑗∈𝑀∪𝐶 ,    ∀𝑖𝜖𝑀        (4) 

∑ 𝑥𝑖𝑗ℎ𝑖∈𝑀∪𝐶 = ∑ 𝑥𝑗𝑖ℎ𝑖∈𝑀∪𝐶   ,     ∀𝑗𝜖𝑀 ∪ 𝐶, ∀ℎ ∈ 𝐻      (5) 

∑ ∑ 𝑥𝑖𝑗ℎ𝑗∈𝐶𝑖∈𝑀 ≤ 1  , ∀ℎ ∈ 𝐻        (6) 

𝑥𝑖𝑗ℎ = 0   ,   ∀𝑖, 𝑗 ∈ 𝑀 ∪ 𝐶,   ∀ℎ ∈ 𝐻, 𝑖 = 𝑗       (7) 

∑ 𝑥𝑖𝑗ℎℎ∈𝐻 = 0  ,    ∀𝑖, 𝑗 ∈ 𝐶        (8) 

∑ ∑ 𝑥𝑖𝑗ℎℎ∈𝐻𝑗∈𝑀 ≥ 𝑧𝑖   , ∀𝑖 ∈ 𝐶        (9) 

 

Equation (10) is the flow conservation constraint for each mill’s biomass amount. Equation (11) asserts 
that a truck’s load should be less than its capacity. Equation (12) ensures that the total pickup load 
entering a collection facility equals the total biomass pickup from the mills assigned to the corresponding 
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collection facility. Equations (13)-(14) are the bounding constraints for the pickup load. Equation (15) 
ensures that the pickup load of the truck is zero when dispatched from the collection facility. 

 

∑ ∑ 𝐿𝑃𝑖𝑗ℎℎ∈𝐻𝑗∈𝑀∪𝐶 − ∑ ∑ 𝐿𝑃𝑗𝑖ℎℎ∈𝐻𝑗∈𝑀∪𝐶 = 𝑞𝑖
𝑀, ∀𝑖 ∈ 𝑀     (10) 

𝐿𝑃𝑖𝑗ℎ ≤ 𝐶ℎ𝑥𝑖𝑗ℎ , ∀𝑖, 𝑗 ∈ 𝑀 ∪ 𝐶, 𝑖 ≠ 𝑗 , ∀ℎ ∈ 𝐻      (11) 

∑ ∑ 𝐿𝑃𝑗𝑖ℎℎ∈𝐻 = ∑ 𝛼𝑗𝑖𝑗∈𝑀𝑗∈𝑀 𝑞𝑗
𝑀 , ∀𝑖 ∈ 𝐶       (12) 

𝐿𝑃𝑖𝑗ℎ ≤ (𝐶ℎ − 𝑞𝑗
𝑀)𝑥𝑖𝑗ℎ , ∀𝑖 ∈ 𝑀 ∪ 𝐶, ∀𝑗 ∈ 𝑀, ∀ℎ ∈ 𝐻      (13) 

𝐿𝑃𝑖𝑗ℎ ≥ 𝑞𝑖
𝑀𝑥𝑖𝑗ℎ , ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝑀 ∪ 𝐶, ∀ℎ ∈ 𝐻      (14) 

∑ 𝐿𝑃𝑖𝑗ℎ𝑗∈𝑀 = 0 , ∀𝑖 ∈ 𝐶, ∀ℎ ∈ 𝐻        (15) 

 

Equation (16) ensures that the total amount of biomass collected from mills is less than the capacity of 
a collection facility. Equation (17) states that the arc (𝑖, 𝑗) is traversed if and only if a mill is assigned to 
a collection facility, while Equation (18) applies to the arc (𝑗, 𝑖).  Equation (19) forbids the route between 
two mills if they are assigned to two different collection facilities. Equations (20) and (21) refer to the 
amount of biomass that is allocated to the collection facility and the pretreated biomass (pellets) being 
produced. Equations (22)-(24) are the binary decision variables and Equations (25)-(27) ensure the non-
negativity of the decision variables. 

 

∑ 𝑞𝑖
𝑀

𝑖∈𝑀 𝛼𝑖𝑗 ≤ 𝑡𝑗
𝑐𝑧𝑗   , ∀𝑗 ∈ 𝐶        (16) 

∑ 𝑥𝑖𝑗ℎℎ∈𝐻 ≤ 𝛼𝑖𝑗   , ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐶       (17) 

∑ 𝑥𝑗𝑖ℎℎ∈𝐻 ≤ 𝛼𝑖𝑗   , ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐶       (18) 

∑ 𝑥𝑖𝑗ℎℎ∈𝐻 + 𝛼𝑖𝑘 + ∑ 𝛼𝑗𝑛𝑛∈𝐶,𝑛≠𝑘 ≤ 2 , ∀𝑖, 𝑗 ∈ 𝑀, ∀𝑘 ∈ 𝐶     (19) 

𝑞𝑗
𝑐 = ∑ ∑ 𝐿𝑃𝑖𝑗ℎℎ∈𝐻𝑖∈𝑀   , ∀𝑗 ∈ 𝐶        (20) 

𝑞𝑗
𝐶𝑃 = 𝜃𝑝𝑞𝑗

𝑐  , ∀𝑗 ∈ 𝐶         (21) 

𝑧𝑖 ∈ {0, 1}, ∀𝑖 ∈ 𝐶         (22) 

𝛼𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈ 𝑀, ∀𝑗 ∈ 𝐶        (23) 

𝑥𝑖𝑗ℎ ∈ {0, 1}, ∀𝑖, 𝑗 ∈ 𝑀 ∪ 𝐶, ∀ℎ ∈ 𝐻       (24) 

𝐿𝑃𝑖𝑗ℎ ≥ 0, ∀𝑖, 𝑗 ∈ 𝑀 ∪ 𝐶, ∀ℎ ∈ 𝐻        (25) 

𝑞𝑗
𝐶 ≥ 0, ∀𝑗 ∈ 𝐶         (26) 

𝑞𝑗
𝐶𝑃 ≥ 0, ∀𝑗 ∈ 𝐶         (27) 

 

Multi-Objective Optimization 
The objective functions (𝑓1, 𝑓2 and 𝑓3) of the model are combined into a single objective function using 
the weighted sum approach. Equation (28) denotes all objective functions could be composited into a 
single objective function to be minimized by summing all objective functions with weights (𝜔𝑖 , 𝑖 = 1, 2, 3). 
However, the dimension of each objective function is not necessarily the same. To solve this problem, 
this research optimizes each objective function individually to obtain its optimum values (𝑓𝑖

∗, 𝑖 = 1, 2, 3) 

and divide objective functions by their optimum values (Equation (29)). This study assumes that all 
objectives are equally important, which implies that all the weights are equal. 

 

𝑀𝑓 = ∑ 𝜔𝑖𝑓𝑖𝑖 ,     𝑖 = 1,2,3         (28) 

𝑀𝑓 = ∑
𝜔𝑖𝑓𝑖

𝑓𝑖
∗𝑖 ,     𝑖 = 1,2,3         (29) 

 

Results and Discussion 
 

This section describes the computational results obtained to assess the MOLRP model’s ability to solve 
the palm oil BSC problem. The computational experiments were performed on a test instance consisting 
of ten mills and four potential collection facilities to verify the efficiency of the proposed model in dealing 
with sustainable goals. The test instance was generated using data and information related to the palm 
oil industry and pretreatment operation. 

 

Data and Parameter Setting 
Table 5 shows the locations and capacities of palm oil mills where the processing capacities (𝑡𝑖

𝑀) are 

taken from Lam et al. [68]. Table 6 lists information and parameters relevant to biomass. For every metric 
ton of FFB being processed, 0.234 metric tons of EFB is produced [68], this is defined as the biomass 

generation rate (𝜌𝐺). By assuming 16 working hours ( ) at each mill, the quantity of EFB available at 
each mill can be calculated by Equation (30). In current practice, the palm oil industry uses EFB for 
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mulching and co-compositing. Since this study will utilize the EFB for biofuel conversion, this research 

assumes that rate of EFB used for mulching and co-compositing (𝜌𝑀𝑂) will change to 0.9 such that it will 
least impact the current practice in palm oil industry. Then, the remaining portion of EFB would be 

separated and sieved to produce WSF with a conversion rate (𝜃𝑆). Equation (31) states the amount of 
pre-processed biomass (WSF) that is available at each mill. The WSF will then be transported to the 

collection facility for pretreatment at a pelletizing rate (𝜃𝑃). 

 

𝑞𝑖
𝐺 =  𝑡𝑖

𝑀𝜌𝐺𝑤, ∀𝑖 ∈ 𝑀           (30) 

𝑞𝑖
𝑀 = 𝜃𝑆(1 − 𝜌𝑀𝑂)𝑞𝑖

𝐺 ,    ∀𝑖 ∈ 𝑀           (31) 

 

Table 5. The locations and capacities of palm oil mills 

 

Mill Cartesian coordinates   
Processing capacity (𝒕𝒊

𝑴) (metric ton FFB/hour) 

Lam et al. [68] 

M1 (25, 100) 80 

M2 (60, 50) 90 

M3 (100, 55) 90 

M4 (90, 195) 40 

M5 (115, 185) 100 

M6 (160, 130) 100 

M7 (225, 175) 65 

M8 (260, 185) 80 

M9 (255, 100) 90 

M10 (305, 215) 100 

 

Table 6. Parameters for biomass 

 

Parameter Value Reference 

Biomass generation rate (𝝆𝑮) 0.234 EFB/FFB  Lam et al. [68] 

Rate of the biomass used for mulching and co-compositing (𝝆𝑴𝑶) 0.9 assumption 

Conversion rate for separating and sieving (𝜽𝑺) 0.24 WSF/EFB  Lam et al. [68] 

Conversion rate for pelletizing (𝜽𝑷)                  0.33 pellets/WSF Lam et al. [68] 

 

 

Table 7 reports the annual investment cost for a collection facility with a capacity of 300,000 metric 
tons/year. This information will serve as the base value for adjusting the investment cost. This study 
designed all the potential collection facilities equipped with pelletizing technology of 15,000 metric 

tons/year (Table 8). Equation (32) calculates the daily pretreatment capacity (𝑡𝑖
𝐶)with an assumption of 

300 working days. Equation (33) is an equation for adjusting the cost from one known (base) capacity to 
another [69], and the scale factor for a pelletizing facility is 0.6 [70]. Equation (34) describes the 

equivalent daily investment cost (𝑓𝑖
𝐸𝐶) for the collection facility. Table 9 shows data for various potential 

collection sites and their population densities. 

 

𝐷𝑎𝑖𝑙𝑦 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 =
𝑎𝑛𝑛𝑢𝑎𝑙 𝑝𝑟𝑒𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠
     (32) 

𝑐𝑜𝑠𝑡𝑎

𝑐𝑜𝑠𝑡𝑏𝑎𝑠𝑒
= (

𝑠𝑖𝑧𝑒𝑎

𝑠𝑖𝑧𝑒𝑏𝑎𝑠𝑒
)

𝑆𝑐𝑎𝑙𝑒 𝑓𝑎𝑐𝑡𝑜𝑟
         (33) 

𝐸𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑑𝑎𝑖𝑙𝑦 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 =
𝑎𝑛𝑛𝑢𝑎𝑙 𝑖𝑛𝑣𝑒𝑠𝑡𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦𝑠
       (34) 
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Table 7. The annual investment cost for a collection facility equipped with pelletizing technology [71] 

 

Parameter Size (base) 

Pretreatment capacity 300,000 metric ton/year 

Annual investment cost 3,476,219 USD /year 

 

Table 8. Parameters for the collection facilities 

 

Parameter Value Reference/Note 

Pretreatment capacity 15,000 metric tons/year Razm et al. [72] 

Daily pretreatment capacity (𝒕𝒊
𝑪) 50 metric tons/day Obtained using (32) 

Unit operating cost (𝒇𝒊
𝑷𝑪)  

USD 40 /metric ton 
MYR 176/metric ton* 

Razm et al. [72] 
Currency conversion 

Annual investment cost USD 576,088.40 Obtained using (33) 

Equivalent daily investment cost (𝒇𝒊
𝑬𝑪) 

USD 1,920.29 
MYR 8,449.28* 

Obtained using (34) 
Currency conversion 

 

Table 9. The potential collection facilities with their respective population densities 

 

Collection facility Cartesian coordinates Population 

C11 (90, 125) 9085 

C12 (140, 90) 4312 

C13 (160, 245) 5403 

C14 (300, 150) 6042 

 

 

Table 10 denotes data and parameters relevant to trucks used in the SC. The trucks in this LRP model 
are homogenous, which means all have the same capacity (𝑐ℎ). Equation (35) denotes the number of 

trucks that exist in the palm oil BSC where the transportation cost (𝑣ℎ) could be calculated using Equation 

(36). The CO2 emission rate (𝛾ℎ1) for a 25 metric-ton truck is 0.7228 kg/km [73]. According to World 

Resource Institute and World Business Council for Sustainable Development, the emission rate (𝛾ℎ2) for 
a truck size over 17 metric tons with loading is 0.20027 kg/metric ton-km [74].  

 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑢𝑐𝑘𝑠 =  2 ⌈
∑ 𝑞𝑖

𝑀
𝑖∈𝑀

𝑐ℎ
⌉        (35) 

𝑣ℎ = (𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛)(𝑓𝑢𝑒𝑙 𝑝𝑟𝑖𝑐𝑒)        (36) 

 

Table 10. Parameters for the trucks 

 

Parameter Value Reference 

Capacity (𝒄𝒉) 25 metric tons How et al. [73] 

Fuel consumption 0.278 L/km How et al. [73] 

Fuel price RM2.15 /L 
Official Portal of Ministry of 

Finance Malaysia [75] 

CO2 emission rate over every kilometer (𝜸𝒉𝟏) 0.7228 kg/km How et al. [73] 

CO2 emission rate for the truck with loading over every  

kilometer (𝜸𝒉𝟐) 
0.20027 kg/metric ton-km Greenhouse gas protocol [74] 

 

 
 
 



 

10.11113/mjfas.v20n2.3085 258 

Yeng et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 20 (2024) 247-265 

Result Analysis 
This study coded the mathematical model in the General Algebraic Modeling System (GAMS) and solved 
it using the CPLEX optimization solver. First, the study conducted numerical experiments by optimizing 
each objective function individually to test how the model reacts to different sustainable goals and 

determine their optimum values. Figure 3 shows that the BSC attempts to minimize the total cost (𝑓1) 
should open collection facilities C11 and C14 and have four trucks in the network. Accordingly, C11 and 
C14 will be allocated 44.928 metric tons and 30.102 metric tons of biomass, producing 14.826 metric 
tons and 9.934 metric tons of pellets, respectively.  

 

 
Figure 3. Graphical representation of optimal solutions optimizing the first objective function 

 

 

Figure 4 illustrates that the collection facilities C12 and C13 are the optimal locations when the model 
attempts to minimize the surrounding population (𝑓2). This network requires eight trucks to transport the 
WSF, two trucks for C12 and six trucks for C13. C12 will receive 25.160 metric tons of WSF and produce 
8.303 metric tons of pellets. Since C13 receives 49.870 metric tons of WSF, its pellet production is about 
twice that of C12.  

 

 
Figure 4. Graphical representation of optimal solutions optimizing the second objective function 
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When the model attempts to minimize total CO2 emissions (𝑓3), the number of collection facilities 
increases to three, which are C11, C12, and C14 (Figure 5). As compared to the other objective functions 

(Figures 3 and 4), optimizing 𝑓3 will provide the optimal solutions that minimize each truck’s travel 
distance and loading (Figure 5 and Table 11). C11, C12, and C14 produce 6.524 metric tons, 8.303 
metric tons, and 9.934 metric tons of pellets, respectively. 

 

 
Figure 5. Graphical representation of optimal solutions optimizing the third objective function 

 

 

By analyzing the results presented in Table 12, it can be concluded that the proposed objective functions 
are conflicting with one another. It is impossible to improve one objective without degrading the other 
objectives. Under the objective function of the total cost (𝑓1) minimization, the BSC needs to spend 
RM30610.524/day. But this means there will be 15127 people affected by this decision, and 1862.201 

kg of CO2 is emitted daily. Although optimizing the 𝑓2 individually could reduce the total affected 
population to 9715 people, this decision will lead to the highest amount of CO2 emissions, 3478.453 kg 
CO2/day. The expenses will also be 3.27 % higher than the network design under total cost minimization. 
A similar situation is encountered when the model attempts to reduce total CO2 emissions (𝑓3). Even 
though total CO2 emissions could be reduced to 1359.636 kg CO2/day, this network design might be 
unfavorable for economic and social dimensions. This design will cost a total cost of RM39154.981/day 
and affect a total of 19439 people. 

 

Next, this study investigates how the model adjusts the strategy of facility establishment and truck routing 
under multi-objective optimization. Figure 6 and Table 13 report the results of multi-objective 
optimization. When all objective functions are equally important, the optimal decision is to open collection 
facilities C12 and C14. This network design requires six routes to transport biomass. C12 and C14 will 
receive 44.928 metric tons and 30.102 metric tons of WSF, respectively. As a result, C12 and C14 will 
produce 14.826 metric tons and 9.934 metric tons of pellets. The optimum value for the composite 
objective is 3.222.  

 

The values of performance indices in Tables 12 and 13 also demonstrate the advantage of optimizing 
multi-objective functions simultaneously. Although the total cost needed is RM30722.001/day, it is only 
0.36% higher than the model optimized under total cost minimization individually. This increment of 
0.36% could be viewed as the price for having a network structure that considers the effect of negative 
social impact and CO2 emissions together. Similarly, this network structure affects a population of 10354 
people, slightly higher than the model optimized individually under total population minimization. 
Nonetheless, it is still better than optimizing the total cost and total CO2 separately, affecting 15127 
people and 19439 people, respectively. 

 

Likewise, the CO2 emissions of the network structure under multi-objective optimization (1567.424 kg 
CO2/day) are higher than optimizing total CO2 emissions alone (1359.636 kg CO2/day). This amount is 
lower than the emissions from the network structure optimizing the total cost and total population 
separately, emitting 1862.201 CO2/day and 3478.453 CO2/day, respectively. Retrieving the third 
objective function intends to capture the emissions of empty and loaded trucks, computation experiments 
under this goal will reduce the CO2 emissions caused by travel distance and truck loading. The network 
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structures for optimizing multi-objective functions and the third objective function (total CO2 emissions 
alone) will need six trucks and seven trucks, respectively. They are slightly better than the network 
structure under the total population minimization, which requires eight trucks. Nevertheless, the network 
structure considering cost minimization alone requires only four trucks since the relationship between 
CO2 and truck loading is not the concern of this goal. 

 

Table 11. The routes and loads of trucks for the different objective functions 

 

Optimize  Route Load 

𝒇𝟏 C11-M3-M2-M1-C11 23.363 

 C14-M10-C14 8.986 

 C14-M9-M7-M8-C14 21.116 

 C11-M4-M5-M6-C11 21.565 

𝒇𝟐 C13-M4-C13 3.594 

 C13-M3-M7-C13 13.928 

 C13-M2-C13 8.087 

 C13-M8-C13 7.189 

 C13-M9-C13 8.087 

 C12-M6-C12 8.986 

 C12-M1-M10-C12 16.174 

 C13-M5-C13 8.986 

𝒇𝟑 C14-M9-C14 8.087 

 C14-M7-M8-C14 13.029 

 C12-M6-C12 8.986 

 C11-M4-M5-C11 12.580 

 C12-M2-M3-C12 16.174 

 C11-M1-C11 7.189 

 C14-M10-C14 8.986 

𝑴𝒇 C12-M4-M5-C12 12.58 

 C14-M10-C14 8.986 

 C12-M1-M2-M3-C12 23.362 

 C14-M9-C14 8.087 

 C14-M7-M8-C14 13.029 

 C12-M6-C12 8.986 

 

Table 12. The values of performance measures when optimizing each objective function individually 

 

Optimize Total cost Total population Total CO2 emissions 

𝒇𝟏 30610.524 15127 1862.201 

𝒇𝟐 31611.707 9715 3478.453 

𝒇𝟑 39154.981 19439 1359.636 
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Notably, there are some compensations for BSC performances under multi-objective function 
optimization. It would be the remuneration for a supply chain that would like to address all the sustainable 
dimensions as these (economic, environmental, and social) goals are conflicting. It is undeniable that 
optimizing the objective functions individually will always provide the best result for each dimension. 
Certainly, the single economic objective function optimization will produce the result that the industry 
players favor. Nonetheless, the construction of the network should not neglect sustainable development 
in the long term, where all the decisions made in the BSC would shape the lives of present and future 
generations.  

 

Table 13. The performance indices for multi-objective optimization 

 

Optimize Composite Value Total cost Total population Total CO2 emissions 

𝑀𝑓 3.222 30722.001 10354 1567.424 

 

 
Figure 6. Graphical representation of optimal solutions optimizing the multi-objective functions 

 

 

Conclusions 
 

This paper investigates a sustainable palm oil BSC problem that simultaneously addresses locational 
and routing decisions. The main goal of this paper is to develop an effective BSC model that can handle 
the different needs of the BSC problem. The proposed LRP model has some important characteristics. 
The model is created to determine the best decisions for establishing collection facilities, allocating 
biomass, and vehicle routing. The pretreatment technology is also included in the proposed BSC network 
and quantified as an additional parameter. In addition, the suggested model is a multi-objective LRP 
model that attempts to address sustainability from all dimensions. The mowhodel optimizes economic 
performance through cost minimization. The model relates the CO2 emissions of empty and loaded 
trucks to the environmental performance of the BSC. Minimizing the total population affected by 
locational decisions is the measure of social sustainability.  

 

This research conducted numerical experiments to test how the model reacts under single and multi-
objective optimization. The results of the single objective optimization show that the proposed objective 
functions are conflicting with one another in nature. Optimizing each objective function individually will 
provide the best outcome for its dimension, but improving one objective without degrading the others is 
impossible. In multi-objective optimization, all the objectives are composited into a single objective by 
the weighted sum approach. Compared to the results of single objective optimizing at its dimension, the 
indicator values of the multi-objective model are degraded by 0.36%, 6.58%, and 15.28% in the 
economic, social, and environmental performances, respectively. The results demonstrate that the model 
will adjust the facility establishment, allocation, and truck routing strategy accordingly. 
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Comparatively, the result of multi-objective optimization shows some remuneration for BSC 
performances. This reimbursement of model performances is unavoidable as these goals are conflicting. 
Optimizing each objective function separately will always produce the best solution for each dimension. 
Undoubtedly, the result of single economic objective optimization will be preferable by industry players. 
Nevertheless, the sustainability of the BSC in the long term should not be overlooked since the decisions 
made influence the lives of current and future generations.  

 

This research has added novelties to the topics of interest in several ways. First, the developed model 
is workable with any BSC network that aims to optimize facility placement, resource allocation, and 
vehicle routing. Second, the model could be individually optimized for any stated objective function. It 
could also produce the best outcomes for scenarios that account for several sustainable goals, some of 
which might contradict one another. Moreover, this model set a framework for multi-objective 
optimization toward the sustainable development of the LRP model in BSC. By customizing the model 
to the operation in the BSC, this model differs from the general LRP model. 

 

The limitations of the current proposed model are as follows. First, the model only allows one truck to 
visit each mill and has a homogenous fleet of trucks. Second, all objective functions are equally 
important, which might not be realistic in the industry. Last but not least, this research does not consider 
the stochasticity of the BSC. Future lines of research may consider improving the limitations of this 
model. 
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