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Abstract Due to the development of information technology, large amounts of data are generated 

every day in various industries such as engineering, healthcare, finance, anomaly detection, image 

recognition, and artificial intelligence. This massive data poses the challenge of analyzing accurately 

and appropriate classifications. The traditional clustering methods require specifying the number of 

clusters and are mostly based on distance, which cannot effectively consider the correlations 

between different indicators of high-dimensional and multi-source data. Moreover, the number of 

clusters cannot automatically adjust when new data is generated. In order to improve the clustering 

analysis of high-dimensional and multi-source data in a big data environment, this study utilizes 

non-parametric mixture models based on distribution clustering, which does not require specifying 

the number of clusters and can auto update with the data. By combining Principal Component 

Analysis (PCA), t-Distributed Stochastic Neighbour Embedding (t-SNE), and the non-parametric 

Bayesian method called Dirichlet Process Mixture Model (DPMM), the Bayesian non-parametric 

PCA model (PCA-DPMM) and Bayesian non-parametric t-SNE model (TSNE-DPMM) are proposed. 

The Chinese restaurant process of DPMM is used for sampling by introducing a finite normal mixture 

distribution. The clustering results on the iris dataset are compared and analyzed. The accuracy of 

DPMM and TSNE-DPMM reaches 0.97, while PCA-DPMM achieves a maximum accuracy of only 

0.94. When different numbers of iterations are set, TSNE-DPMM maintains an accuracy ranging 

from 0.92 to 0.97, DPMM ranges from 0.66 to 0.97, and PCA-DPMM ranges from 0.73 to 0.94. 

Therefore, the proposed TSNE-DPMM ensures accuracy and exhibits better model stability in 

clustering results. Future research can explore the improvement of the model by incorporating deep 

learning algorithms, among others, to further enhance its performance. Additionally, applying the 

TSNE-DPMM model to data analysis in other fields is also a future research direction. Through 

these efforts, we can better tackle the challenges of analyzing high-dimensional and multi-source 

data in a big data environment and extract valuable information from it. 

Keywords: Bayesian non-parametric model; PCA; t-SNE; DPMM. 

 

Introduction 
 

In the recent years, clustering-based methods have been widely used in various problems such as 
anomaly detection and image recognition, which has led to an active research area in clustering 
algorithms for high-dimensional and multi-source data. In the field of clustering analysis for multi-source 
data, various clustering methods have been proposed, including partitioning-based methods such as K-
means [1] and K-centroids clustering [2], hierarchical-based methods, density-based methods, grid-
based methods, and model-based methods. Among the various proposed methods, the K-means 
method is often sensitive to outliers, while K-centroids clustering improves upon this issue. The 
Partitioning Around Medoids (PAM) algorithm [3] is a commonly used K-centroids-based clustering 
algorithm, but it is limited to low computational efficiency for large-scale data. Both of these partitioning-
based methods can only handle spherical-shaped data and are not suitable for clustering data with 
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complex distribution shapes. Additionally, these methods require a priori knowledge of the number of 
clusters [4]. In response to these issues, model-based clustering methods have shown certain 
advantages, as they can cluster data from different distribution populations and determine the optimal 
number of clusters based on model selection criteria [5]. As a result, they have been widely applied in 
many fields. However, in model-based clustering methods, the number of indicators is determined by 
the model selection criteria, making it impossible to adaptively determine and update the number of 
clusters based on the data. When performing clustering analysis on multiple indicator data, the increase 
in data dimensionality and the inconsistency of information among indicators increase the complexity of 
the clustering problem, which affect the accuracy and timeliness of the clustering results. 

 

Existing multi-indicator data clustering models have the following issues: (1) The assumption that each 
indicator data is independent and not considering the differences in information among indicators. (2) 
Slow algorithm convergence speed. (3) Requires a specified number of clusters. (4) High dimensionality 
leading to high clustering complexity. 
 

To address the aforementioned issues, models based on the Dirichlet process [6] have shown certain 
advantages. The Dirichlet process, as a random process, is used as the prior distribution for Bayesian 
nonparametric statistics. In order to sample from the Dirichlet process, three different constructions have 
been proposed: the Polya urn scheme [7], the Chinese restaurant process (CRP) [8], and stick-breaking 
[9], making it possible to apply this process in various applications. Models based on the Dirichlet process 
can adaptively determine the number of clusters based on the data, thereby solving the problem of 
determining the number of clusters. However, the Dirichlet process can only cluster data with identical 
values, and when the data values are different, regardless of the similarity between the data clustering 
cannot be perform. In order to address this issue, Yao et al. [10] proposed the Dirichlet process mixture 
model (DPMM) based on the Dirichlet process, which can perform clustering analysis on data from 
different distribution populations. These advantages have led to the application of the DPMM model 
approach as a prior distribution in many fields of study. Considering the differences of information among 
indicators, the improved sticky hierarchical Dirichlet process method performs clustering analysis on 
multi-source data [11], where the stickiness parameter reflects the correlation between indicators and 
the overall clustering, allowing different states to have different distribution types. This means that 
different indicators can follow different distributions, enabling its direct application in the clustering of 
multi-source data and addressing the related issues in multi-source data clustering. Lai et al. [12] used 
the stick-breaking construction of the Dirichlet process as the prior distribution of the mixture weights in 
Gaussian mixture models, establishing the Dirichlet process mixture model and using variational 
methods to estimate the model parameters. The results showed that this method achieved better 
performance than traditional kernel principal component analysis. Peng et al. [13] combined the Dirichlet 
process mixture model with the K-means clustering algorithm and verified the outcome on public 
datasets. The experiments demonstrated that the improved algorithm can address the problem of 
indeterminate K values, and the stability, accuracy, and quality of the clustering results were significantly 
improved. Applying the improved model to gut microbiota OTUs data has provided a new approach to 
addressing issues related to type 2 diabetes clinically. The Dirichlet process mixture model can 
adaptively determine the optimal number of clusters based on the data. However, as the data size 
increases during clustering analysis, the MCMC-Gibbs sampling algorithm [14] updates only one data 
point at a time, leading to slow convergence. To address this issue, the Split-Merge Dirichlet Process 
Mixture Model (SMDPMM) [15] introduces split and merge operations during the sampling process to 
accelerate convergence and improve topic mining results. Most clustering methods are designed for low-
dimensional data, this limitation poses a serious challenge whenever the dimensionality of the data 
increases. Currently, researchers use adopt the principal component analysis (PCA) approach and 
clustering analysis in order to simplify evaluation indicators and achieve dimensionality reduction 
clustering analysis [16]. However, the PCA selects principal components first, then linearly transforms 
the data, and finally performs clustering analysis, which does not fully capture the original data 
information and does not consider the correlation between clusters. The Flow Hierarchical Dirichlet 
Process (FHDP) [17] enhance the utilization of interrelated information between topics by incorporating 
flow operations into the Hierarchical Dirichlet Process (HDP) model, truncating needless information and 
making the hierarchical relationships of topics more explicit. 

 

The main focal point of this work is on the inability of traditional clustering model to measure relationships 
between classes and directly determine the number of classes in a large complex data. In this study a 
Bayesian nonparametric PCA and t-SNE models is proposed; where the PCA, t-SNE, and nonparametric 
Bayesian methods are combined. When these models are applied for dimensionality reduction of high 
dimensional data clustering results are obtained which improves both the convergence speed of 
clustering and the determination of the number of classes. 

 



8 

10.11113/mjfas.v19n6.3062 1101 

Wu et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 1099-1118 

                               … 

∅1 ∅2 ∅3 

𝜃1 𝜃4 𝜃2 𝜃3 𝜃6 

∅4 

𝜃5 𝜃7 

Materials and Methods 
 

The Dirichlet process is a stochastic process that describes the measure distribution, which is usually 
used in the Bayesian nonparametric mixed model to generate a priori on the mixed component when the 
component parameters of the mixed model are unknown. This section provides a brief introduction to 
the Dirichlet process, defined as follows [9]: 

Suppose 
0G  is a random probability distribution on the measurement space  , 

0  is a positive real 

number. For any finite partition 
1, rA A  of the measurement space  , if the random probability 

distribution G  on the measurement space   satisfy the following conditions:   

( ) ( ) ( )( ) ( )( )( )1 0 0 1 0 0, , ~ , ,r rG A G A Dir G A Dir G A                (1) 

Then G  obeys the Dirichlet process composed of basis distribution 
0G  and concentration parameters 

0 , denoted as  

( )0 0~ ,G DP G                                          (2) 

where, ( )Dir  represents the Dirichlet distribution, 
0  indicating the degree of similarity with G . The 

bigger 
0 , the more similar the two are. Conversely, if Equation (2) is satisfied, then Equation (1) is 

holds. 

 

The above content describes the definition of the Dirichlet process, but still does not give an accurate 
representation, the model cannot be directly applied to the relevant algorithm, and the sampling of the 
Dirichlet process cannot be realized. Therefore, in the actual use process, the Dirichlet process is 
expressed by using three different forms of construction. The following mainly introduces the Chinese 
restaurant process (CRP). 

 

The Dirichlet process is constructed as follows [18]: suppose a Chinese restaurant can accommodate 
infinitely many tables, and the number of tables is represented by K , 

i  means the customers entering 

the restaurant and 
k  is the table where the customers are seated. The first customer 

1  is seated at 

the first table 
1 , the probability that the i-th customer 

i  is seated at the k-th table 
k  is proportional to 

the number of customers 
km  on this table; the probability of a new table is proportional to 

0 , at this 

time the number of tables K  increases by 1, 
0~K G  and 

i k = . 

 

Figure 1 shows the structure of CRP, where the big circle represents the dining table, its unique code is 

k  , and the surrounding ( )1,2,3,i =  are the customers who are seated. 

 

 

 

 

 

 

 

 

                                                    

Figure 1. Chinese restaurant process 

 

 

Let 
iz  is the indicator factor of the i-th cluster parameter variable 

i , that is 
ii z = , we can get [18] 

( ) ( )0
1 0 0

0 0

| , , , , ~ , ,
1 1

K
k

i i i i i

k

m
z z z G z k z k

i i


  

 
− +

− + − +
                                                                      (3) 

Where k  represents an empty new cluster. It can be seen from the structure of the Dirichlet process 

that it has good clustering properties. 

 

The Dirichlet process clusters the data with the same value into one class, but if the two sets of data are 

not equal, no matter how similar they are, the Dirichlet process cannot be used to achieve clustering. 

For this purpose, the Dirichlet process mixture model (DPMM) [18] is introduced. 
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In DPMM, the Dirichlet process is used as the prior distribution of the data, so  1 2, , nX x x x=  is a 

collection of observation data, and DPMM can cluster the observation data xi , and each cluster is 

represented by a probability density function ( )if  . DPMM can be represented by the following model: 

( )0 0~ ,G DP G                                                                                                                                                  (4) 

| ~i G G                                                                                                                                                   (5) 

( )| ~i i ix f                                                                                                                                              (6) 

G  is a prior distribution of 
i  obtained by the Dirichlet process; 

i  is the cluster parameter, which is 

used to describe the probability distribution of each cluster ( )if  . This is an infinite mixed model, which 

is different from clustering methods such as K-means. The number of parameters 
i  is not specified, but 

equals the number of observed data 
ix . If the cluster parameters of two data are equal, that is i j = , 

then 
ix  and jx  belong to the same class. 

 

The directed graph model representation of DPMM is shown in Figure 2 [11], hollow circles represent 

variables, shaded circles represent observations, rounded rectangles represent parameters or basic 

distributions, rectangles represent iterative cycles, and numbers in the lower right corner of the 

rectangles represent iterations times. 

 
 

Figure 2. Graphical Model Representation of DPMM 

 

 

Assuming that there is an observation data set  1 2, , nX x x x=  that obeys DPMM, since the observation 

data is conditionally independent, the order of appearance of the observation data is not considered 

when performing cluster analysis on the observation data. To achieve cluster analysis is to obtain the 

indicator factor 
iz  of each data. Convention: when the upper or lower corner of a variable in the text is 

marked with the symbol "\", 
\iZ  is a set composed of the remaining data after being removed 

iz  from 

 1 2, , , nZ z z z= . When the indicator factors 
\iZ  of other data are known, according to the Bayesian 

formula, the conditional distribution of 
iz  

( ) ( ) ( )1 2 \ 0 \ 0 1 \| , , , , , , | , | , , ,i N i i i i N ip z x x x Z z Z p x z z X                                                                       (7) 

 

The above formula ( )\ 0| ,i ip z Z   can be represented by CRP in the Dirichlet process. Since the 

observations are interchangeable, the i-th observation data can be regarded as the last observation. If 

there are already K categories about 
\iZ , the number of the observation data in each category is 

\ in . 

Then the first term in Equation (7) is 

( ) ( )
\

0
\ 0

0 0

| , ~ , ,
1 1

iK
k

i i i i

k

n
z Z z k z k

n n


  

 
+

− + − +
                                                                                       (8) 

α0 

G0 

G 

θi 

xi 
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The second item: if the i-th observation data chooses the 𝑘-th category, that is 
iz k= , then there is 

( )  ( )
( ) ( ) ( )

( ) ( )
,

\

,

| | |
| , , | , ,

| |

j

j

i Z k j i i

i i i i j

Z k j i i

f x f x g d
p x z k x p x z k j i

f x g d

= 

= 


= = =  =



     
 

                              (9) 

If a new class is chosen by 
ix , namely 

iz k= , 

( ) ( ) ( ) ( )\| , , | | |i i i i ip x z k x p x f x g d     = = =                                                                                                            (10) 

So, the right side of Equation (7) can be expressed as, 

 ( ) ( ) ( ) ( ) ( )
\

0

0 0

| , , , | | ,
1 1

iK
k

i j i i i

k

n
p x z k j i z k p x g d z k

n n


     

 
 =  +

− + − +
                                              (11) 

 

Combining formulas in Equation (8) - (11), the Gibbs sampling process of DPMM can be obtained. 

Among them, ( )t
Z  is used to describe the classification result of the observation data at the t-th round of 

sampling, ( )K t  represents the number of clusters at this time, and the sampling result ( )1t
Z

−
, ( )1t

K
−

, 

( )1

0

t


−
 of the t-1-th is inputted, the t-th sample is based on the following process: 

 

1. Make ( )1

0 0

t
 

−
= , ( )1t

Z Z
−

= , for each data ( )1, ,ix i n= , 
iz  is sampled. 

( ) ( )\| , ,k i i i if x p x z k X = =                                                                                                             (12) 

( ) ( )\| , ,i i i ik
f x p x z k X = =                                                                                                             (13) 

a) For the existing K  clusters, the likelihood estimation of the observed data is calculated for each 

class. 

b) The 
iz  is sampled according to the following distribution: 

( ) ( ) ( ) ( ) ( )\

1 \ 0 1 0

1
| , , , , , ~ , ,

K
i

i n i k k i i ik
ki

p z x x Z n f x z k f x z k
Z

    
 

+ 
 
                                                (14) 

where, ( ) ( )\

1 0

K
i

i k k ik
k

Z n f x f x= + , \i

kn  is the amount of existing data in the k-th cluster. If 
iz k=

, then K  increases by 1. 

2. Detecting the amount of observed data in each class. If the total number of observed data in a 

certain class is 0, remove the class and decrease K  by 1. 

3. If ( )0 ~ ,a b   is the initial sampling, update it according to the method of literature [20] , and the 

sampling relationship is as follows: 

( ) ( )0 0~ | , , ,
t

p K n a b                                                                                                                        (15) 

 

Using CRP to describe the above sampling process is as follows: a customer comes in and distributes 

the table according to the probability of formula in Equation (11). If the customer chooses a new table, 

add a new table for the restaurant, and increase the number of tables by 1. After assigning tables to all 

customers, check to see if any tables are free, if so, remove that table from the restaurant first, and 

decrement the total number of tables seated by 1. 

 

The following is a brief introduction to principal component analysis (PCA) and t-distributed stochastic 

neighbor embedding (t-SNE). 

 

PCA [21] is a classic data dimensionality reduction technique, which reduces the original information as 

much as possible. It is generally defined as: the orthogonal projection of data on a low-dimensional linear 

space, so that the variance of the data obtained after projection is maximized or a linear projection that 

minimizes the average projection cost. For the convenience of description, first, assume that the d-
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dimensional observation data set is expressed as  1, , , d

n iX x x x R=  . In the PCA method, the 

principal components in the low-dimensional space are represented by calculating the eigenvectors 

corresponding to the first k largest eigenvalues of the observed data covariance matrix. Then, using 

these eigenvectors, the original data is projected into the main subspace, so that the original data has a 

high degree of discrimination in the subspace. Algorithm flow: 

 

1. De-average (that is, decentralize the data by column); 

2. Calculate the covariance matrix X*X;  

3. Use eigenvalue decomposition or singular value decomposition (SVD) method to find the eigenvalue 

and eigenvector of X*X; 

4. Sort the eigenvalues from large to small, and select the largest k among them (that is, the top k with 

the largest variance); 

5. Transform the data into the subspace constructed by k feature vectors. 

 

The t-SNE algorithm uses the conditional probability distribution instead of the traditional distance 

representation and uses the distance similarity relationship between data points in high-dimensional and 

low-dimensional spaces to achieve dimensionality reduction on the premise of better maintaining the 

internal structure of the original data [22]. 

 

1. The similarity probability of the original data, that is, the probability of 
ix  being adjacent to jx  each 

other: 

2

2

| 2

2

1

exp
2

exp
2

i j

i

j i

k l

ik

x x

p
x x






 −
 −
 
 =
 −
−  
 



                                                                                                   (16) 

and | 0i ip = ; 
i  is the variance of the Gaussian distribution; when the distance between 

ix  and  jx  

is closer, the value of |j ip  is smaller, and the bigger the opposite. 

2. In symmetric SNE, the distance between the discrete points 
ix  in the original data and other data 

points jx  is very far, so the joint probability distribution of 
ix  is small, and it is expressed by the 

following formula: 

| |

2

j i i j

ij

p p
p

n

+
=                                                                                                                                         (17) 

3. In the low-dimensional target space, the similarity probability of data is defined by t distribution of 

degree of Freedom 1: 

( )
( )

1
2

1
2

1

1

i j

ij

i j

k l

y y
q

y y

−

−



+ −
=

+ −
                                                                                                                   (18) 

where 
iy  is the form of the data points 

ix  dimensionality-reduced. 

4. Use the relative entropy (KL) distance to measure whether the data distribution after dimension 

reduction is the same as the data distribution in the original high-dimensional space. The objective 

function is: 

( )|| log
ij

i i ij

i i j ij

p
C KL P Q p

q
= =                                                                                                   (19) 

iP  and 
iQ  are the joint distribution probabilities in the original data space and the dimensionally 

reduced data space, respectively. 

5. Use the gradient descent method to optimize the objective function : 

( )( )( )
1

2

4 1ij ij i j i j

ji

C
p q y y y y

y





−

= − − + −                                                                                      (20) 
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Specific algorithm flow: 

Input: n d− -dimensional vectors  1 2, . . nX x x x= , fixed value perplexity is prep, number of iterations is 

itern , learning rate is L , momentum coefficient is ( )t .  

Output: low-dimensional data  1 2, , , nY y y y= . 

Step 1: The variance 
i  of the point 

ix   is calculated by the binary search method; 

Step 2: |j ip , ijp  of the pairs of data points are calculated using formula as in Equation (13) and (14); 

Step 3: Initialize the low-dimensional data  1 2, , , nY y y y= ; 

Step 4: ijq  of the low-dimensional data is calculated by formula in Equation (18); 

Step 5: Calculate 
i

C

y




 ; 

Step 6: Update low-dimensional data, ( )( )1 1 2t t t t

i

C
y y t y y

y


 


− − −= + + − ; 

Step 7: Repeat Step 4 – Step 6 until the set number of iterations is reached. 

 

PCA-DPMM and TSNE-DPMM 
Due to the high dimensionality of the original data, DPMM is directly used for cluster analysis, and 
through the CRP process Gibbs sampling algorithm, each data must be randomly selected for each 
cycle, and the parameters of each class are updated at the same time, and the conditions for each class 
are selected for each data. The increased computational complexity of the probability leads to a long 
running time of the algorithm; while PCA and t-SNE are used to compress and simplify the data while 
minimizing data loss, thereby reducing the interference of noise points in the clustering process and 
removing redundancy; Reduce the computational complexity of the clustering process, save memory, 
and make the clustering more efficient and better. 

 

Therefore, this paper uses high-dimensional data: (1) PCA for dimension reduction processing: first, the 
data matrix is solved, using the SVD method to solve the covariance matrix, and then generating the 
principal components by the eigenvalues and eigenvectors to; finally, DPMM clustering analysis was 
carried out for principal components. (2) The internal structure of the data as much as possible is 
maintain by t-SNE, the similarity in high-dimensional space is calculated by Gaussian distance, and the 
similarity in low-dimensional space is calculated by t-distribution to achieve dimensionality reduction. 
DPMM cluster analysis was performed on the dimensionally reduced data at last. 

 

The flow chart of PCA-DPMM is as shown in Figure 3: 

 

 
                                                     

Figure 3. Flowchart for the proposed PCA-DPMM 

 

 

Specific steps for PCA-DPM sampling: 

 

Step 1: The original data extracts the principal components  1 2, , , nY y y y=  through PCA. We assume 

Data cluster analysis 

SVD  

Decentralized 
Data Matrix X 

end DPMM 

Covariance 
Matrix X*X 

start 
Input 
data 

Eigenvalues, 
Eigenvectors 

Principal 
component 
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that each cluster of the principal components obeys the Gaussian distribution: 

( )~ ,k k ky N                                                                                                                                          (21) 

where, 
k  represents the parameter (mean value) of the Gaussian distribution of the k-th cluster, 

k  is 

the covariance of the existing data of the k-th cluster. 

 

Step 2: Suppose the number of initial classes in advance K = 5 (this data can be any positive integer, 
because the number of clusters is adaptively updated according to the amount of data during the 
operation of the algorithm). The corresponding initial indicator factors sequence Z  for all data is 

obtained randomly, and the amount of data 
kn  in each cluster is counted according to  , the division 

sequence of the initial cluster is obtained n ; each cluster is recorded as 
ic , 1,2, ,i K= . Set the number 

of iterations, loop once to get the index factor 
iz  of each data 

ix . 

 

Step 3: For each piece of data 
ix , update 

iz  and 
in , the indicator factor 

iz  of each data 
ix  is selected 

according to the conditional probability of Equation (11), then select the existing class k , that is, the 

probability of its indicator factor 
iz k= : 

( )
( ) ( ) ( )

( ) ( )

( ) ( )

,

\

,

1

2

| | |
| , ,

| |

1
exp

22

j

j

i Z k j i i

i i i

Z k j i i

T

i k i k

i

d

k

f x f x g d
p x z k x

f x g d

x u x u

    


   



= 

= 

−


= =



 
−   − 

 = −
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ix  selecting a new cluster 
iz k= : 
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where d  is the dimension of the data. According to DPMM, each cluster of data obeys d  dimensional 

Gaussian distribution, and the cluster parameter   is the mean vector 
ku  of the Gaussian distribution, 

( )|if x   is used to describe the probability distribution of each cluster. This is an infinite mixed model, 

and the number of parameters   is not specified but related to the observed data 
ix . 

 

Therefore, the index factor of each data is selected according to the following formula: 

( ) ( )
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( )
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1 1
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1 2 1 422
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  −  + −   − + − +    
 
 

 
      (24) 

If the data xi selects the k-th cluster, 
kn  will increase by 1; the amount of data in the original cluster will 

be reduced by 1; if the data 
ix  selects a new cluster, the number of classes K  will increase by 1, and 

1 1kn + = . 

 

Update 
k : 

( )
( )0 1

~ ,
1 1

k

k

k k

u c i
i N

n n


 +
  + + 


                                                                                                             (25) 

The i-th component of 
k  is represented by ( )k i , ( )kc i  is the attribute of the data in the k-th cluster, 

0u  is the mean vector of the initial cluster distribution, and takes the zero vector. 

 

Update 
0  according to [20]: 

( )0~ 1,eta Beta n +                                                                                                                            (26) 

0

~ 1,
n

s Binomial
n

 
 

+ 
                   (27) 
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( )
0

1
~ ,

log
Gamma a K s

b eta


 
+ −  − 

              (28) 

where eta, s, α0 are randomly generated from the three distributions of beta distribution (Beta), binomial 

distribution (Binomial) and gamma distribution ( )  respectively; initial value a = 1, b = 2. 

Step 4: Repeat the above Step 2 and Step 3 until the set number of iterations is reached. 

Step 5: Count the final clustering results of each run, and calculates the corresponding evaluation 
indicators. 

 

The improved DPMM clustering algorithm combined with TSNE is shown in Figure 4 below. 

 

 
 

Figure 4. Implementation flow chart for the proposed DPMM 

 

 

For specific sampling steps, change Step 1 of PCA-DPMM sampling in Figure 3 to use t-SNE for 
dimension reduction, and perform DPMM cluster analysis on the reduced dimension data. 

 
Experimental Setup 
 

To further confirm the validity of the models proposed in the study, PCA-DPMM, TSNE-DPMM will be 
evaluated based on different parameters and experimental settings. Three different simulations with 
different number of iterations, different learning rates in the t-SNE process, and different number of 
iterations. Each simulation is described in detail as follows: 

 

· For the DPMM process, different iteration times are set. In this part, indicators such as Precision, 
Recall, F1 score, Specificity, and running time are used to evaluate and analyze the impact of 
different iterations on clustering accuracy. 

· For the PCA -DPMM process, different iterations are set, and the above indicators are also used to 
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compare the clustering accuracy. 

· In the nonlinear t-SNE dimension reduction process, set different learning rates and the number of 
iterations of gradient descent, evaluate and analyze the changes of the learning rate and the number 
of iterations of gradient descent on the data structure after dimension reduction, and further affect 
the clustering accuracy. 

· The accuracy and time complexity of the three models are compared under different clustering 
iterations to evaluate the performance of the model. 

 

The simulations described in this section are all in Python language, the experimental environment is 
Windows 10 operating system, the memory is 16G, and the main frequency is 3.1GHz. The data used 
in the experiment is public data-Iris data, which has four attributes: Sepal Length, Sepal Width, Petal 
Length, and Petal Width. Labels 1, 2, and 3 represent Setosa, Versicolor, and Virginical respectively, 
with a total of 150 pieces of data information. Table 1 shows the parameters involved in each experiment. 

 

Table 1. Parameters for the proposed DPMM 

 

Parameter Explanation Parameter Value 

Data volume n =150 

Each data dimension d =4 

Number of initial clusters K = 5 (Random) 

Indicator factor of i-th mixture cluster (zi) Z = {z1, z2, ⋯, zK} 

Amount of data in each cluster (nn) nn = {n1, n2, ⋯, nK} 

Mean value of k-th mixture cluster μ
k
 

Covariance matrix of k-th mixture cluster Σk 

Data of k-th mixture cluster ck 

i-th attribute of the data in the k-th mixture cluster ck(i) 

i-th cluster of μ
k
 μ

k
(i) 

Concentration parameter α0 

 

 

Table 1 shows the parameters involved in each experiment. In Table 1, the parameters are all variables 

in the third part of the formula. The initial number of clusters, K  can be any value as it does not affect 
the clustering results. The 150 data points are randomly assigned to initial clusters based on the given 

K , where Z  represents the index set of initial clusters for each data point. nn  represents the set of the 

number of elements in each cluster. Assuming each cluster follows a multidimensional Gaussian 

distribution, μk
 and Σk

 represent the mean vector and covariance matrix of the Gaussian mixture, 

respectively. 
kc  refers to the data in the k -th cluster, and correspondingly, ( )kc i  and ( )μk i  represent 

their i -th components. 

 

Each simulation will define six types of performance metrics for evaluation. Count the Confusion Matrix 
of each clustering result , calculate Accuracy(A) , Average number of components( 𝐸𝐾 ) , Time 

complexity(T) of the entire model based on the Confusion Matrix , Precision(P) , Recall(𝑅) , Specificity(S) 

, F1 score(𝐹1) and average value. The F1 score indicator combines the output results of Precision and 
Recall. The value ranges from 0 to 1. 1 represents the best output of the model, and 0 represents the 
worst output of the model. Tables 2-3 list the parameters involved in all evaluation metrics. 

 

Table 2. Parameters involved in model evaluation 

 

Parameter Remarks 

aij The number of data ci were predicted to be cj 

iter Number of iterations of DPMM 

L Learning rate of t-SNE 

niter Number of iterations of t-SNE 

c1 Setosa 

c2 Versicolor 
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Parameter Remarks 

c3 Virgin 

P(ci) Precision of ci 

R(ci) Recall of ci 

F1(ci) F1 score of ci 

S(ci) Specificity of ci 

K Number of last clusters 

 

 

In Table 2, the variables are parameters related to evaluating the model in equations (29) to (37). ija

represents the number of data points that truly belong to cluster i  and are classified into cluster j  . 

When i  equals j , it means the data points are correctly assigned to clusters. iter  denotes the number 

of iterations in the Gibbs sampling process of the Dirichlet Process Mixture Model (DPMM). L  
represents the learning rate in the t-SNE process, which controls the speed at which data points move 

during dimensionality reduction. Here, K  represents the number of clusters in the final clustering result.  

 
Table 3. Confusion Matrix 

 

Confusion Matrix 
Predicted Value 

c1 c2 … cK 

Actual Value 

c1 a11 a12 … a1K 

c2 a21 a22 … a2K 

… … … … … 

cK aK1 aK2 … aKK 

 
 

In the Confusion Matrix, 1, kc c  represent the cluster name, the sum of each row represents the 

number of real samples of this cluster, the sum of each column represents the number of samples 

predicted to be of this cluster, and the data ija  has the same meaning as in Table 2. The specific 

expressions of the relevant indicators are as follows, A represents the accuracy of the clustering results, 

while 𝑃(𝑐𝑖)、𝑅(𝑐𝑖)、𝐹1(𝑐𝑖) and S(𝑐𝑖) respectively indicate the Precision, Recall, F1 score, and Specificity 

of cluster label ic . 

 

A = 
∑ aii

K
i=1

n
                                                                                                                                                 （29） 

P(ci) = 
aii

∑ aji
K
i=1

                                                                                                                                   （30） 

R(ci) = 
aii

∑ aij
K
i=1

                                                                                                                                          （31） 

F1(ci) = 
2P(ci)R(ci)

P(ci) +R(ci)
                                                                                                                                    （32） 

S(ci) = 
n - aii - ∑ (aij + aji)

K
j=2

n - ∑ aij
K
j=1

                                                                                                                         （33） 

 

Due to the multi-class problem, the precision, recall, F1 score, and specificity of each cluster evaluation 
metric are used to represent the overall clustering results with their average values. The following 
formulas for calculating the mean of the indicators are given: 
 

Pmean = 
1

K
∑ P(ci)

K
i=1                                                                                                                                 （34） 

Rmean = 
1

K
∑ R(ci)

K
i=1                                                                                                                               （35） 

F1mean = 
1

K
∑ F1(ci)

K
i=1                                                                                                                          （36） 

Smean = 
1

K
∑ S(ci)

K
i=1                                                                                                                             （37） 

 

Where i = 1, 2, ⋯, K. 
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Results and Discussion  
 

To evaluate the effectiveness of the proposed models, different models will be evaluated based on 
different perspective: different of iterations on DPMM, different learning rate on t-SNE, different of 
iterations on t-SNE, and different of iterations on DPMM, PCA-DPMM, TSNE-DPMM. These 
perspectives will be evaluated based on various performance metrics. After finding the best setting from 
the next four sections, the proposed PCA-DPMM and TSNE-DPMM will be compared with existing 
model. 

 

The Clustering Results of DPMM 
When using DPMM's CRP to cluster iris data, if the data is not standardized, the clustering results are 
quite different, indicating that the clustering model is invalid when multiple dimension indicators are at 
different scale levels, which further shows that the complexity of multisource data clustering and the 
different indicators have a great impact on the clustering effect. Therefore, the multidimensional data is 
first standardized before clustering, and then different iterations are set to compare the clustering results. 

 

 
                                                    (a)                                                                (b) 

       
                                                 (c)                                                                (d) 

 

Figure 5. The indicators for (a) Setosa, (b) Versicolor, (c) Virginical and (d) the average value of DPMM with different iterations. 

 

 

Figure 5 shows that the classification accuracy of DPMM for Setosa, Versicolor, and Virginal is improved 
within a certain range as the number of iterations increases. When the number of iterations is between 
2500-3000, Precision, Recall, F1 score, and Specificity reach Highest. Below we give the clustering 
results of different iteration times, the average number of clusters, the running time (Seconds) from the 
list, and the timing is in seconds here, and Accuracy. 
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Table 4. DPMM clustering results with different iterations. 

 

iter Clustering results Average of clusters Accuracy Time (seconds) 

1000 [43,57,50] 3.54 0.65 82.31 

1500 [47,53,50] 3.96 0.79 124.69 

2000 [49,66,35] 3.01 0.85 162.40 

2500 [50,45,55] 3.11 0.97 210.79 

3000 [50,43,57] 3.01 0.95 256.54 

 

 

In Table 4, the iterations of the DPMM clustering algorithm ( iter ) are set to 1000, 1500, 2000, 2500, 

and 3000. The second column represents the clustering results. For example, [43, 57, 50] indicates that 
there are three clusters in the result, with the respective numbers of data points in each cluster being 43, 
57, and 50. Since the number of clusters is obtained after each iteration, the third column shows the 
average number of clusters. The fourth and fifth columns represent the accuracy of the clustering results 

and the running time for iter  iterations, respectively. The time unit is in seconds. Overall, it can be 

observed that when the number of iterations exceeds 2500, the DPMM achieves the highest accuracy 
in clustering the iris data. The average number of clusters stabilizes around 3. However, as the number 
of iterations increases, the running time also increases. The accuracy reaches its peak between 2500 
and 3000 iterations. 

 

The clustering results of PCA-DPMM 
Below we will give the clustering results of iris data using PCA-DPMM. In the PCA-DPMM clustering 
process, the Iris data is reduced to 2 dimensions by PCA (more than 90% of the cumulative contribution 
rate has been included), Variance contribution rate of each variable: 

c_0 = 0.7296244541329989 

c_1 = 0.2285076178670174 

c_2 = 0.036689218892828786 

c_3 = 0.0051787091071548025 

The cumulative contribution rate of the second component exceeds 90%. 

 
(a)                                                                (b) 
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(c)                                                                (d) 

 

Figure 6. The indicators for (a) Setosa, (b) Versicolor, (c) Virginical and (d) the average value of PCA-DPMM with different iterations 

 

 

Figure 6 shows that PCA- DPMM has improved the accuracy of Setosa and average classification as 
the number of iterations increases. Accuracy, Precision, Recall, F1 score, Specificity are all on the rise. 
As for the unstable classification accuracy of Versicolor and Virginal, we will give the clustering results 
of different iterations, the average number of clusters, running time and Accuracy from the list below. 

 

Table 5. PCA-DPMM clustering results with different iterations 

 

iter Clustering results Average of clusters Accuracy Time (seconds) 

1000 [27,50,73] 2.65 0.68 92.49 

1500 [50,63,37] 3.96 0.77 114.84 

2000 [49,35,66] 3.26 0.87 166.82 

2500 [50,66,34] 3.00 0.88 209.75 

3000 [50,39,61] 3.11 0.93 332.97 

 

 

The variables in Table 5 have the same meanings as in Table 4, but they represent the results of PCA-
DPMM clustering. From Table 5, it can be observed that as the number of iterations increases, the 
accuracy of PCA-DPMM clustering on the iris data gradually improves, reaching the highest value at 
3000 iterations. The average number of clusters remains stable at around 3. However, similar to the 
DPMM, the running time of PCA-DPMM also increases with the number of iterations. Overall, the findings 
suggest that increasing the number of iterations can improve the accuracy of PCA-DPMM clustering on 
the iris data. However, it is important to note that the running time also increases as more iterations are 
performed. 

 

The Clustering results of TSNE-DPMM 
Below, we will present the clustering results of the iris dataset using TSNE-DPMM. The algorithm 
consists of two stages. In the first stage, t-SNE is used for dimensionality reduction with different settings 

for the learning rate ( L ) and the maximum number of iterations ( itern ) in the gradient descent. The 

learning rate controls the speed at which data points move during the dimensionality reduction process, 

while the itern determines the number of repeated optimization steps for stable embedding. In this case, 

t-SNE is applied to reduce the iris data to 2 dimensions, followed by standardization of the reduced data. 
In the second stage, DPMM (Dirichlet Process Mixture Model) is applied to cluster the standardized data. 
The parameters used are the same as before.  

 

Tables 6 and 7 present the maximum iteration count and learning rate for t-SNE, which were adjusted 
using the method of controlled variables. In the TSNE-DPMM clustering process, with t-SNE reducing 
the iris data to 2 dimensions, we observe that the sparser the distribution of the reduced data, the better 
the clustering results. Additionally, larger gaps between data distributions result in more accurate 
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clustering. Generally, a perplexity value between 30-32 is recommended for the best performance. 
Based on the comparison results, the DPMM clustering stage is conducted with 2500 iterations. The 
clustering results of TSNE-DPMM can be compared accordingly. 

 

Table 6. TSNE-DPMM clustering results with different iterations of t-SNE (L=1200) 

 

niter Precision Recall
 

F1 score
 

Accuracy
 

Specificity
 

Time (seconds)
 

800 0.8883 0.8733 0.8808 0.8733 1 221.33 

900 0.9268 0.9267 0.9267 0.9267 1 222.45 

1000 0.9678 0.9667 0.9672 0.9667 1 243.34 

1100 0.9231 0.9 0.9114 0.9 1 203.72 

 

 

In Table 6, the learning rate ( L ) for the t-SNE stage was set to 1200, and the maximum iteration count 

(
itern ) was varied to analyze the experimental results. It was found that the maximum iteration count 

affects the distribution of the reduced data, thus impacting the clustering accuracy. However, it has little 
effect on the runtime. When the maximum iteration count for t-SNE is set to 1000, the various indicators 
are relatively high, with an accuracy of 0.9667. The runtime is slightly longer, but the difference is not 
significant. 

 

Table 7. TSNE-DPMM clustering results with different learning rate of t-SNE ( itern =1000) 

 

L   Precision Recall
 

F1 score
 

Accuracy
 

Specificity
 

Time (seconds)
 

1000 0.8902 0.8733 0.8808 0.8733 1 197.63 

1100 0.9045 0.9267 0.9267 0.9267 1 197.63 

1200 0.9678 0.9667 0.9672 0.9667 1 2 43.34 

1300 0.8576 0.8467 0.8521 0.8467 0.9882 256.02 

 

 

According to the results of Table 6, in Table 7, let's set the maximum iteration count ( itern ) for the t-SNE 

stage to 1000 and vary the learning rate ( L ). It is observed that the learning rate in the t-SNE 
dimensionality reduction process also affects the distribution of the reduced data, consequently 
impacting the clustering accuracy. However, it does not have a significant impact on the runtime. The 
highest performance in terms of various indicators and accuracy (0.9667) is achieved when the learning 
rate is set to 1200. 

 

Figure 7 below, the t-SNE learning rate is set to 1200, and the maximum number of iterations is set to 
1000. 
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(c)                                                                (d) 

 

Figure 7. The indicators for (a) Setosa, (b) Versicolor, (c) Virginical and (d) the average value of TSNE-DPMM with different iterations 

 

 

Figure 7 shows that when the t-SNE learning rate is 1200 and the number of iterations is 1000, the four 
indicators of TSNE-DPMM for Setosa, Versicolor and Virginical are basically stable above 0.8, and the 
average value exceeds 0.9, especially when the number of DPMM iterations is 2500, it reaches the 
highest; among them, the Specificity remains above 0.95. The following t-SNE learning rate is 1200, the 
maximum number of iterations is 1000, and the clustering results, average number of clusters, running 

time and accuracy of different clustering iterations are given from the list. 

 

Table 8. TSNE-DPMM clustering results with different iterations 

 

𝑖𝑡𝑒𝑟 Clustering results Average of clusters Accuracy Time(Seconds) 

1000 [50,47,53] 3.54 0.94 101.93 

1500 [50,45,55] 3.33 0.93 143.48 

2000 [47,61,42] 3.21 0.91 176.74 

2500 [50,41,49] 3.19 0.95 228.77 

3000 [47,56,44] 3.13 0.94 257.76 

 

 

In Table 8, the learning rate for the t-SNE stage was set to 1200 and the iteration count was set to 1000. 

The iteration count ( iter ) for the DPMM clustering stage was varied to examine its impact on the 

clustering accuracy of TSNE-DPMM on the iris dataset. The results show that as the clustering iteration 
count increases, the Accuracy of TSNE-DPMM remains above 0.91, reaching a peak of 0.95 at 2500 
iterations. The average number of clusters stabilizes at around 3. Additionally, as the iteration count 
increases, the runtime of the algorithm also shows an increasing trend. 

 

The Clustering Results of Three Models 
Using the improved DPMM clustering algorithm for cluster analysis of iris data, the results of the cluster 
analysis have an important relationship with the number of iterations, so it is necessary to 

comprehensively consider the clustering effect under different iter  values. The following compares the 

stability and classification average precision of the three models from the line chart. 
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Figure 8. Precision of three models 

 

 

For the three models, the number of iterations is respectively 1000, 1500, 2000, 2500, and 3000 times, 
and the corresponding precision line chart is given according to Figure 8. It can be seen from the figure 
that the classification precision of the three models has an upward trend as the number of iterations 
increases. Among them, the accuracy of the clustering results of DPMM increases the fastest as the 
number of iterations increases, reaching the highest at 2500 iterations; PCA-DPMM shows Straight up; 
in the TSNE-DPMM model, when the parameter perplexity of t-SNE dimensionality reduction is 30, the 
learning rate is 1200-1500, and the maximum number of iterations is 1000, when performing DPMM 
clustering on the data after dimensionality reduction, the number of iterations is 1000-3000, the accuracy 
is basically stable at 0.92-0.97. For TSNE-DPMM, by changing the dimensionality reduction parameters 
learning rate and the maximum number of iterations, it is found that when L=1200,  
niter=1000, the clustering effect of the model is the best, and it is relatively stable. 

 

Table 9, the three commonly used clustering algorithms are K-means, DBSCAN, and hierarchical 
clustering. In this article, we will compare the clustering accuracy of these algorithms and perform 
clustering on the iris dataset. 

 

Table 9. Comparison of clustering accuracy on iris data set 

 

Model Accuracy Model Accuracy 

K-means 0.8933 DPMM 0.9697 

DBSCAN 0.6667 PCA-DPMM 0.9387 

Hierarchical Clustering 0.2333 TSNE-DPMM (L=1200,niter=1000) 0.9678 

 

 

According to Table 9, the clustering algorithm proposed in this article has a higher accuracy compared 
to the other three. It does not require the pre-determination of the number of clusters, unlike the other 
three algorithms which require an accurate cluster count. Hierarchical clustering is clearly not suitable 
for classifying the iris dataset, and the density-based clustering algorithm DBSCAN also does not 

1000 1500 2000 2500 3000

DPMM 0.6614 0.7955 0.7774 0.9697 0.959

PCA-DPMM 0.7304 0.7967 0.8755 0.9043 0.9399

TSNE-DPMM(1200,1000) 0.941 0.9293 0.9265 0.9678 0.9492

TSNE-DPMM(1500,1000) 0.922 0.8937 0.9431 0.9414 0.9405

TSNE-DPMM(1000,600) 0.7645 0.8705 0.7821 0.8825 0.867
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perform well. Only K-means shows relatively higher accuracy. This further emphasizes that the proposed 
algorithm in this article has advantages in clustering high-dimensional datasets with multiple indicators. 

 

Consider the effects of iter =1000, 1500, 2000, 2500, 3000, and finally get the histograms of different 

indicators of the clustering results under different iter  values, as shown in Figure 9. 

 

 
 

Figure 9. TSNE-DPMM clustering results with different iterations 

 

 

In general, the clustering results of the iris data set are compared. From the comparison of the four 
indicators in Figure 9, it can be seen that when the number of iterations is 2500, the clustering accuracy 
of the three models is relatively high. Among them, the accuracy rate of PCA-DPMM is the lowest under 
the set number of iterations. Compared with the stability of the clustering results under different iterations, 
TSNE-DPMM is the most stable, and each index basically exceeds 0.92; at the same time, after 
comparing the running time in Table 10, we found that the running time of the three models is similar to 
that of The number of clustering iterations set is positively correlated, so that when the amount of data 
is very large, a lower number of iterations can be selected to reduce the running time and the clustering 
accuracy will not be greatly affected. 

 

Table 10. The running time of Iris data with different iter values 

 

Model 1000 1500 2000 2500 3000 

DPMM 82.31 124.69 162.40 210.79 256.54 

PCA-DPMM 92.49 114.84 193.14 209.75 332.97 

TSNE-DPMM (L=1200,niter=1000) 101.93 162.74 187.80 243.34 256.76 

 

 

In table 10, the learning rate is 1200 and the maximum number of t-SNE iterations is 1000. 
 

 
 

Figure 10. The scatter plot of three models ( iter  =2500) 
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From the comparison in Figure 10, it can be seen that the visual effect of direct classification using DPMM 
will be worse, the data is scattered, and the division between classes is not obvious; after the introduction 
of PCA, the classification effect will be better, and the division between classes is relatively clear. It can 
be seen that TSNE-DPMM has the best classification effect. 

                                                    
Conclusions 
 
In order to bridge the gap of low computational efficiency for large-scale data and to develop a more 
efficient and accurate clustering method for multi-source high-dimensional data analysis, in this study, 
based on DPMM, improved PCA-DPMM and TSNE-DPMM are proposed. By analyzing the non-
parametric Bayesian model DPMM, it is found that DPMM does not require setting the number of clusters 
and the clustering data can adaptively update based on the data volume. Through clustering comparison 
on the iris dataset, it was observed that as the number of iterations increases, the clustering accuracy is 
relatively high. However, as the data volume increases, achieving high clustering accuracy requires 
increasing the number of iterations, which leads to a linear increase in algorithm running time. Different 
parameter settings and iteration numbers are used. When the number of iterations is set to 1000, the 
accuracies of DPMM and PCA-DPMM are 0.6614 and 0.7304 respectively, while TSNE-DPMM has 
reached 0.941. The corresponding running times are 82 seconds, 92 seconds and 102 seconds 
respectively. When the number of iterations increases to 2500, the accuracy of the three models reaches 
the highest values: 0.9697, 0.9043 and 0.9678. The running times are 210 seconds, 209 seconds and 
243 seconds respectively. Through comparison of accuracy and running time, it is found that compared 
with the other two models, TSNE-DPMM exhibits the most stable clustering accuracy and superior 
visualization effect, and the category division is clearer. This allows us to set a lower number of iterations 
for large data volumes, thereby improving algorithm efficiency while ensuring accuracy. In future 
research, the time complexity of TSNE-DPMM needs to be further improved to better apply it to actual 
scenarios such as real-time monitoring of data anomalies and IoT anomaly detection. 
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