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Abstract Tuberculosis or known as TB is an airborne disease that exists in Malaysia caused by 

Mycobacterium Tuberculosis. Despite that, TB infection is curable with early diagnosis and treatment. 

The disease can be prevented through Bacillus Calmette-Guérin (BCG) vaccine, which is given among 

infants at birth. Numerous mathematical models on infectious diseases have been formulated in earlier 

studies since it is crucial to comprehend infectious disease transmission patterns and predict future 

outcomes. However, there is minimal study on the dynamics of TB transmission, particularly in 

Malaysia concerning immigration. Hence, this study aims to formulate a mathematical BCG-vaccinated, 

susceptible, exposed, infected, and recovered (BSEIR) model for TB infection in Malaysia by 

considering the immigration parameter. The model parameters are obtained from the literature and 

some with reported data in 2013 as initial value for the simulation using MAPLE software. The obtained 

results revealed that the basic reproduction number, 𝑅0 for the model is more than one. The graphical 

plot shows that the BSEIR model with immigration demonstrates a rise in TB-infected cases. The best 

strategy to lessen the number of infected individuals in Malaysia is by increasing the transmission rate 

and recovery rate. Additionally, the local stability analysis on the diseases-free equilibrium point and 

sensitivity analysis of its parameter is also provided and discussed. To conclude, a proper screening 

test should be mandated by the authorities before permitting new immigrants and refugees into 

Malaysia. 
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Introduction 
 

Tuberculosis (TB) is one of the global leading causes of death where a total of 1.5 million people dying 
from the illness in 2020. The disease exists throughout the world including Malaysia where the South-
East region had the highest number of new TB cases with 43% of all new cases, followed by the African 
region which had 25% of new cases, and the Western Pacific with 18% of cases in 2020. The reported 
cases of TB in Malaysia between 1990 and 2020 are depicted in Figure 1. According to the data, the 
trend of new TB incidence cases was rising and slightly decrease in 2020. Meanwhile, World Health 
Organization stated that the annual number of TB mortality dropped by 45% nationwide between 2000 
and 2019 [1]. However, the 2030 Sustainable Development Goals (SDGs) target of 90% mortality 
reduction from the 2015 baseline and extinction of the TB endemic has yet to be met. 

 

The disease can be categorized into two types, namely active TB, and latent TB, which is not contagious 
to others but possibly active among people with weakened immune systems. Approximately 10% of 
patients with latent TB would be responsive during half of the first year and the balance over their lifetime, 
primarily by reactivation of the dormant tubercle bacilli obtained from original infection or less commonly 
reinfection [2]. The germs can be transmitted through the lungs or other parts of the body among people 
with active TB where its complications might develop over weeks or months if the immune system fails 
to suppress the infection. TB usually affects the lungs, but any part of the body like the abdomen, glands, 
bones, and nervous system. Coughing up mucus or blood at times, chest pains, weakness, loss of 
appetite or unintentional weight loss, fever, and night sweats are all common signs of active lung TB [3]. 
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Figure 1. New Incidence Cases of Tuberculosis in Malaysia over years [21] 

 

 

Bacillus Calmette-Guérin vaccine or known as BCG is utilized in countries with a high prevalence of TB 
including Malaysia. The national BCG immunization program in Malaysia was implemented around 1962 
where it is administered to infants at birth. Initially in 2016 up until now, BCG revaccination is offered to 
children without BCG scar or a history of BCG vaccination. About 98.48% of infants received the BCG 
vaccine in Malaysia by 2019 [4]. However, BCG does not provide complete protection against TB 
infection, but TB illness is curable if early diagnosis and treatment are practiced. Thus, mathematical 
modelling of TB vaccination has gained more importance to make accurate predictions. There are 
numerous extended vaccination mathematical models on infectious disease have been published in the 
literature. Nasution et al. [5] suggested SIR model with a vaccination compartment to investigate the 
effectiveness of vaccines in lessening TB transmission. Next, Liu et al. [6] proposed a new vaccination 
strategy that is the combination of constant vaccination and pulse vaccination through BSEIR model. 
Ucakan et al. [7] then investigated the TB dynamics in Turkey by comparing three models: SIR, SEIR 
and BSEIR models. Nkamba et al. [8] extended TB transmission through SV-ELI model which consists 
susceptible, vaccinated, early latent, late latent and infectious classes, concerning both effective contact 
and vaccination rate. The study proved that immunization coverage did not fully prevent TB since the 
effective contact rate has a major impact on the spread of the disease. 

 

Immigration activities have a major effect on the evolution of healthcare systems, economic and social 
problems globally including in Malaysia. Malaysia as one of the leading economies in Southeast Asia 
had attracted laborers from neighbouring countries like Bangladesh, Nepal, Myanmar, and Cambodia to 
work with around 1.24 million Indonesians were the main contributor of immigrants [9]. The immigrants 
mostly work in manufacturing, plantation, agriculture, services, and domestic helpers’ industries. Hence, 
the economic growth in this country was undeniably rising due to their contributions but the possibility 
that immigrant laborers may carry the disease is more alarming. Furthermore, Malaysia has accepted 
about 130 thousand refugees alongside the immigrants in 2020 and the refugee population was steadily 
rising over the years compared to about 90 thousand back then in 2011 [10]. Wong and Lee [1] studied 
the occurrence and health risk of TB and latent TB infection (LTBI) among Malaysian refugee children 
in three learning centres. The finding discovered that the occurrence of latent TB infection within Malaysia 
refugee children is significantly greater, with nearly one (12.8%) in every eight refugee children having 
LTBI compared to Germany and the United States where the prevalence is just 6%. Meanwhile, Eiset 
and Wejse [11] found that the most common infectious diseases among refugee and asylum seeker 
populations in Europe are latent TB (9%-45%), active TB up to 11% and hepatitis B with 12%. 

 

A mathematical model is applied in the medical field to assist authorities in taking the best precautionary 
measures and preventing the spread of infection diseases. Furthermore, the mathematical model offers 
essential information in investigating the intensity of disease intervention and estimating the likelihood 
and severity of the disease [12]. Kermack and McKendrick [13] were among the first who introduced the 
compartment dynamic model in 1927. They employ differential equations to study the infectious disease 
spread rule, in which the entire population comprises three compartments: Susceptible (S), infected (I) 
and recovered (R) called as the SIR-type model. However, the classic SIR was considered impractical 
since the model overlooks other control strategies like vaccination, treatment, quarantine and the 
influence of age or gender in explaining the disease dynamics [7]. The classic SIR model has been 
widely implemented and modified for several infectious diseases such as measles [14], dengue [15] and 
tuberculosis [7]. 
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Hence, we would like to extend an infectious disease BSEIR model by [6] which considers the BCG 
vaccination compartment and the immigrant rate as a parameter. Since Malaysia has relied on the BCG 
vaccine for a relatively long time to prevent TB infection, it became one of the essential factors to 
consider, which is why the BSEIR model by was chosen as opposed to other models. According to [16], 
immigrants could be the epidemiological creator of an epidemic crisis since they are possible to transmit 
the infection from their home countries. Furthermore, the refugees are categorised as a high-risk TB 
population since they were not subjected to a thorough medical screening upon their arrival in Malaysia 
[1]. Thus, this study aims to propose a BSEIR model with an immigration model, analyses the influence 
of immigration activities on TB transmission and determine the disease-free equilibrium state for the 
model. Moreover, based on our review of literature, such a comprehensive study has still not been 
initiated for TB in Malaysia thus far.  

 

The structure of this study is organized as follows: the modified BSEIR model for describing the TB 
dynamics and the estimation of model parameters is introduced. Then, the stability analysis of disease-
free equilibrium and the sensitivity analysis of the parameters of the model is discussed. Next, the 
numerical simulation for the model is presented. Finally, the conclusion is summarized in the last section. 

 
Materials and Methods 
 
Model Formulation 

In this section, we present the proposed mathematical model of TB infection. To formulate the BSEIR 
model with immigration, firstly, we refer the modified mathematical model by Liu et al. [9]. The population 
is assumed to be closed which divided into five compartments, BCG vaccinated (𝐵), susceptible (𝑆), 

exposed (𝐸), infected (𝐼) and recovered (𝑅). However, there is no migrant population involved in the 
proposed model. Thus, the model is represented as,  

 
𝑑𝐵(𝑡)

𝑑𝑡
= 𝛼𝑝 − 𝑘𝐵(𝑡) 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝑘𝐵(𝑡) + 𝛼(1 − 𝑝) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− 𝜇𝑆(𝑡) 

𝑑𝐸(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁
− (𝜖 + 𝜇)𝐸(𝑡)                                                               (1) 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝜖𝐸(𝑡) − (𝛾 + 𝜇 + 𝑑)𝐼(𝑡) 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡) 

 

with subject to 𝐵(0)  ≥  0,   𝑆(0)  ≥  0,   𝐸(0)  ≥  0,   𝐼(0)  ≥  0,   𝑅(0)  ≥  0,  and all the parameters have 

positive values. The total population, 𝑁 =  𝐵(𝑡)  +  𝑆(𝑡)  +  𝐸(𝑡)  +  𝐼(𝑡)  +  𝑅(𝑡) where the natural death 
rate and birth rate are not regarded as being equal. 

 

In comparison to the standard SIR model, the BSEIR model incorporates the BCG vaccination class 
which denoted as B, signifies the number of new-borns who received BCG vaccine. They will not get 
infected even if they come into contact with infected individual since they are immune to the disease 
during this BCG protection period. Hence, the percentage of successfully immunised new-borns is 
indicated by the parameter 𝑝 (0 < 𝑝 < 1). Next, those who are susceptible and at risk of contracting TB 

infection are depicted as 𝑆 class. While exposed class denoted as 𝐸, refers to those who are infected 
but show not outward signs of illness.   

 

Furthermore, the natural death rate in class 𝐵 is disregarded since children in Malaysia die of natural 
causes at a rate of about 3.3 [17] and the BCG vaccine is only expected to prevent TB transmission for 
10 to 15 years. Since the BCG vaccine has a minimal effect, so the immunised individuals revert to the 
susceptible class at a rate of 𝑘. These variables are functions of time where each parameter will be 
treated as a nonnegative constant.  

 

Further we look at modified SEIR model without vaccination compartment proposed by Widyaningsih et 
al. [18] which the study includes an immigration parameter where the equation is expressed as, 

 
𝑑𝑆

𝑑𝑡
= 𝜇𝑁 −

𝛽𝑆𝐼

𝑁
− (𝜇 + 𝛼)𝑆 
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𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝜖 + 𝜇 + 𝛼)𝐸                                                                (2) 

𝑑𝐼

𝑑𝑡
= 𝜖𝐸 + 𝛼𝑁 − (𝛾 + 𝜇 + 𝛼)𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − (𝜇 + 𝛼)𝑅 

 

with subject to  𝑆(0) ≥ 0,   𝐸(0) ≥ 0,   𝐼 = (0) ≥ 0,   𝑅(0) ≥ 0, and these parameters have nonnegative 
values. 

 

Thus, we develop a TB transmission model using the BSEIR model by considering the immigration 
impact. The proposed model is a modified model from equation (1) and equation (2).  We assume that 
there are no immunizations for new immigrants and that they are all infected in this model.  Hence, the 
number of infected individual rises by as much as 𝑁 if 𝛼 is the immigrant rate. Since we assume that the 

population is constant, the rate of natural death at each class is assumed to be 𝜇 change to be 𝜇 + 𝛼. 
The modified BSEIR model employed in this study can be seen in the following expression, 

 
𝑑𝐵

𝑑𝑡
= 𝛬𝑝 − 𝑘𝐵  

𝑑𝑆

𝑑𝑡
= 𝑘𝐵 + 𝛬(1 − 𝑝) −

𝛽𝑆𝐼

𝑁
− (𝜇 + 𝛼)𝑆 

𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝜖 + 𝜇 + 𝛼)𝐸                                                               (3) 

𝑑𝐼

𝑑𝑡
= 𝜖𝐸 + 𝛼𝑁 − (𝛾 + 𝜇 + 𝑑 + 𝛼)𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − (𝜇 + 𝛼)𝑅 

 

with subject to 

𝐵(0) ≥ 0,   𝑆(0) ≥ 0,   𝐸(0) ≥ 0,   𝐼 = (0) ≥ 0,   𝑅(0) ≥ 0, 
 

where all the parameters have nonnegative values. The number of new TB infections per unit time, the 
disease mortality rate and the rate of natural death are denoted by parameter 𝛽, 𝑑 and 𝜇 respectively. 

The parameter 𝛼 represents immigrant rate. The progression rate from exposed to infected class is 

indicated as 𝜖 while the infected individuals are recovered at the rate  𝛾. The schematic diagram of model 
(3) is depicted in Figure 2, and the description of the variables and parameters are given in Table 1 and 
Table 2, respectively.  

 

 
Figure 2. Schematic flow diagram of BSEIR model 

 

 

Estimation of Model Parameters 
In this subsection, we estimate the initial model parameters based on the actual TB incidence data in 
Malaysia obtained from World Health Organization (WHO) in 2013. Some of the parameters obtained 
from the literature [7], as presented in Table 2 while others were estimated. The natural death rate 𝜇 is 

approximately estimated as 𝜇 =
166,507

32,657,300
=  0.0051 , where 166,507 is the number of death individuals 

and 32,657,300 is the population of Malaysia as reported by Department of Statistics Malaysia in 2020. 

S(t) E(t) I(t) R(t) 

𝛬𝑝 𝑘 

𝜇 + 𝛼 

𝛬(1 − 𝑝) 

𝛼 

𝜇 

𝜇 + 𝑑 + 𝛼 

𝛼 

𝜇 

𝛽 𝜖 

𝛼N 

𝛾 

B(t) 



  

10.11113/mjfas.v19n6.3063  

1180 

1180 

Tamhaji et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 1176-1189 

Using the same total population, we assumed that the recruitment rate 𝛬 =𝑏 × 𝑁 [7], where 𝑏 =
472,608

32,657,300
=

0.0145 is the natural birth rate [17], so that 𝛬 = 473,531 per year. Besides, the estimated immigrant rate 

for 2020 is roughly calculated as follows 𝛼 =  
3,476,560

32,657,300
= 0.1065. The basic reproduction number is 

calculated using equation (6) with the parameter values given in Table 2.  

 

Table 1. Description of variables of model (3) and Initial Values 

 

Variable Description Value Source 

N Total population 32657300 [17] 

𝐵(0)  Initial number of BCG vaccinated  463156  [17] 

𝑆(0)  Initial number of susceptible   30387923  [17] 

𝐸(0)  Initial number of exposed   11709  Estimated  

𝐼(0)  Initial number of infected   23417  [17] 

𝑅(0)  Initial number of recovered   18747  [17] 

 

Table 2. Description of parameters of model (3) and its value 

 

Parameter Description Value Source 

𝑏  Natural birth rate  0.0145  Estimated  

𝛬  Recruitment rate  473531 𝑦𝑒𝑎𝑟−1  Estimated  

𝑝  Fraction of the successfully vaccinated   0.948  [7]  

𝑘  Rate of waning immunity  0.054  [7] 

𝛽  Transmission rate  0.955  [7] 

𝜇  Natural death rate  0.0051  [7] 

𝜖  Latent period  1.435  [7] 

𝑑  Disease-induced death rate   0.03  [7]    

𝛾  Recovery rate  0.935  [7] 

α  Immigrant rate  0.1065  [17] 

𝑅0  Reproduction number  1.955  Calculated  

 

 

Basic Reproduction Number, 𝑹𝟎 
A mathematical expression, 𝑅0 or the basic reproduction number explains the dynamic of disease 
transmission. It describes the average number of individuals who are most likely to catch contagious 
illness from a single infected person. Thus, by examining  𝑅0, one can verify how widely a disease is 

spread in the population. If 𝑅0 less than 1, each existing infection results in fewer than one new infection, 

where the illness will progressively deteriorate and eventually die out. But if 𝑅0 is greater than 1, each 
existing infection spreads to at least one additional individual resulting in an epidemic. Hence, we 
consider the generation matrix method to evaluate  𝑅0. The method was first proposed by [20] and 
modified by [21]. 

 

To evaluate the basic reproduction number 𝑅0 using a next generation matrix method [21], suppose there 

are 𝑛 disease compartments in the system (3). Let 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛) where 𝑖 = 1,2,… , 𝑛 represent 

individuals in 𝑖𝑡ℎ infected class. Next, the rate of occurrence of new infections in 𝑖𝑡ℎ class is denoted by 

𝐹𝑖(𝑥) and the transfer rate of individuals into 𝑖𝑡ℎ class is denoted by 𝑉𝑖(𝑥). The next step is to linearize 

the 𝑖𝑡ℎ infected class with respect to the disease-free equilibrium to determine the rate of disease spread 

within the population. Hence, using the partial derivative of 𝐹𝑖(𝑥) and 𝑉𝑖(𝑥), the generation matrix is 
calculated as follows: 
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𝐹𝑖(𝑥) = [
𝜕𝐹𝑖(𝑥0)

𝜕𝑥𝑗
]      and      𝑉𝑖(𝑥) = [

𝜕𝑉𝑖(𝑥0)

𝜕𝑥𝑗
] , 𝑖 = 1,2, … , 𝑛                                  (4) 

where 𝑥0 is the disease-free equilibrium point. The basic reproduction number 𝑅0 will be found through 

the dominant eigenvalue of matrix 𝐹𝑉−1. Note that for system (3) we have two classes that spread the 

infection which are 𝐸 and 𝐼 given as: 
𝑑𝐸

𝑑𝑡
=

𝛽𝑆𝐼

𝑁
− (𝜖 + 𝜇 + 𝛼)𝐸                                                                                       (5) 

𝑑𝐼

𝑑𝑡
= 𝜖𝐸 + 𝛼𝑁 − (𝛾 + 𝜇 + 𝑑 + 𝛼)𝐼                    

From (6), we obtained 

𝐹1 =
𝛽𝑆𝐼

𝑁
, 𝐹2 = 0, 𝑉1 = −(𝜖 + 𝜇 + 𝛼)𝐸, 𝑉2 = 𝜖𝐸 + 𝛼𝑁 − (𝛾 + 𝜇 + 𝑑 + 𝛼)𝐼, where 

𝐹 = [

𝜕(𝐹1)

𝜕𝐸

𝜕(𝐹1)

𝜕𝐼
𝜕(𝐹2)

𝜕𝐸

𝜕(𝐹2)

𝜕𝐼

] = [0
𝛽𝑆

𝑁
0 0

] = [0 𝛽𝑆
𝑘(𝜇 + 𝛼)

𝛬(𝑝(𝜇 + 𝛼) + 𝑘)
0 0

] 

and 

𝑉 = [

𝜕(𝑉1)

𝜕𝐸

𝜕(𝑉1)

𝜕𝐼
𝜕(𝑉2)

𝜕𝐸

𝜕(𝑉2)

𝜕𝐼

] = [
𝜖 + 𝜇 + 𝛼 0

−𝜖 𝛾 + 𝜇 + 𝑑 + 𝛼
] 

 

Then, the matrices F and V are evaluated at the equilibrium point 𝑥0, are given respectively, as follows: 

𝐹 = [0 𝛽(
𝛬

𝜇 + 𝛼
)

𝑘(𝜇 + 𝛼)

𝛬(𝑝(𝜇 + 𝛼) + 𝑘)
0 0

] = [0
𝛽𝑘

𝑝(𝜇 + 𝛼) + 𝑘
0 0

] 

and 

𝑉 = [
𝜖 + 𝜇 + 𝛼 0

−𝜖 𝛾 + 𝜇 + 𝑑 + 𝛼
] 

The inverse of matrix 𝑉 is given by: 

𝑉−1 =

[
 
 
 
 

1

𝜖 + 𝜇 + 𝛼
0

𝜖

(𝜖 + 𝜇 + 𝛼)(𝛾 + 𝜇 + 𝑑 + 𝛼)

1

𝛾 + 𝜇 + 𝑑 + 𝛼]
 
 
 
 

 

So, the product of 𝐹𝑉−1 is obtained as: 

𝐹𝑉−1 = [

𝛽𝑘𝜖

(𝜇 + 𝛼)(𝜖 + 𝜇 + 𝛼)(𝛾 + 𝜇 + 𝑑 + 𝛼)

𝛽𝑘

(𝜇 + 𝛼)(𝜖 + 𝜇 + 𝛼)(𝛾 + 𝜇 + 𝑑 + 𝛼)  

0 0

] 

The 𝑅0 is defined by the spectral radius 𝜌, which is the dominant eigenvalue in magnitude of the matrix 

𝐹𝑉−1 

𝜌(𝐹𝑉−1) = [

𝛽𝑘𝜖

(𝜇 + 𝛼)(𝜖 + 𝜇 + 𝛼)(𝛾 + 𝜇 + 𝑑 + 𝛼)
− 𝜆

𝛽𝑘

(𝜇 + 𝛼)(𝜖 + 𝜇 + 𝛼)(𝛾 + 𝜇 + 𝑑 + 𝛼)  

0 −𝜆

] 

 

This implies that either 𝜆 = 0 or 𝜆 =
𝛽𝑘𝜖

(𝑝 (𝜇+𝛼)+𝑘)(𝜖+𝜇+𝛼)(𝛾+𝜇+𝑑+𝛼)
. Therefore, 𝑅0 of system (3) can be written 

as  

𝑅0 =
𝛽𝑘𝜖

(𝑝 (𝜇 + 𝛼) + 𝑘)(𝜖 + 𝜇 + 𝛼)(𝛾 + 𝜇 + 𝑑 + 𝛼)
                                    (6) 

 
Stability Analysis of Disease-free Equilibrium 
In this subsection, the local stability of the disease-free equilibrium is examined through Jacobian matrix. 
A state of no infection in the population is known as disease-free equilibrium. Hence, all the infected 
class will be zero and only susceptible individuals exist in the population [19]. The disease-free 
equilibrium point of the system (3) are determined by equated the derivatives to zero, 

 
𝑑𝐵

𝑑𝑡
=

𝑑𝑆

𝑑𝑡
=

𝑑𝐸

𝑑𝑡
=

𝑑𝐼

𝑑𝑡
=

𝑑𝑅

𝑑𝑡
= 0 

This leads to 
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𝛬𝑝 − 𝑘𝐵 = 0                                                                 (7) 
𝑘𝐵 + 𝛬(1 − 𝑝) − 𝛽𝑆𝐼 − (𝜇 + 𝛼)𝑆 = 0                                                           (8) 

    𝛽𝑆𝐼 − (𝜖 + 𝜇 + 𝛼)𝐸 = 0                                                           (9) 
𝜖𝐸 + 𝛼 − (𝛾 + 𝜇 + 𝑑 + 𝛼)𝐼 = 0                                                           (10) 

   𝛾𝐼 − (𝜇 + 𝛼)𝑅 = 0                                                                 (11) 
from (4), we get 

      𝐵 =
𝛬𝑝

𝑘
                                                                     (12) 

while adding (5) and (6) by putting (9), we get 

      𝑆 =
𝛬

𝜇 + 𝛼
                                                                (13) 

from (6) we obtain 

    𝐸 =
𝛽𝑆𝐼

  𝜖 + 𝜇 + 𝛼
                                                           (14) 

 

from (8) we get that 

      𝑅 =
 𝛾𝐼

𝜇 + 𝛼
                                                               (15) 

 

Consequently, for 𝐼 = 0, a disease-free equilibrium of the model exists at: 

𝑥0 = (𝐵∗, 𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) = (
𝛬𝑝

𝑘
,

𝛬

𝜇 + 𝛼
, 0, 0, 0)                                (16) 

Theorem 2.1. The disease-free equilibrium, 𝑥0 of the system (3) is locally asymptotically stable when 

 𝑅0 < 1, otherwise unstable. 

 

Proof. It is sufficient to show that all eigenvalues of the Jacobian matrix of the system (3), 
evaluated at 𝑥0, have negative real parts, in order to examine the local stability of 𝑥0. The Jacobian matrix 
of the system (3) is calculated as follows:  

 

[
 
 
 
 
 
 
 
 
 
 
 
𝑑𝐵

𝑑𝑡

𝑑𝑆

𝑑𝑡

𝑑𝐸

𝑑𝑡

𝑑𝐼

𝑑𝑡

𝑑𝑅

𝑑𝑡 ]
 
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 

𝛬𝑝 − 𝑘𝐵

𝑘𝐵 + 𝛬(1 − 𝑝) − 𝛽𝑆𝐼 − (𝜇 + 𝛼)𝑆

  𝛽𝑆𝐼 − (𝜖 + 𝜇 + 𝛼)𝐸

𝜖𝐸 + 𝛼 − (𝛾 + 𝜇 + 𝑑 + 𝛼)𝐼

   𝛾𝐼 − (𝜇 + 𝛼)𝑅 ]
 
 
 
 
 
 

 , 

 

The partial derivatives of each component (B, S, E, I, R) with respect to each other component in 
represents as follows: 

𝐽(𝑥0) =

[
 
 
 
 
 
 
 
 
 
 
𝜕𝐵

𝜕𝐵

𝜕𝐵

𝜕𝑆

𝜕𝐵

𝜕𝐸

𝜕𝐵

𝜕𝐼

𝜕𝐵

𝜕𝑅
𝜕𝑆

𝜕𝐵

𝜕𝑆

𝜕𝑆

𝜕𝑆

𝜕𝐸

𝜕𝑆

𝜕𝐼

𝜕𝑆

𝜕𝑅
𝜕𝐸

𝜕𝐵

𝜕𝐸

𝜕𝑆

𝜕𝐸

𝜕𝐸

𝜕𝐸

𝜕𝐼

𝜕𝐸

𝜕𝑅
𝜕𝐼

𝜕𝐵

𝜕𝐼

𝜕𝑆

𝜕𝐼

𝜕𝐸

𝜕𝐼

𝜕𝐼

𝜕𝐼

𝜕𝑅
𝜕𝑅

𝜕𝐵

𝜕𝑅

𝜕𝑆

𝜕𝑅

𝜕𝐸

𝜕𝑅

𝜕𝐼

𝜕𝑅

𝜕𝑅]
 
 
 
 
 
 
 
 
 
 

                                                       (17) 

 

and evaluated equilibrium points to decide on the local stability which is directly determined by the 
eigenvalues λ as follows: 

  
|𝐽(𝑥0) − 𝜆𝐼| = 0                                                                  (18) 
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𝐽(𝑥0) =

[
 
 
 
 
 
 
 
 
 
 
−𝑘 0 0 0 0

𝑘 −
𝛽𝐼

𝑁
− (𝜇 + 𝛼) 0 −

𝛽𝑆

𝑁
0

0
𝛽𝐼

𝑁
−(𝜖 + 𝜇 + 𝛼)

𝛽𝑆

𝑁
0

0 0 𝜖 −(𝛾 + 𝜇 + 𝑑 + 𝛼) 0

0 0 0 𝛾 −(𝜇 + 𝛼)]
 
 
 
 
 
 
 
 
 
 

 

 

By substituting the DFE point, (𝐵∗, 𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗) = (
𝛬𝑝

𝑘
,

𝛬

𝜇+𝛼
, 0, 0, 0) into 𝐽(𝑥0), the Jacobian matrix 𝐽(𝑥0) 

for system (3) is obtained as: 

𝐽(𝑥0) =

[
 
 
 
 
 
 
 
 
 
 
 
 
−𝑘 0 0 0 0

𝑘 −(𝜇 + 𝛼) 0 −
𝛽𝛬

𝑝 (𝜇 + 𝛼) + 𝑘
0

0 0 −(𝜖 + 𝜇 + 𝛼)
𝛽𝛬

𝑝 (𝜇 + 𝛼) + 𝑘
0

0 0 𝜖 −(𝛾 + 𝜇 + 𝑑 + 𝛼) 0

0 0 0 𝛾 −(𝜇 + 𝛼)]
 
 
 
 
 
 
 
 
 
 
 
 

 

with eigenvalues 𝜆 
|𝐽(𝑥0) − 𝜆𝐼| = 0 

𝐽(𝑥0 − 𝜆) =

[
 
 
 
 
 
 
 
 
 
 
−𝑘 − 𝜆 0 0 0 0

𝑘 −(𝜇 + 𝛼) − 𝜆 0 −
𝛽𝛬

𝑝 (𝜇 + 𝛼) + 𝑘
0

0 0 −(𝜖 + 𝜇 + 𝛼) − 𝜆
𝛽𝛬

𝑝 (𝜇 + 𝛼) + 𝑘
0

0 0 𝜖 −(𝛾 + 𝜇 + 𝑑 + 𝛼) − 𝜆 0

0 0 0 𝛾 −(𝜇 + 𝛼) − 𝜆]
 
 
 
 
 
 
 
 
 
 

 

 

The calculated eigenvalues of the matrix are 𝜆1 = −𝑘, 𝜆2 = −𝜇 − 𝛼, the remaining roots are determined 
by roots of the quadratic equation 

𝑎0𝜆
2 + 𝑎1𝜆 + 𝑎2 = 0,                                                            (19) 

where 

𝑎0 = 1 > 0, 

𝑎1 = (𝜖 + 2𝜇 + 𝛾 + 𝑑 + 2𝛼) > 0,                                                                                                            (20) 
𝑎2 = (𝜖 + 𝜇 + 𝛼)(𝛾 + 𝜇 + 𝑑 + 𝛼)(1 − 𝑅0). 

 

The local stability of the equilibrium 𝑥0 is determined by following the Routh-Hurwitz criterion on the 
quadratic equation (19). For a quadratic equation, the required condition of the stability is given by  

 𝑎0 > 0, 𝑎1 > 0, 𝑎2 > 0, 
that is saying all coefficients of the quadratic equation must be greater than zero. It is obvious that from 
(20), 𝑎0 and 𝑎1 are always positive. Meanwhile, for 𝑎2 to be positive, 𝑅0 < 1. Thus, the following results 
can be drawn: 

• If 𝑅0 < 1, then the coefficient 𝑎2 > 0. Hence, all roots of characteristic equation (19) are 

negative. Therefore, 𝐸0 is locally asymptotically stable. 

• If 𝑅0 > 1, 𝑎2 < 0, then there exists at least one positive root for the characteristic equation (19). 

Therefore, 𝐸0 is unstable. 

Thus, 𝑥0 is locally asymptotically stable when 𝑅0 < 1 and it is unstable when 𝑅0 > 1. 
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Sensitivity Analysis of 𝑹𝟎 
The impact of the model parameters is determined through the local sensitivity analysis using the 
normalized forward sensitivity index method described in [22] as shown in the Definition 2.1. Sensitivity 
analysis enables to measure any significant difference in the state variable when a parameter changes. 
Hence, we use it in this study to determine parameters that have a significant impact on the basic 
reproduction number 𝑅0. With this analysis, we can identify parameters that significantly affect the 
disease transmission and indirectly help the health authorities to develop effective intervention strategies 
in preventing the epidemic in a population. 

 

Definition 2.1 The normalized forward sensitivity index of a variable, 𝑢, that depends differentiably on a 

parameter, 𝑞, is defined by 

Ƴ𝑞
𝑢 =

𝜕𝑢

𝜕𝑞
×

𝑞

𝑢
                                                                                  (21) 

As we have an explicit formula of 𝑅0 in (20), we derive an analytical expression of the sensitivity index 
of the basic reproduction number 𝑅0 by following the Definition 2.1, to all model parameters of system 

(3). Thus, the general expression of the sensitivity index of the 𝑅0 is given by: 

Ƴ𝑞
𝑅0 =

𝜕𝑅0

𝜕𝑞
×

𝑞

𝑅0
                                                                            (22) 

The sensitivity indices of the basic reproduction number with respect to all model parameters are 
calculated using the formula (22) and are tabulated in Table 3. However, we are concerned about four 
parameters: p, k, β, and γ, as these parameters are expected to have a significant impact on the 

transmission of the disease. Parameter 𝑝 is the fraction of vaccinated newborns and 
𝜕𝑅0

𝜕𝑝
< 0, while 

parameter 𝛾 is the rate of recovered individuals and 
𝜕𝑅0

𝜕𝛾
< 0. Thus, by rising both of parameter 𝛾 and 𝑝, 

the TB transmission can be controlled since the number of infected individuals are falling off. Besides, 
𝜕𝑅0

𝜕𝑘
> 0, therefore, the parameter 𝑘 (waning immunity rate) has a positive effect on 𝑅0. It can be said that 

a higher 𝑘 rate cause a rising of infected population. Also, 
𝜕𝑅0

𝜕𝛽
> 0 which depicts that a smaller number 

of transmission rate 𝛽 lead to a lesser number of infected individuals.  

 

Table 3. Sensitivity Indices of 𝑅0 with respect to model parameters 

 

Parameter Description With Immigration 
Without 

Immigration 

𝑝 successful vaccinated newborns −0.6984 −0.0867 

𝑘 progression rate from B to S class +0.6621 +0.0822 

𝛽 transmission rate +1 +1 

𝜇 natural death rate −0.03721 −0.09098 

𝜖 latent period +0.0722 +0.00354 

𝑑 disease-induced death rate  −0.02787 −0.03092 

𝛾 recovery rate −0.8685 −0.9638 

α immigrant rate −0.8209 - 

 
Results and Discussion 
 
To illustrate the numerical results, the following values were taken for the initial conditions to mimic TB 
infection in Malaysia. According to Department of Statistic Malaysia, the population in the 2013 census 
is estimated as 30,904,952 [17]. Since the 2013 epidemic data has been taken into consideration, the 
total initial population has been accepted as 𝑁(0) = 30,904,952 and the initial infected population as 

𝐼(0) = 23,417 as the same reported data. While 𝐵(0) has been estimated considering the number of 

newborns in recent years. The rate of exposed individuals, 𝐸(0) has been assumed by comparing it to 

the data from Malaysia and the literature [7]. Then, 𝑅(0) is the number of successful treated TB patients 
in Malaysia in 2013. The formula for initial susceptible populations for the BSEIR is considered by, 

 
𝑆(0) = 𝑁 − 𝐵(0) − 𝐸(0) − 𝐼(0) − 𝑅(0) 
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Figure 3. BSEIR Model with Immigration 

 

 
 

Figure 4. BSEIR Model without Immigration Parameter 

 

 
Figures 3 and 4 depict the behaviour of the compartment for all populations, while Figure 5 displays the 
behaviour of infected population for both BSEIR model with and without immigration parameter. As seen 
in the figures, there is a difference on the trend of infected TB incidence for both models. 

  

 

 
 

Figure 5. Behaviour of Infected Class for (a) BSEIR Model with Immigration, (b) BSEIR Model without Immigration 

a b 
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The calculated basic reproduction number, 𝑅0 in Figure 3 is 1.955 which means that the disease in the 
population may resulting in epidemic. Thus, an epidemic occurs when the disease infects a large number 
of people within a population. It is clear shown on the graph, when 𝑅0 > 1, the infected cases will keep 
increasing over time and reach a steady state. Thus, we can say that the immigrant rate has a direct 
relationship with basic reproduction number; when the immigrant rate increase, the number on infected 
TB cases will increase. Meanwhile, the BSEIR model on Figure 4 has  𝑅0 = 0.9 < 1 which refer that the 
disease may diminish in the population. In other words, the disease will die out if there is no infected 
immigration. 

 

 

 

 

Figure 6. The Behaviour of each compartment for BSEIR Model with Immigration Parameter. (a) BCG vaccinated population, (b) 
Susceptible population, (c) Exposed Population, (d) Recovered population. 
 
 

The behaviour of BCG vaccinated, susceptible, exposed, infected, and recovered populations for the 
BSEIR model with immigration is plotted in Figure 6. Based on Figure 5 and Figure 6, the BCG 
vaccinated class has increases define that the number of immunized infants is rising over the years. It 
can be said, the majority of parents in Malaysia are aware of and follow the regulations made by the 
authorities to take BCG vaccine in attempt to stop the TB transmission. Next, a decline movement 
appears in the number of susceptible populations since the number of infected individuals increases and 
thus, the recovered population also increases. Also, the behaviour of the exposed population increases 
and achieve a steady state. 

 

Figure 7 presents the behaviour of BCG vaccinated, exposed and recovered classes population over 
time for the BSEIR model with no immigration parameter. The BCG vaccinated show an increase pattern. 
Additionally, the number of exposed populations fall since the infected individuals have been decreasing. 
So, it can be argued that the TB infection can be reduced if the population have a smaller values of 
immigrant rate. Furthermore, the recovered class has increases and gradually drop due to no infected 
cases in the population. Initially, the recovered class experiences an increase as individuals successfully 
recover from the illness. However, as no new infections occur, the rate of recovery gradually fall, 
eventually leading to a decline in the number of newly recovered cases. 
 
The dynamic of disease transmission is explained by 𝑅0 which it describes the average number of 

individuals who are most likely to catch contagious illness from a single infected person. Since 𝑅0 

a b 

c d 
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depends on the model parameters, sensitivity analysis was performed to determine the effect of the 
parameter on TB disease transmission. Thus, we calculate the sensitivity indices of the basic 

reproduction number 𝑅0 with respect to model parameters by using the formula given in (22), where we 

evaluate the partial derivative of 𝑅0 with respect to the parameter then multiply by the parameter divide 
by the 𝑅0. Based on Table 3 and Figure 8, it clearly shows that the parameters 𝑘, 𝛽, and 𝜖 have a positive 

sign, meaning that 𝑅0 rises with the parameter. This indicates that adjusting these parameters by either 

increasing or decreasing by 10%, will affect the basic reproduction number 𝑅0 in the manners of 6.621%, 

10%, and 0.722% respectively. 

 

 

 

Figure 7. The Behaviour of each compartment for BSEIR Model without Immigration Parameter. (a) BCG vaccinated population, (b) 
Exposed Population, (c) Recovered population 

 
 
In contrast, other parameters have a negative sign which indicates that 𝑅0 declines as the parameter 

values increase. Further, this implies that a 10% change in the parameter 𝑝 will result in a 6.984% change 

in the basic reproduction number 𝑅0. Correspondingly, the basic reproduction number will drop by 

8.685% if parameter 𝛾 increased by 10%. In addition, we ignore the parameters 𝜖, 𝑑 and 𝜇 since they 
have a minimum impact on the transmission. However, the immigrant rate α, based on the calculation 
has a negative sign which contradict the initial theory. Supposedly, when immigrant rate increase, the 
basic reproduction number is greater than one and the number of infected individuals increases. Thus, 
we can conclude that the other factors have a greater impact than immigration.   
 
Based on these results, it shed significant understanding on the dynamics of TB transmission. The 
infection probability 𝛽 ranked first for the most sensitive parameter, thus, it can be controlled by isolating 
an infectious individual from others during a period in order to reduce the likelihood of transmitting germs. 
Besides, TB patients should be obliged to complete the prescribed course of treatment and be prohibited 
from travelling until the attending doctor is confident that the patient is not contagious and poses no risk 
to other person. Also, an individual should take an initiative to prevent TB spreading by following to 
proper sneeze etiquette, maintaining good hygiene, and wearing a mask if a family member or 
acquaintance is known to be infected. 
 

a b 

c 
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Figure 8. Sensitivity Indices of 𝑅0 

 

 

The analysis of sensitivity indices also reveals that the probability of recovered individuals greatly 
contributes to the spread of TB. Therefore, the treatment failure cases should be reduced. Despite the 
fact that TB detection and various treatment programmes have been improved by the health authorities, 
the TB-related deaths in Malaysia were caused by patients delayed seeking medical help. In addition, 
each individual and parents should understand the importance of vaccination in preventing the spreading 
of the virus in a population, so there will no contradiction of opinion regarding the regulations. Thus, 
everyone should play their own role to increase the amount of recovery rate to decrease TB infection. 
Also, the parameter 𝑝 can be controlled by using these strategies in a similar way since it contributes to 
the spread of the disease.                        

 
Conclusions 
 
In this study, the behaviours of TB transmission in Malaysia are analysed through the existing 
mathematical BSEIR model by considering an immigrant rate. Due to lack of data, some of the parameter 
used for the model is determined through estimation, and some were taken from the literature. The 

mathematical analysis and the significance of the basic reproduction number 𝑅0 have been discussed 
as it is crucial form in categorizing the dynamic of the model. Hence, from the calculation, we notice that 
the basic reproduction number for the BSEIR model with immigration is greater than one (𝑅0 > 1). It 
could be said that TB situation in Malaysia contributed to an epidemic, so it is essential to ensure that 
𝑅0 < 1 as to stop the disease spread. Besides, a numerical and sensitivity analysis on the basic 

reproduction number 𝑅0 with respect to the parameter is performed and explained. As a result, one of a 
strategy to minimize or reduce the number on infected individuals is by increasing the value of disease 
transmission rate, 𝛽 and recovery rate, 𝛾. Based on the comparison between the behaviours of the two 
model, we can conclude that TB infection without immigration effect is falling off. Meanwhile, the result 
including immigrant rate shows an increase on TB-infected cases. Therefore, we suggest that a proper 
screening test should be mandated by the authorities when allowing new immigrants or refugees to enter 
Malaysia. Also, they must be promptly tested for TB infection and kept isolated for a period to guarantee 
that they are free from TB bacteria, so that they can receive preventive therapy. Last but not least, public 
awareness and the necessary precautions should be taken seriously as the disease in Malaysia has not 
yet been eradicated. 
 
In a nutshell, we can conclude that immigration has a significant impact on the dynamics of TB 
transmission because it significantly affects the prevalence of the disease in the population, based on 
Figure 5. Nevertheless, the rate of TB treatment must be increased, while the contact with infected 
person should be minimize in attempt to eliminate the disease infection. For instance, a population with 
low TB-incidence cases can be controlled with an efficient treatment and the immigration has a little 
impact on the population. The limitation in this study is that the parameter used were not precise enough 
to accurately represent the disease dynamics in Malaysia. Thus, a better estimation of immigration and 
other factors might be used in the future research. Furthermore, the model can be modified by taking 
other control strategies into account like the influence of age and sex, isolation, and treatment to improve 
its accuracy. 
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