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Abstract In this paper, will discussed parameter estimation and convergence analysis of 

multivariate normal hidden inhomogeneous Markov models. The results of this research show that 

by using the expectation maximization algorithm, a sequence of parameter estimators converges 

to a stationary point of the likelihood function in a monotonically increasing manner. 
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Introduction 
 

The hidden Markov model (HMM) is a pair of stochastic processes, namely the observation process and 
the process causing the observation [1]. It is assumed that the stochastic processes that influence these 
observations are not observed and form a Markov chain, that is, the probability of the effect of an 
observation at one time only depends on the effect of the observation several units of time before. The 
effect of this observation is usually called state [2]. HMM is widely applied in various problem areas in 
the form of time series data such as air pollution problems [3], [4], weather predictions [5], [6], stock price 
predictions [7], [8], [9], [10], [11], speech recognition [12], [13], [14], prediction of DNA sequences [15] 
[16], and and It is hoped that it can be applied to diagnose partial discharge acoustic in insulation [17], 
[18], [19], [20]. This is because HMM maintains relevance to the issues discussed and offers 
simplification in calculations (memoryless properties) [21]. As for the application to longitudinal data, 
even though it offers efficiency, it is still very little. This is because the required analyzes are not as easy 
as when applied to time series data. 
 
To apply to longitudinal data, multivariate assumptions are needed in the model which is the focus of this 
study, namely the normal hidden Markov multivariate model (MNHMM). The normal hidden Markov 
multivariate model (MNHMM) is one of the hidden Markov models where the probability of an observation 
if the state is known is assumed to be a normal multivariate distribution [22], [23], [24]. In previous studies 
[22], [23], [24], parameter estimation and convergence analysis of MNHMM or simulation have been 
carried out, but the Markov chain is still assumed to be homogeneous so that the objective function in 
the form of the likelihood function will obtained less than maximum results. Therefore, in this study, it is 
assumed that the Markov chain is not homogeneous and the proposed model is the multivariate normal 
hidden Markov model inhomogeneous at one time before (MNHMM-I) which is expected to later be used 
to increase the maximum likelihood function obtained and can be used for clustering or predict more 
accurately. 
 
The novelty in this research is constructing the MNHMM-I, estimating parameters and analyzing the 
convergence of the parameter estimators. Model construction was carried out using a combination of 
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homogeneous multivariate [24] and multiple non-homogeneous [25], [26]. Parameter estimation is done 
by maximizing the likelihood function. The likelihood function is calculated using the forward-backward 
algorithm [27], [28], which is then recursively maximized using the Expectation Maximization algorithm 
(EM algorithm) to obtain the formula for estimating model parameters with primary references [25], [26], 
[24] . Due to the estimation and convergence of the parameters of the covariance matrix, it has its own 
complexity and analysis (multivariate analysis), so it will be published separately. This complexity can be 
seen in several studies related to covariance matrices [31], [32], [33], [34], [35], [36]. Therefore, this 
research will discuss recursive parameter estimation and its convergence for multivariate normal hidden 
Markov inhomogeneous models. 

 
Multivariate Normal Hidden Markov Inhomogeneous 
Model 

 
The normal hidden Markov inhomogeneous multivariate model (MNHMM-I) is a discrete-time model 
consisting of a pair of stochastic processes {𝑋𝑡, 𝑌𝑡}𝑡∈ℕ [1], where {𝑋𝑡}𝑡∈ℕ is the cause the assumed event 
is not observed and forms a Markov chain that is inhomogeneous at one time  before and ergodic 

(irreducible, positive recurrent and aperiodic) [2] with state space 𝑆𝑋 = {1,2,⋯ ,𝑚}, whereas {𝑌𝑡}𝑡∈ℕ is the 

observation process which depends only on {𝑋𝑡}𝑡∈ℕ. Then the random variable 𝑌𝑡 is known 𝑋𝑡 assumed 

to be a normal multivariate distribution, for every 𝑡 ∈ ℕ [22], [23], [37]. 
 
To simplify writing, the following 10 points are symbolized for further writing: 

1. Observation process: 𝑌 = {𝑌𝑡}𝑡=1
𝑇 ; 

2. Markov chain: 𝑋 = {𝑋𝑡}𝑡=1
𝑇 ; 

3. MNHMM-I: 𝑍 = {𝑋𝑡 , 𝑌𝑡}𝑡=1
𝑇 ; 

4. data of process {𝑌𝑡}𝑡=1
𝑇 : 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑇), (called incomplete data); 

5. state of process {𝑋𝑡}𝑡=1
𝑇 : 𝑥 = (𝑖1, 𝑖2, … , 𝑖𝑇); 

6. data of process {𝑋𝑡, 𝑌𝑡}𝑡=1
𝑇 : 𝑧 = (𝑖1, 𝑦1, … , 𝑖𝑇 , 𝑦𝑇) = (𝑥, 𝑦), (called data complete); 

7. the probability mass function of 𝑍: 𝑃(𝑍 = 𝑧|𝜙) = 𝑝(𝑧; 𝜙) = 𝑝(𝑥, 𝑦|𝜙); 

8. the probability of 𝑌:  𝐿𝑇(𝜙) = 𝑃(𝑌 = 𝑦|𝜙) = 𝑝(𝑦|𝜙); 

9. likelihood function of complete data: 𝐿𝑇
𝑐 (𝜙) = 𝑝(𝑧|𝜙) = 𝑝(𝑥, 𝑦|𝜙); 

10. the probability mass function of 𝑋 = 𝑥 under condition 𝑌 = 𝑦: 𝑃(𝑋 = 𝑥|𝑌 = 𝑦, 𝜙) = 𝑝(𝑥|𝑦, 𝜙) =
𝑝(𝑧|𝜙)

𝑝(𝑦|𝜙)
=
𝑝(𝑥,𝑦|𝜙)

𝑝(𝑦|𝜙)
=
𝐿𝑇
𝑐 (𝜙)

𝐿𝑇(𝜙)
. 

 
Referring to [25][38][22][23][24][26], in this study the form of MNHMM-I is: 

 

𝑌𝑡 − 𝜇𝑠𝑡∗ = 𝜑(𝑌𝑡−1 − 𝜇𝑠𝑡−1∗ ) + 𝜀𝑡                                                    (1) 

where 

1. 𝜖𝑡 ~ 𝑚𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑛𝑜𝑟𝑚𝑎𝑙(0, Σ) and i.i.d for each 𝑡; 

2. {𝑌𝑡} is the observed process and scalar (longitudinal data); 

3. {𝑆𝑡
∗} is Markov chain with state space 𝑆𝑡

∗ = {1,2}, with transition matrix Γ∗ = (
𝛾11
∗ 𝛾21

∗

𝛾12
∗ 𝛾22

∗ ) , 𝛾𝑖𝑗
∗ =

𝑃(𝑆𝑡
∗ = 𝑗 | 𝑆𝑡−1

∗ = 𝑖); 

4. The MNHMM-I parameters are 𝜇1, 𝜇2, Σ, 𝜑 ∈ 𝑅. 

In this case 𝑌𝑡 does not only depend on 𝑆𝑡
∗ but also depends on 𝑆𝑡−1

∗  so that in order to comply with 

Markov properties it is necessary to define a new process 𝑆𝑡 where 
 

𝑆𝑡 = 1 if 𝑆𝑡
∗ = 1 and 𝑆𝑡−1

∗ = 1    (2) 
𝑆𝑡 = 2 if 𝑆𝑡

∗ = 1 and 𝑆𝑡−1
∗ = 2    (3) 

𝑆𝑡 = 3 if 𝑆𝑡
∗ = 2 and 𝑆𝑡−1

∗ = 1    (4) 
𝑆𝑡 = 4 if 𝑆𝑡

∗ = 2 and 𝑆𝑡−1
∗ = 2,    (5) 

 
so that the transition matrix parameters take the form 
 

Γ = (

𝛾11 𝛾12
𝛾21 𝛾22

𝛾13 𝛾14
𝛾22 𝛾24

𝛾31 𝛾32
𝛾41 𝛾42

𝛾33 𝛾34
𝛾43 𝛾44

). 
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Lemma 1 (Condition Sufficiently Estimating Parameters of Transition Matrix Γ on MNHMM-I) 
If the state of transition matrix is defined in equations (2) − (5), then in order to comply with the Markov 

property, it is sufficient to estimate the parameters 𝛾11
∗  and 𝛾22

∗  where the transition matrix Γ has the 
following form 

Γ = (

𝛾11
∗  0

𝛾11
∗ 0

𝛾12
∗ 0

𝛾12
∗ 0

0 𝛾21
∗

0  𝛾21
∗

 0 𝛾22
∗

0 𝛾22
∗

).                                                           (6) 

Proof, see Appendix 1. 
Furthermore, 
𝐹𝑌𝑡(𝑦𝑡) = 𝑃(𝑌𝑡 ≤ 𝑦𝑡) 

= 𝑃(𝜇𝑠𝑡∗ + 𝜑(𝑌𝑡−1 − 𝜇𝑠𝑡∗) + 𝜀𝑡 ≤ 𝑦𝑡) 

= 𝑃 (𝜀𝑡 ≤ 𝑦𝑡 − 𝜇𝑠𝑡∗ − 𝜑(𝑌𝑡−1 − 𝜇𝑠𝑡−1∗ )) 

= ∫
1

(2π)
p
2 |Σ|

1
2

 e−
𝜀𝑡
′′Σ−1𝜀𝑡
2

𝑦𝑡−𝜇𝑠𝑡
∗−𝜑(𝑌𝑡−1−𝜇𝑠𝑡−1

∗ )

0

𝑑𝜀𝑡.                                                                                                  (7) 

 
So equation (7) can be written as follows 
 

𝐹𝑌𝑡(𝑦𝑡) = ∫
1

(2π)
p
2 |Σ|

1
2

 e−
𝜀𝑡
′′Σ−1𝜀𝑡
2

𝑣

0

𝑑𝜀𝑡. 

Consequently, 

𝑓𝑌𝑡(𝑦𝑡) =
𝜕

𝜕𝑦𝑡
𝐹𝑌𝑡(𝑦𝑡) 

=
1

(2π)
p
2 |Σ|

1
2

 e−
vti

′Σ−1vtj
2

𝜕𝑣

𝜕𝑦𝑡
 

=
1

(2π)
p
2 |Σ|

1
2

 e−
vti

′Σ−1vtj
2 1 

=
1

(2π)
p
2 |Σ|

1
2

 e−
vti

′Σ−1vti
2 . 

 
So that the conditional probability density function in MNHMM-I can be written as equation (8) 
 

𝑓𝑌𝑡(𝑦𝑡) =

(

 

𝑓(𝑦𝑡|𝑆𝑡 = 1,𝒴𝑡−1; 𝜙)

𝑓(𝑦𝑡|𝑆𝑡 = 2,𝒴𝑡−1; 𝜙)

𝑓(𝑦𝑡|𝑆𝑡 = 3,𝒴𝑡−1; 𝜙)

𝑓(𝑦𝑡|𝑆𝑡 = 4,𝒴𝑡−1; 𝜙))

 =

(

 
 
 
 
 
 
 
 

1

(2π)
p
2 |Σ|

1
2

 e−
vt1

′Σ−1vt1
2

1

(2π)
p
2 |Σ|

1
2

 e−
vt1

′Σ−1vt2
2

1

(2π)
p
2 |Σ|

1
2

 e−
vt2

′Σ−1vt1
2

1

(2π)
p
2 |Σ|

1
2

 e−
vt2

′Σ−1vt2
2

)

 
 
 
 
 
 
 
 

,                                       (8) 

 

where 𝑣𝑡𝑖 = 𝑦𝑡 − 𝜇𝑠𝑡∗ − 𝜑(𝑌𝑡−1 − 𝜇𝑠𝑡−1∗ ), that is 

 

𝑣𝑡1 = (

𝑣1𝑡1
𝑣2𝑡1
⋮
𝑣𝑝𝑡1

) =

(

 

𝑦1𝑡 − 𝜇1 − 𝜑(𝑌1𝑡−1 − 𝜇1)

𝑦2𝑡 − 𝜇1 − 𝜑(𝑌2𝑡−1 − 𝜇1)
⋮

𝑦𝑝𝑡 − 𝜇1 −𝜑(𝑌𝑝𝑡−1 − 𝜇1))

 ;    𝑣𝑡2 = (

𝑣1𝑡2
𝑣2𝑡2
⋮
𝑣𝑝𝑡2

) =

(

 

𝑦1𝑡 − 𝜇1 − 𝜑(𝑌1𝑡−1 − 𝜇2)

𝑦2𝑡 − 𝜇1 − 𝜑(𝑌2𝑡−1 − 𝜇2)
⋮

𝑦𝑝𝑡 − 𝜇1 −𝜑(𝑌𝑝𝑡−1 − 𝜇2))

 ; 

 

𝑣𝑡3 = (

𝑣1𝑡3
𝑣2𝑡3
⋮
𝑣𝑝𝑡3

) =

(

 

𝑦1𝑡 − 𝜇2 − 𝜑(𝑌1𝑡−1 − 𝜇1)

𝑦2𝑡 − 𝜇2 − 𝜑(𝑌2𝑡−1 − 𝜇1)
⋮

𝑦𝑝𝑡 − 𝜇2 − 𝜑(𝑌𝑝𝑡−1 − 𝜇1))

 ;     𝑣𝑡4 = (

𝑣1𝑡4
𝑣2𝑡4
⋮
𝑣𝑝𝑡4

) =

(

 

𝑦1𝑡 − 𝜇2 −𝜑(𝑌1𝑡−1 − 𝜇2)

𝑦2𝑡 − 𝜇2 −𝜑(𝑌2𝑡−1 − 𝜇2)
⋮

𝑦𝑝𝑡 − 𝜇2 − 𝜑(𝑌𝑝𝑡−1 − 𝜇2))

 . 
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Here's a basic MNHMM-I resume: 

1. 𝑦1 = (

𝑦11
𝑦21
⋮
𝑦𝑝1

) , 𝑦2 = (

𝑦12
𝑦22
⋮
𝑦𝑝2

) ,.  .  .  , 𝑦𝑇 = (

𝑦1𝑇
𝑦2𝑇
⋮
𝑦𝑝𝑇

) is the longitudinal data to be modeled, where 𝑝 is the 

number of cross data and 𝑇 is the amount of time series data. The MNHMM-I parameters are 

Μ, Σ, Γ, 𝜑, 𝛿 [22], with 

Μ = (𝜇1, 𝜇2), with  𝜇1 = (

𝜇11
𝜇21
⋮
𝜇𝑝1

) ; 𝜇2 = (

𝜇12
𝜇22
⋮
𝜇𝑝2

). 

 Σ = (

𝜎11 𝜎12
𝜎21 𝜎22

… 𝜎1𝑝
… 𝜎2𝑝

⋮ ⋮
𝜎𝑝1 𝜎𝑝2

⋱ ⋮
… 𝜎𝑝𝑝

),  

Γ = (

𝛾11
∗  0

𝛾11
∗ 0

𝛾12
∗ 0

𝛾12
∗ 0

0 𝛾21
∗

0  𝛾21
∗

 0 𝛾22
∗

0 𝛾22
∗

), with Γ∗ = (
𝛾11
∗ 𝛾21

∗

𝛾12
∗ 𝛾22

∗ ), 

𝜑 ∈ ℝ, and 𝛿 ∈ ℝ𝑚×1. 
 

2. The conditional probability 𝑌𝑡 if known 𝑋𝑡 = 𝑖 (𝑡 ∈ ℕ) is a normal multivariate random variable with the 
mean parameter 𝝁 and the covariance matrix 𝚺. For each 𝑦 ∈ ℝ𝑝, the probability matrix from the 

observation process Π = [𝜋𝑦𝑖] in [39] [22] is 

 

𝜋𝑦𝑡𝑖𝑡 = 𝑃(𝑌𝑡 = 𝑦𝑡|𝑋𝑡 = 𝑖𝑡, 𝜙) =
1

(2π)
p
2 |Σ|

1
2

 e−
vti

′Σ−1vti
2 , 

for 𝑖𝑡 = 1,2, … ,4  and  𝑡 = 1,2,… , 𝑇. 
 

∫ …∫ ∫
1

(2π)
p
2 |Σ|

1
2

 e−
vti

′Σ−1vti
2

∞

−∞

∞

−∞

∞

−∞

 𝑑𝑦1 𝑑𝑦2…  𝑑𝑦𝑝 = 1. 

 

3. Transition probability matrix Γ = [𝛾𝑖𝑗], where Γ matrix is of size 𝑚 ×𝑚 and 𝑖, 𝑗 ∈ 𝑆𝑋, satisfies: 

• 𝛾𝑖𝑗 = 𝑃(𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖) = 𝑃(𝑋2 = 𝑗|𝑋1 = 𝑖),  

• 𝛾𝑖𝑗 ≥ 0,   

• ∑ 𝛾𝑖𝑗
𝑚
𝑗=1 = 1, for each 𝑖 = 1,2,… ,𝑚. 

  
 

4. 𝜑 ∈ 𝑅, is a scalar-valued parameter contained in equation (1). 
 

5. Let 𝛿 = (
𝛿1
⋮
𝛿𝑚

) be the initial state distribution and the long-term proportion 𝛿 is usually called the 

stationary distribution. Based on [2] the Markov chain {𝑋𝑡}𝑡∈ℕ which is assumed to be ergodic, the 

stationary distribution 𝛿 can be obtained uniquely, that is, it satisfies 
 

Γ𝛿 = 𝛿.                                                                                    (9) 
with 

𝛿𝑖 = 𝑃(𝑋1 = 𝑖), ∀𝑖 ∈ 𝑆𝑋 

∑𝛿𝑖

𝑚

𝑖=1

= 1. 

 
For each 𝑡 ∈ ℕ and 𝑦 ∈ ℝ𝑝, the marginal distribution function of 𝑌𝑡, ie 

𝑃(𝑌𝑡 = 𝑦) =∑𝑃(𝑌𝑡 = 𝑦|𝑋𝑡 = 𝑖)𝑃(𝑋𝑡 = 𝑖)

𝑚

𝑖=1

=∑𝛿𝑖𝜋𝑦𝑖

𝑚

𝑖=1

 . 

 

Based on the discussion above, MNHMM-I {𝑋𝑡, 𝑌𝑡}𝑡∈ℕ is characterized by 𝛿,Μ, Σ, Γ, 𝜑. The most important 
thing in MNHMM-I is to estimate the parameters of this model by maximizing its likelihood function. 
Furthermore, equation (9) informs that 𝛿 will be obtained when Γ is obtained (eigen vector) so that 𝛿 is 



 

10.11113/mjfas.v19n5.3041 844 

Fikri et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 840-854 

not a parameter that must be estimated. In addition, for the transition matrix based on Lemma 1, it is 

sufficient to estimate the diagonal elements 𝛾11
∗  and 𝛾22

∗  which are symbolized by Γ̂. Due to the estimation 
and convergence of the parameters of the covariance matrix, it has its own complexity and analysis 
(multivariate analysis), so it will be published separately. The parameter estimation in this study is limited 

to 𝝓 = (𝑴, �̂�, 𝝋). In order to estimate the parameters and analyze the convergence of this model, it is 

necessary to clarify the parameter space and its assumptions, the likelihood function and the parameter 
estimation process which will be discussed in the following discussion. 

 
Parameter Estimation 

 
Suppose the number of observation times 𝑇, the number of cross-sectional data 𝑝, the number of states 

𝑚, and the observation sequence 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑇 ) are defined. Given that any 𝜀 > 0 is small enough 

to approach 0, define the MNHMM-I parameter space: 𝚽 = {𝜙 = (𝑀, Γ̂, 𝜑) ∶ 𝑀 ∈ [𝜀,
1

𝜀
]
𝑝×𝑚

, Γ̂ ∈

[0,1]1×2, 𝜑 ∈ ℝ  }. For each 𝜙 ∈ 𝚽, 𝛿(𝜙) = (𝛿𝑖(𝜙)), 𝑀(𝜙) = (𝜇𝑖𝑗(𝜙)) , Σ(𝜙) = (σ𝑖𝑗(𝜙)) , Γ(𝜙) =

(𝛾𝑖𝑗(𝜙)), 𝜑(𝜙) = 𝜑(𝜙) [22][37], the following five continuity points are assumed to be satisfied. 

 
1. 𝛿𝑖:𝚽 → ℝ, with 𝛿𝑖(𝜙) = 𝛿𝑖 is a function that is continuous in 𝚽, ∀ 𝑖 ∈ 𝑆𝑋. 

2. 𝑀𝑖:𝚽 → ℝ, with 𝑀𝑖(𝜙) = 𝑀𝑖 is a function that is continuous in 𝚽, ∀ 𝑖 ∈ 𝑆𝑋, 

3. Σ𝑖:𝚽 → ℝ, with Σ𝑖(𝜙) = Σ𝑖 is a function that is continuous in 𝚽, ∀ 𝑖 ∈ 𝑆𝑋, 

4. 𝛾𝑖𝑗: 𝚽 → ℝ, with 𝛾𝑖𝑗(𝜙) = 𝛾𝑖𝑗 is a function that is continuous in 𝚽, ∀ 𝑖, 𝑗 ∈ 𝑆𝑋, 

5. 𝜑:𝚽 → ℝ, with 𝜑(𝜙) = 𝜑 is a function that is continuous in 𝚽. 
 

The likelihood function of the Y observation process is defined in equation (10): 
𝐿𝑇(𝜙) = 𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑇 = 𝑦𝑇|𝜙) 

= 𝑝(𝑦1, 𝑦2, … , 𝑦𝑇|𝜙) 
= 𝑝(𝑦|𝜙) 

= ∑ …∑(𝜋𝑦1𝑖1𝜋𝑦2𝑖2 …𝜋𝑦𝑇𝑖𝑇) × (𝛿𝑖1𝛾𝑖1𝑖2𝛾𝑖2𝑖3 …𝛾𝑖𝑇−1𝑖𝑇)

𝑚

𝑖𝑇=1

𝑚

𝑖1=1

 

= ∑ …∑ 𝛿𝑖1𝜋𝑦1𝑖1∏𝛾𝑖𝑡−1𝑖𝑡𝜋𝑦𝑡𝑖𝑡

𝑇

𝑡=2

𝑚

𝑖𝑇=1

𝑚

𝑖1=1

.                                                                                                                   (10) 

 
In the previous discussion, it has been explained that the main problem in MNHMM-I is finding the 
parameter 𝜙∗ ∈ 𝚽 which maximizes the likelihood function 𝐿𝑇(𝜙). For large enough 𝑇 observation data, 

calculating the 𝐿𝑇(𝜙) function takes quite a long time. To deal with this problem, the forward-backward 
algorithm is used. The working principle of the forward-backward algorithm is to calculate recursively, 
thus speeding up computation time. This algorithm is divided into two, namely the forward algorithm and 
the backward algorithm. Baum et al. [40] define forward probability as follows: 

𝛼𝑡(𝑖|𝜙) = 𝑃(𝑌1 = 𝑦1, 𝑌2 = 𝑦2, … , 𝑌𝑡 = 𝑦𝑡, 𝑋𝑡 = 𝑖|𝜙), 
and backward probability: 

𝛽𝑡(𝑖|𝜙) = 𝑃(𝑌𝑡+1 = 𝑦𝑡+1, … , 𝑌𝑇 = 𝑦𝑇|𝑋𝑡 = 𝑖, 𝜙), 
for 𝑡 = 1,2,…𝑇, and 𝑖 ∈ 𝑆𝑋. 
 
The formulation for forward probability and backward probability recursively [27][28] which is commonly 
called the forward algorithm is as follows: 

𝛼1(𝑖|𝜙) = 𝜋𝑦1𝑖𝛿𝑖 , 

𝛼𝑡+1(𝑗|𝜙) = (∑ 𝛼𝑡(𝑖|𝜙)𝛾𝑖𝑗
𝑖∈𝑆𝑋

)𝜋𝑦𝑡+1𝑗 , 

and backward algorithm 
𝛽𝑇(𝑗|𝜙) = 1, 

𝛽𝑡(𝑗|𝜙) = ∑ 𝛽𝑡+1(𝑖|𝜙)𝜋𝑦𝑡+1𝑖
𝑖∈𝑆𝑋

𝛾𝑗𝑖 , 

for 𝑡 = 1,… , 𝑇 − 1, and 𝑖, 𝑗 ∈ 𝑆𝑋. 
 
Then [27][28] uses forward and backward algorithms to calculate the likelihood function 𝐿𝑇(𝜙), which is 
commonly called the forward-backward algorithm and obtains: 
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𝐿𝑇(𝜙) = ∑ 𝛼𝑡(𝑖|𝜙)𝛽𝑡(𝑖|𝜙)

𝑖∈𝑆𝑋

, 

for any 𝑡 = 1,2,.  .  . , 𝑇, and 𝑖 ∈ 𝑆𝑋. 
The likelihood function of the complete data can be seen in equation (11) 
 

𝐿𝑇
𝑐 (𝜙) = 𝛿𝑖1𝜋𝑦1𝑖1∏𝛾𝑖𝑡−1𝑖𝑡𝜋𝑦𝑡𝑖𝑡

𝑇

𝑡=2

.                                                              (11) 

 
Based on equations (10) and (11), the relationship between the likelihood function of incomplete data 
and complete data is as follows: 

𝐿𝑇(𝜙) = 𝑝(𝑦|𝜙) = ∑ …∑ 𝛿𝑖1𝜋𝑦1𝑖1∏𝛾𝑖𝑡−1𝑖𝑡𝜋𝑦𝑡𝑖𝑡

𝑇

𝑡=2

𝑚

𝑖𝑇=1

𝑚

𝑖1=1

=∑𝑝(𝑦, 𝑥|𝜙)

𝑥

=∑𝐿𝑇
𝑐 (𝜙)

𝑥

. 

To obtain 𝜙∗ ∈ 𝚽 which maximizes 𝐿𝑇(𝜙) is a difficult problem. 𝜙∗ ∈ 𝚽 which maximizes ln 𝐿𝑇(𝜙) will 

also maximize 𝐿𝑇(𝜙). For 𝜙 ∈ 𝚽, holds 
 

ln 𝑝(𝑥|𝑦, 𝜙) = ln
𝐿𝑇
𝑐 (𝜙)

𝐿𝑇(𝜙)
   ⟹ ln 𝐿𝑇(𝜙) = ln 𝐿𝑇

𝑐 (𝜙) − ln 𝑝(𝑥|𝑦, 𝜙). 

 

Note that for any �̂� ∈ 𝚽 also holds 
 

𝐸�̂�(ln 𝐿𝑇(𝜙) |𝑦) = 𝐸�̂�(ln 𝐿𝑇
𝑐 (𝜙) |𝑦) − 𝐸�̂�(ln 𝑝(𝑥|𝑦, 𝜙)|𝑦),                                 (12) 

and 

𝐸�̂�(ln 𝐿𝑇(𝜙) |𝑦) =∑ln𝐿𝑇(𝜙) 𝑝(𝑥|𝑦, �̂�)

𝑥

=∑ln 𝑝(𝑦|𝜙) 𝑝(𝑥|𝑦, �̂�)

𝑥

=∑ln𝑝(𝑦|𝜙)
𝑝(𝑥, 𝑦|�̂�)

𝑝(𝑦|�̂�)
𝑥

 

=
ln𝑝(𝑦|𝜙)

𝑝(𝑦|�̂�)
∑𝑝(𝑥, 𝑦|�̂�)

𝑥

=
ln 𝑝(𝑦|𝜙)

𝑝(𝑦|�̂�)
𝑝(𝑦|�̂�) = ln 𝑝(𝑦|𝜙) = ln 𝐿𝑇(𝜙),                      (13) 

 
so that based on equations (12) and (13) is obtained 
 

ln 𝐿𝑇(𝜙) = 𝑄(𝜙|�̂�) − 𝐻(𝜙|�̂�),                                                            (14) 

 

with 𝑄(𝜙|�̂�) = 𝐸�̂�(ln 𝐿𝑇
𝑐 (𝜙)|𝑦) dan 𝐻(𝜙|�̂�) = 𝐸�̂�(ln 𝑝(𝑥|𝑦, 𝜙) |𝑦). 

To get 𝜙∗ which maximizes ln 𝐿𝑇(𝜙), the first step is to solve the equation 𝜕𝜙(ln 𝐿𝑇(𝜙)) = 0 to get a 

stationary point. By following the pattern of equation (12), it will be obtained directly 
 

𝜕𝜙(ln 𝐿𝑇(𝜙)) = 𝐸�̂�(𝜕𝜙(ln 𝐿𝑇(𝜙))|𝑦)                                                  (15) 

 
Corollary of equations (14) and (15), then 
 

𝜕𝜙(ln 𝐿𝑇(𝜙)) = 𝐸�̂�(𝜕𝜙(ln 𝐿𝑇(𝜙))|𝑦) = 𝐸�̂�(𝜕𝜙 ln 𝐿𝑇
𝑐 (𝜙) |𝑦) − 𝐸�̂�(𝜕𝜙 ln 𝑝(𝑥|𝑦, 𝜙)|𝑦).           (16) 

Define[29] 

𝐷10𝑄(𝜙|�̂�) = 𝐸�̂� (
𝜕

𝜕𝜙
ln 𝐿𝑇

𝑐 (𝜙)|𝑦),                                                 (17) 

and 

𝐷10𝐻(𝜙|�̂�) = 𝐸�̂� (
𝜕

𝜕𝜙
ln 𝑝(𝑥|𝑦, 𝜙) |𝑦),                                             (18) 

 

so by substituting equations (17) and (18) into equation (16), will obtained 
 

𝜕𝜙(ln 𝐿𝑇(𝜙)) = 𝐷
10𝑄(𝜙|�̂�) − 𝐷10𝐻(𝜙|�̂�).                                           (19) 

Lemma 2 (see [29]) 

Suppose 𝐷10𝐻(𝜙|�̂�) = 𝐸�̂� (
𝜕

𝜕𝜙
ln 𝑝(𝑥|𝑦, 𝜙) |𝑦), then 𝐷10𝐻(�̂�|�̂�) = 0, for every �̂� ∈ 𝚽. 

Proof, see Appendix 2. 
 

Lemma 3 (see [29]) 

Suppose 𝐻(𝜙|�̂�) = 𝐸�̂�(ln 𝑝(𝑥|𝑦, 𝜙) |𝑦), then 𝐻(𝜙|�̂�) ≤ 𝐻(�̂�|�̂�), for every 𝜙, �̂� ∈ 𝚽. 

Proof, see Appendix 3. 
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To get the stationary point of ln 𝐿𝑇(𝜙), based on equation (14), Lemma 2 and Lemma 3, it is enough to 

find the stationary point from 𝑄(𝜙|�̂�) to 𝜙 ∈ 𝚽. However, 𝐷10𝑄(𝜙|�̂�) is a non-linear function and is 

difficult to solve explicitly with respect to the parameter 𝜙 ∈ 𝚽, as a result to obtain a stationary point 

from 𝑄(𝜙|�̂�) to 𝜙 ∈ 𝚽 is an analytical problem difficult, so this problem is solved using the Expectation 

Maximization algorithm. 
 
The Expectation Maximization (EM) algorithm is a recursive algorithm which consists of two steps in 

each iteration, namely step E and step M. The steps in the EM algorithm are, take 𝜙(𝑘) as an estimate 

for the MNHMM-I parameter obtained at 𝑘th iteration. In the (𝑘 + 1)th iteration, step E and step M are 
defined as follows: 

1. Give error tolerance, maximum iteration and initial value of parameter 𝜙(𝑘) for 𝑘 = 0, 

2. E Step – Given 𝜙(𝑘), compute 

𝑄(𝜙;𝜙(𝑘)) = 𝐸𝜙(𝑘)(ln 𝐿𝑇
𝑐 (𝜙)|𝑌 = 𝑦) 

= ∑
𝛼1(𝑖|𝜙

(𝑘))𝛽1(𝑖|𝜙
(𝑘))

∑ 𝛼𝑡(𝑙|𝜙
(𝑘))𝛽𝑡(𝑙|𝜙

(𝑘))𝑙∈𝑆𝑋

ln 𝛿𝑖(𝜙)

i∈SX

+ ∑
∑ 𝛼𝑡(𝑖|𝜙

(𝑘))𝛽𝑡(𝑖|𝜙
(𝑘))𝑇

𝑡=1

∑ 𝛼𝑡(𝑙|𝜙
(𝑘))𝛽𝑡(𝑙|𝜙

(𝑘))𝑙∈𝑆𝑋i∈SX

ln (
1

(2π)
p
2 |Σ|

1
2

 e−
vti

′Σ−1vti
2 )

+ ∑∑
∑ 𝛾𝑖𝑗(𝜙

(𝑘))𝛼𝑡(𝑖|𝜙
(𝑘))𝑃(𝑌𝑡+1 = 𝑦𝑡+1|𝑋𝑡+1 = 𝑗, 𝜙

(𝑘))𝛽𝑡+1(𝑗|𝜙
(𝑘))𝑇−1

𝑡=1

∑ 𝛼𝑡(𝑙|𝜙
(𝑘))𝛽𝑡(𝑙|𝜙

(𝑘))𝑙∈𝑆𝑋j∈SXi∈SX

ln 𝛾𝑖𝑗(𝜙). 

3. M Step – Finding the 𝜙(𝑘+1) that maximizes 𝑄(𝜙;𝜙(𝑘)), so that 

𝑄(𝜙(𝑘+1)|𝜙(𝑘)) ≥ 𝑄(𝜙|𝜙(𝑘)), 

For every 𝜙 ∈ 𝚽, 

4. Replace 𝑘 with 𝑘 + 1 and repeat step 2 to step 4 until |ln 𝐿𝑇(𝜙
(𝑘+1)) − ln 𝐿𝑇(𝜙

(𝑘))| is less than the 

given error (in other words {ln 𝐿𝑇(𝜙
(𝑘))} converges) or the maximum iteration is reached. 

 

In M Step, the estimation of the average parameter MNHMM-I is obtained by method 
𝜕𝑄(𝜙|𝜙(𝑘))

𝜕𝜇𝑢𝑤(𝜙)
= 0, so 

that for 𝑤 = 1 obtained 
 

𝜇𝑢𝑤 = −
∑ 𝐴1𝑡𝑤
𝑇
𝑡=1 + ∑ 𝐴2𝑡𝑤

𝑇
𝑡=1 +∑ 𝐵1𝑡𝑤+1

𝑇
𝑡=1 +∑ 𝐵2𝑡𝑤+1

𝑇
𝑡=1 + ∑ 𝐶1𝑡𝑤+2

𝑇
𝑡=1 + ∑ 𝐶2𝑡𝑤+2

𝑇
𝑡=1

2𝑠𝑢𝑢 ((1 − 2𝜑 + 𝜑
2)∑ 𝛼𝑡(𝑤|𝜙

(𝑘))𝛽𝑡(𝑤|𝜙
(𝑘))𝑇

𝑡=1 + ∑ 𝛼𝑡(𝑤 + 1|𝜙
(𝑘))𝛽𝑡(𝑤 + 1|𝜙

(𝑘))𝑇
𝑡=1 + 𝜑2∑ 𝛼𝑡(𝑤 + 2|𝜙

(𝑘))𝛽𝑡(𝑤 + 2|𝜙
(𝑘))𝑇

𝑡=1 )
, 

 
with 

𝐴1𝑡𝑤 = 𝛼𝑡(𝑤|𝜙
(𝑘))𝛽𝑡(𝑤|𝜙

(𝑘))(∑𝑠𝑖𝑢 𝑣𝑖𝑡𝑤𝑊
∗(𝑤,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

+∑𝑠𝑢𝑖  𝑣𝑖𝑡𝑤𝑊
∗(𝑤,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

) ; 

𝐴2𝑡𝑤 = 𝛼𝑡(𝑤|𝜙
(𝑘))𝛽𝑡(𝑤|𝜙

(𝑘))(2𝑠𝑢𝑢(−1 + 𝜑)(𝑦𝑢𝑡 −𝜑 𝑌𝑢𝑡−1)); 

𝐵1𝑡𝑤+1 = 𝛼𝑡(𝑤 + 1|𝜙
(𝑘))𝛽𝑡(𝑤 + 1|𝜙

(𝑘)) (∑ 𝑠𝑖𝑢 𝑣𝑖𝑡𝑤+1𝑊
∗(𝑤 + 1,𝑤)

𝑝
𝑖=1
𝑖≠𝑢

+ ∑ 𝑠𝑢𝑖  𝑣𝑖𝑡𝑤+1𝑊
∗(𝑤 + 1,𝑤)

𝑝
𝑖=1
𝑖≠𝑢

) ;

  

𝐵2𝑡𝑤+1 = 𝛼𝑡(𝑤 + 1|𝜙
(𝑘))𝛽𝑡(𝑤 + 1|𝜙

(𝑘))(2𝑠𝑢𝑢(−1)(𝑦𝑢𝑡 −𝜑𝑌𝑢𝑡−1 +𝜑𝜇𝑢𝑤)); 

𝐶1𝑡𝑤+2 = 𝛼𝑡(𝑤 + 2|𝜙
(𝑘))𝛽𝑡(𝑤 + 2|𝜙

(𝑘))(∑𝑠𝑖𝑢 𝑣𝑖𝑡𝑤+2𝑊
∗(𝑤 + 2,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

+∑𝑠𝑢𝑖  𝑣𝑖𝑡𝑤+2𝑊
∗(𝑤 + 2,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

) ; 

𝐶2𝑡𝑤+2 = 𝛼𝑡(𝑤 + 2|𝜙
(𝑘))𝛽𝑡(𝑤 + 2|𝜙

(𝑘))(2𝑠𝑢𝑢𝜑(𝑦𝑢𝑡 − 𝜑𝑌𝑢𝑡−1 − 𝜇𝑢𝑤)). 

 
 
For 𝑤 = 2 

𝜇𝑢𝑤 = −
∑ 𝐴1𝑡𝑤
𝑇
𝑡=1 + ∑ 𝐴2𝑡𝑤

𝑇
𝑡=1 +∑ 𝐵1𝑡𝑤+1

𝑇
𝑡=1 +∑ 𝐵2𝑡𝑤+1

𝑇
𝑡=1 + ∑ 𝐶1𝑡𝑤+2

𝑇
𝑡=1 + ∑ 𝐶2𝑡𝑤+2

𝑇
𝑡=1

(2𝑠𝑢𝑢)(𝜑
2∑ 𝛼𝑡(𝑤|𝜙

(𝑘))𝛽𝑡(𝑤|𝜙
(𝑘))𝑇

𝑡=1 + ∑ 𝛼𝑡(𝑤 + 1|𝜙
(𝑘))𝛽𝑡(𝑤 + 1|𝜙

(𝑘))𝑇
𝑡=1 + (1 − 2𝜑 + 𝜑2)∑ 𝛼𝑡(𝑤 + 2|𝜙

(𝑘))𝛽𝑡(𝑤 + 2|𝜙
(𝑘))𝑇

𝑡=1 )
, 

 
with 

𝐴1𝑡𝑤 = 𝛼𝑡(𝑤|𝜙
(𝑘))𝛽𝑡(𝑤|𝜙

(𝑘))(∑𝑠𝑖𝑢 𝑣𝑖𝑡𝑤𝑊
∗(𝑤,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

+∑𝑠𝑢𝑖  𝑣𝑖𝑡𝑤𝑊
∗(𝑤,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

) ; 

𝐴2𝑡𝑤 = 𝛼𝑡(𝑤|𝜙
(𝑘))𝛽𝑡(𝑤|𝜙

(𝑘))(2𝑠𝑢𝑢(𝜑)(𝑦𝑢𝑡 −𝜑 𝑌𝑢𝑡−1 − 𝜇𝑢𝑤)) 
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𝐵1𝑡𝑤+1 = 𝛼𝑡(𝑤 + 1|𝜙
(𝑘))𝛽𝑡(𝑤 + 1|𝜙

(𝑘))(∑𝑠𝑖𝑢 𝑣𝑖𝑡𝑤+1𝑊
∗(𝑤 + 1,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

+∑𝑠𝑢𝑖  𝑣𝑖𝑡𝑤+1𝑊
∗(𝑤 + 1,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

) ; 

𝐵2𝑡𝑤+1 = 𝛼𝑡(𝑤 + 1|𝜙
(𝑘))𝛽𝑡(𝑤 + 1|𝜙

(𝑘))(2𝑠𝑢𝑢(−1)(𝑦𝑢𝑡 −𝜑𝑌𝑢𝑡−1 +𝜑𝜇𝑢𝑤)); 

𝐶1𝑡𝑤+2 = 𝛼𝑡(𝑤 + 2|𝜙
(𝑘))𝛽𝑡(𝑤 + 2|𝜙

(𝑘))(∑𝑠𝑖𝑢 𝑣𝑖𝑡𝑤+2𝑊
∗(𝑤 + 2,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

+∑𝑠𝑢𝑖  𝑣𝑖𝑡𝑤+2𝑊
∗(𝑤 + 2,𝑤)

𝑝

𝑖=1
𝑖≠𝑢

) ; 

𝐶2𝑡𝑤+2 = 𝛼𝑡(𝑤 + 2|𝜙
(𝑘))𝛽𝑡(𝑤 + 2|𝜙

(𝑘))(2𝑠𝑢𝑢(−1 + 𝜑)(𝑦𝑢𝑡 − 𝜑𝑌𝑢𝑡−1)); 

where 𝑢 = 1,2,… , 𝑝, and Σ−1 = (

s11 s12
s21 s22

… s1p
… s2p

⋮ ⋮
sp1 sp2

⋱ ⋮
… spp

). 

 

To obtain the parameter 𝛾𝑢𝑣
∗ (𝜙(𝑘+1)) which maximizes 𝑄(𝜙|𝜙(𝑘)) toward 𝜙 ∈ 𝚽, used the Lagrange 

multiplier method with the constraint ∑ 𝛾𝑖𝑗
∗ (𝜙)𝑚

𝑗=1 = 1, for 𝑖 = 1,2. In order for the parameter 𝛤 to still fulfill 

the inhomogeneous Markov property one time before, then based on Lemma 1 it is enough to update 

𝛾11
∗  and 𝛾22

∗ . Suppose 𝐺(𝜙|𝜙(𝑘)) = 𝑄(𝜙|𝜙(𝑘)) − ∑ 𝜃𝑖(∑ 𝛾𝑖𝑗
∗ (𝜙) − 1∀𝑗 )𝑚

𝑖=1 , for any 𝜃𝑖 ∈ ℝ. Then 
𝜕𝐺(𝜙|𝜙(𝑘))

𝜕𝛾𝑢𝑢
∗ (𝜙)

=

0 (for 𝑢 = 1,2) implies 
 

𝛾𝑢𝑢
∗ (𝜙(𝑘+1)) =

∑ 𝛾𝑢𝑢
∗ (𝜙(𝑘))𝛼𝑡(𝑢|𝜙

(𝑘))𝑃(𝑌𝑡+1 = 𝑦𝑡+1|𝑋𝑡+1 = 𝑢, 𝜙
(𝑘))𝛽𝑡+1(𝑢|𝜙

(𝑘))𝑇−1
𝑡=1

∑ 𝛼𝑡(𝑢|𝜙
(𝑘)) 𝛽𝑡(𝑢|𝜙

(𝑘))𝑇−1
𝑡=1

. 

 

As for 𝛾𝑢𝑣
∗  (for 𝑢, 𝑣 = 1,2 and 𝑢 ≠ 𝑣), it is updated using the probability property for the transition matrix, 

namely 
𝛾𝑢𝑣
∗ = 1 − 𝛾𝑢𝑢

∗  

So that the MNHMM-I transition matrix is obtained by means of Γ = (

𝛾11
∗  0

𝛾11
∗ 0

𝛾12
∗ 0

𝛾12
∗ 0

0 𝛾21
∗

0  𝛾21
∗

 0 𝛾22
∗

0 𝛾22
∗

). 

 

The estimation of the 𝜑 parameter is obtained by method 
𝜕𝑄(𝜙|𝜙(𝑘))

𝜕𝜑(𝜙)
= 0, so that obtained 

 

𝜑 =
∑ 𝐴1𝑡
𝑇
𝑡=1 + ∑ 𝐴2𝑡

𝑇
𝑡=1 +∑ 𝐴3𝑡

𝑇
𝑡=1 + ∑ 𝐴4𝑡

𝑇
𝑡=1

2(∑ 𝐵1𝑡
𝑇
𝑡=1 + ∑ 𝐵2𝑡

𝑇
𝑡=1 + ∑ 𝐵3𝑡

𝑇
𝑡=1 +∑ 𝐵4𝑡

𝑇
𝑡=1 )

, 

with 

𝐴1𝑡 = 𝛼𝑡(1|𝜙
(𝑘))𝛽𝑡(1|𝜙

(𝑘))(∑∑𝑠𝑖𝑗(𝑌𝑖𝑡−1 − 𝜇𝑖1)(𝑦𝑗𝑡 − 𝜇𝑗1)

𝑝

𝑖=1

𝑝

𝑗=1

+∑∑𝑠𝑖𝑗(𝑌𝑗𝑡−1 − 𝜇𝑗1)(𝑦𝑖𝑡 − 𝜇𝑖1)

𝑝

𝑖=1

𝑝

𝑗=1

) 

𝐴2𝑡 = 𝛼𝑡(2|𝜙
(𝑘))𝛽𝑡(2|𝜙

(𝑘))(∑∑𝑠𝑖𝑗(𝑌𝑖𝑡−1 − 𝜇𝑖2)(𝑦𝑗𝑡 − 𝜇𝑗1)

𝑝

𝑖=1

𝑝

𝑗=1

+∑∑𝑠𝑖𝑗(𝑌𝑗𝑡−1 − 𝜇𝑗2)(𝑦𝑖𝑡 − 𝜇𝑖1)

𝑝

𝑖=1

𝑝

𝑗=1

) 

𝐴3𝑡 = 𝛼𝑡(3|𝜙
(𝑘))𝛽𝑡(3|𝜙

(𝑘))(∑∑𝑠𝑖𝑗(𝑌𝑖𝑡−1 − 𝜇𝑖1)(𝑦𝑗𝑡 − 𝜇𝑗2)

𝑝

𝑖=1

𝑝

𝑗=1

+∑∑𝑠𝑖𝑗(𝑌𝑗𝑡−1 − 𝜇𝑗1)(𝑦𝑖𝑡 − 𝜇𝑖2)

𝑝

𝑖=1

𝑝

𝑗=1

) 

𝐴4𝑡 = 𝛼𝑡(4|𝜙
(𝑘))𝛽𝑡(4|𝜙

(𝑘))(∑∑𝑠𝑖𝑗(𝑌𝑖𝑡−1 − 𝜇𝑖2)(𝑦𝑗𝑡 − 𝜇𝑗2)

𝑝

𝑖=1

𝑝

𝑗=1

+∑∑𝑠𝑖𝑗(𝑌𝑗𝑡−1 − 𝜇𝑗2)(𝑦𝑖𝑡 − 𝜇𝑖2)

𝑝

𝑖=1

𝑝

𝑗=1

) 

𝐵1𝑡 = 𝛼𝑡(1|𝜙
(𝑘))𝛽𝑡(1|𝜙

(𝑘))(∑∑𝑠𝑖𝑗(𝑌𝑗𝑡−1 − 𝜇𝑗1)(𝑌𝑖𝑡−1 − 𝜇𝑖1)

𝑝

𝑖=1

𝑝

𝑗=1

) 

𝐵2𝑡 = 𝛼𝑡(2|𝜙
(𝑘))𝛽𝑡(2|𝜙

(𝑘))(∑∑𝑠𝑖𝑗(𝑌𝑗𝑡−1 − 𝜇𝑗2)(𝑌𝑖𝑡−1 − 𝜇𝑖2)

𝑝

𝑖=1

𝑝

𝑗=1

) 
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𝐵3𝑡 = 𝛼𝑡(3|𝜙
(𝑘))𝛽𝑡(3|𝜙

(𝑘))(∑∑𝑠𝑖𝑗(𝑌𝑗𝑡−1 − 𝜇𝑗1)(𝑌𝑖𝑡−1 − 𝜇𝑖1)

𝑝

𝑖=1

𝑝

𝑗=1

) 

𝐵4𝑡 = 𝛼𝑡(4|𝜙
(𝑘))𝛽𝑡(4|𝜙

(𝑘))(∑∑𝑠𝑖𝑗(𝑌𝑗𝑡−1 − 𝜇𝑗2)(𝑌𝑖𝑡−1 − 𝜇𝑖2)

𝑝

𝑖=1

𝑝

𝑗=1

). 

 
Parameter Estimator Sequence Convergence MNHMM-I 
 

Furthermore, will proved that the sequence {ln 𝐿𝑇(𝜙
(𝑘))} converges to ln 𝐿𝑇(𝜙

∗) using the EM algorithm, 

where 𝜙(𝑘) is the MNHMM-I parameter estimator in the 𝑘th iteration and 𝜙∗ is a stationary point of the 

function ln 𝐿𝑇(𝜙). This will be discussed in Wu's Theorem (Theorem 2). Before discussing Wu's 
Theorem, the following symbols are exemplified to simplify writing: 
 
1. Let 𝑘 denotes the iteration of the EM algorithm, namely 𝑘 ∈ {0,1,2,3,… }; 
2. Let 𝚿 = {𝜙 ∈ int 𝚽 ∶  𝜙 stationary point of ln 𝐿𝑇(𝜙)}; 

3. Let 𝑇 T  be the set-valued function defined at 𝚽 and with the range 𝚽 such that for any �̂� ∈ 𝚽 
 satisfies 

𝑇(�̂�) = {𝜑′ ∈ 𝚽 ∶ 𝑄(𝜑′|�̂�) ≥ 𝑄(𝜑|�̂�) for every 𝜑 ∈ 𝚽}. 

As a result, the EM algorithm applies 𝜙(𝑘+1) ∈ 𝑇(𝜙(𝑘)); 

4. Let 𝚽𝜙(0) = {𝜙 ∈ 𝚽: ln 𝐿𝑇(𝜙) ≥ ln 𝐿𝑇(𝜙
(0))}. 

 
Theorem 1 (WU Conditional on MNHMM-I [24] [41] [37] ) 
If 𝚽 is the MNHMM-I parameter space, then the following 4 conditions are fulfilled. 

1. 𝚽 is a finite subset of ℝ𝑝×𝑚+3, 

2. ln 𝐿𝑇(𝜙) is continuous in 𝚽 and differentiable in the interior 𝚽, 

3. 𝚽𝜙(0) is a compact set, for any 𝜙(0) ∈ 𝚽, with ln 𝐿𝑇(𝜙
(0)) >  −∞, 

4. 𝑄(𝜑|𝜙) is a continuous function with respect to 𝜑 and 𝜙 at  𝚽×𝚽. 

Proof, see Appendix 4. 
 
Before entering the Wu Theorem (Theorem 2), will proved the following Lemmas: 
 
Lemma 4 (see [24] [29] [41]) 

If 𝜙(𝑘)  ∈  𝚿, then ln 𝐿𝑇(𝜙
(𝑘+1)) ≥ ln 𝐿𝑇(𝜙

(𝑘)) for every 𝜙(𝑘+1)  ∈ 𝑇(𝜙(𝑘)). 

Proof  

Determine 𝑘 ∈ {0,1,2,… }, and take any 𝜙(𝑘) ∈  𝚿. Note that 

ln 𝐿𝑇(𝜙
(𝑘+1)) − ln 𝐿𝑇(𝜙

(𝑘)) = (𝑄(𝜙(𝑘+1)|𝜙(𝑘)) − 𝐻(𝜙(𝑘+1)|𝜙(𝑘))) − (𝑄(𝜙(𝑘)|𝜙(𝑘)) − 𝐻(𝜙(𝑘)|𝜙(𝑘))) 

= (𝑄(𝜙(𝑘+1)|𝜙(𝑘)) − 𝑄(𝜙(𝑘)|𝜙(𝑘))) − (𝐻(𝜙(𝑘+1)|𝜙(𝑘)) − 𝐻(𝜙(𝑘)|𝜙(𝑘))).  (20) 

Based on the definition of the M Step in the EM algorithm, 

𝑄(𝜙(𝑘+1)|𝜙(𝑘)) ≥ 𝑄(𝜙(𝑘)|𝜙(𝑘)). 

Corollary, 

𝑄(𝜙(𝑘+1)|𝜙(𝑘)) − 𝑄(𝜙(𝑘)|𝜙(𝑘)) ≥ 0.                                                      (21) 

Based on Lemma 3 

𝐻(𝜙(𝑘+1)|𝜙(𝑘)) ≤ 𝐻(𝜙(𝑘)|𝜙(𝑘)), 

as a result 

𝐻(𝜙(𝑘+1)|𝜙(𝑘)) − 𝐻(𝜙(𝑘)|𝜙(𝑘)) ≤ 0.                                                      (22) 

From (20), (21), dan (22) are obtained 

ln 𝐿𝑇(𝜙
(𝑘+1)) − ln 𝐿𝑇(𝜙

(𝑘)) ≥ 0. 

So 

ln 𝐿𝑇(𝜙
(𝑘+1)) ≥ ln 𝐿𝑇(𝜙

(𝑘)). 

 
Lemma 5 (see [24] [29] [41] [42]) 

If 𝜙(𝑘)  ∉  𝚿, then ln 𝐿𝑇(𝜙
(𝑘+1)) > ln 𝐿𝑇(𝜙

(𝑘)) for all 𝜙(𝑘+1)  ∈ 𝑇(𝜙(𝑘)), 

Proof 

Determine 𝑘 ∈ {0,1,2,… }, and take any 𝜙(𝑘) ∉  𝚿. Using equation (19), will obtained 

𝜕𝜙(𝑘)(ln 𝐿𝑇(𝜙
(𝑘))) = 𝐷10𝑄(𝜙(𝑘)|𝜙(𝑘)) − 𝐷10𝐻(𝜙(𝑘)|𝜙(𝑘)).                     (23) 
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Furthermore, based on Lemma 2, 𝐷10𝐻(𝜙(𝑘)|𝜙(𝑘)) = 0. Then equation (23) becomes 

𝜕𝜙(𝑘)(ln 𝐿𝑇(𝜙
(𝑘))) = 𝐷10𝑄(𝜙(𝑘)|𝜙(𝑘)).                                            (24) 

However 𝜙(𝑘)  ∉  𝚿, so  𝜕𝜙(𝑘)(ln 𝐿𝑇(𝜙
(𝑘))) ≠ 0. As a result, 

𝐷10𝑄(𝜙(𝑘)|𝜙(𝑘)) ≠ 0. 

Therefore, 𝜙(𝑘) is not a local maximum of 𝑄(𝜙|𝜙(𝑘)) toward 𝜙 ∈ 𝚽, that is ∀ Θ ⊂ 𝚽 which contains 

𝜙(𝑘), ∃ �̅� ∈ Θ such that 

𝑄(𝜙(𝑘)|𝜙(𝑘)) < 𝑄(�̅�|𝜙(𝑘)).                                                                  (25) 

However according to the definition of M step in the EM algorithm, 

𝑄(𝜙(𝑘+1)|𝜙(𝑘)) ≥ 𝑄(𝜙|𝜙(𝑘)), 

For every 𝜙 ∈ 𝚽. So this is also true for 𝜙 = �̅�, that is 

𝑄(𝜙(𝑘+1)|𝜙(𝑘)) ≥ 𝑄(�̅�|𝜙(𝑘)).                                                              (26) 

From (25) and (26), obtained 

𝑄(𝜙(𝑘)|𝜙(𝑘)) < 𝑄(𝜙(𝑘+1)|𝜙(𝑘)).                                                            (27) 

From (20), (27), and Lemma 3 (𝐻(𝜙(𝑘+1)|𝜙(𝑘)) ≤ 𝐻(𝜙(𝑘)|𝜙(𝑘))), obtained 

ln 𝐿𝑇(𝜙
(𝑘+1)) > ln 𝐿𝑇(𝜙

(𝑘)). 

 
Lemma 6 (see [24] [42]) 
The function T is closed in 𝚽\𝚿. 
Proof, see Appendix 5. 
 
Theorem 2 (Wu Theorem on MNHMM-I [24] [29] [41] [42]) 

Let the 𝑄(𝜑|𝜙) is continuous function with respect to 𝜑,𝜙 in 𝚽 × 𝚽 Let {𝜙(𝑘)} be a parameter estimators 

sequence of MNHMM-I obtained using the EM algorithm. If lim
𝑘→∞

𝜙(𝑘) = 𝜙∗ then, 

1. 𝜙∗ is the stationary point of the function ln 𝐿𝑇(𝜙), 

2. lim
𝑘→∞

ln 𝐿𝑇(𝜙
(𝑘)) = ln 𝐿𝑇(𝜙

∗), where the convergence increases monotone. 

 
Proof, 

1. Let lim
𝑘→∞

𝜙(𝑘) = 𝜙∗. Suppose 𝜙∗ is not a stationary point, which is 𝜙∗ ∉ 𝚿. Determine the sequence 

{𝜙(𝑘+1)}
𝑘=1

∞
, which is for every 𝑘, 𝜙(𝑘+1) ∈ 𝑇(𝜙(𝑘)). Under the 3rd Wu Condition in Theorem 1, the 

sequence {𝜙(𝑘+1)}
𝑘=1

∞
  is in the compact set 𝚽𝜙(0). Consequently there is a subsequence 

{𝜙(𝑘+1)𝑚}
𝑚=1

∞
 such that 𝜙(𝑘+1)𝑚 → �̂�  when 𝑚 → ∞. A sequence converges to a point if and only if its 

subsequence converge to that point, consequently, 
 

𝜙(𝑘+1) → �̂� if 𝑘 → ∞.                                                         (28) 
 

Based on Lemma 6 above, 𝑇 is closed in 𝚽\𝚿 and by the assumption 𝜙∗ ∉ 𝚿, so that �̂� ∈ 𝑇(𝜙∗). 
Consequently, based on Lemma 5 then 

ln 𝐿𝑇(�̂�) > ln 𝐿𝑇(𝜙
∗).                                                                (29) 

Based on (28) and the continuity function ln 𝐿𝑇(𝜙) in 𝚽 then 

lim
𝑘→∞

ln 𝐿𝑇(𝜙
(𝑘+1)) = lim

𝑘→∞
ln 𝐿𝑇(�̂�),                                              (30) 

besides that because ln 𝐿𝑇(𝜙) is a continuous function and the assumption is lim
𝑘→∞

𝜙(𝑘) = 𝜙∗ then 

lim
𝑘→∞

ln 𝐿𝑇(𝜙
(𝑘)) = ln 𝐿𝑇(𝜙

∗)                                                       (31) 

and 

lim
𝑘→∞

ln 𝐿𝑇(𝜙
(𝑘)) = lim

𝑘→∞
ln 𝐿𝑇(𝜙

(𝑘+1)).                                             (32) 

From (30), (31) and (32) will obtained 

ln 𝐿𝑇(�̂�) = ln 𝐿𝑇(𝜙
∗).                                                                  (33) 

However (29) and (33) are contradict, so that 𝜙∗ is stationary point. 
 

2. Based on the 1st Wu Theorem, will get 𝜙∗ as the stationary point of the function ln 𝐿𝑇(𝜙). So it only 

remains to prove the monotony of {ln 𝐿𝑇(𝜙
(𝑘))}. Based on Lemma 4 and Lemma 5 above, 

{ln 𝐿𝑇(𝜙
(𝑘))} is an ascending monotone sequence, which immediately proves this theorem. 

 

Proven 
 



 

10.11113/mjfas.v19n5.3041 850 

Fikri et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 840-854 

Conclusions 
 
In conclusion, the multivariate normal hidden Markov model which assumed the Markov chain are 
inhomogeneous, ergodic and fulfills the assumption of continuity of parameters, then 
1. Parameter Estimation of MNHMM-I using the EM algorithm produces a formula that maximizes the 

likelihood function, 
2. The obtained parameter estimator sequence algorithm is converges to the stationary point of the 

likelihood function monotonically increasing. 
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Appendix 1 (Proof of Lemma 1) 

Suppose the transition matrix is defined as equations (2) − (5), then consider the following 
equations 
 

𝛾11 = 𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 1) 
= 𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 1|𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 1) 

= 
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 1)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1)
 

= 
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1)
 

=  𝑃(𝑆𝑡
∗ = 1|𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 1) 

=  𝑃(𝑆𝑡
∗ = 1|𝑆𝑡−1

∗ = 1) 
= 𝛾11

∗  
 
𝛾12 = 𝑃(𝑆𝑡 = 2|𝑆𝑡−1 = 1) 

= 𝑃(𝑆𝑡
∗ = 1, 𝑆𝑡−1

∗ = 2|𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1) 

=
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 1)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1)
 

= 0 
 
𝛾13 = 𝑃(𝑆𝑡 = 3|𝑆𝑡−1 = 1) 

= 𝑃(𝑆𝑡
∗ = 2, 𝑆𝑡−1

∗ = 1|𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1) 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 1)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1)
 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1)
 

= 𝑃(𝑆𝑡
∗ = 2|𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 1) 

= 𝑃(𝑆𝑡
∗ = 2|𝑆𝑡−1

∗ = 1) 
= 𝛾12

∗  
 
𝛾14 = 𝑃(𝑆𝑡 = 4|𝑆𝑡−1 = 1) 

= 𝑃(𝑆𝑡
∗ = 2, 𝑆𝑡−1

∗ = 2|𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1) 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 1)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 1)
 

= 0 
 
𝛾21 = 𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 2) 

= 𝑃(𝑆𝑡
∗ = 1, 𝑆𝑡−1

∗ = 1|𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2) 

=
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 2)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2)
 

=
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2)
 

= 𝑃(𝑆𝑡
∗ = 1|𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 2) 

= 𝑃(𝑆𝑡
∗ = 1|𝑆𝑡−1

∗ = 1) 
= 𝛾11

∗  
 
𝛾22 = 𝑃(𝑆𝑡 = 2|𝑆𝑡−1 = 2) 

= 𝑃(𝑆𝑡
∗ = 1, 𝑆𝑡−1

∗ = 2|𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2) 

=
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 2)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2)
 

= 0 
 
𝛾23 = 𝑃(𝑆𝑡 = 3|𝑆𝑡−1 = 2) 

= 𝑃(𝑆𝑡
∗ = 2, 𝑆𝑡−1

∗ = 1|𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2) 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 2)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2)
 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2)
 

= 𝑃(𝑆𝑡
∗ = 2|𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 2) 

= 𝑃(𝑆𝑡
∗ = 2|𝑆𝑡−1

∗ = 1) 
= 𝛾12

∗  
 
𝛾24 = 𝑃(𝑆𝑡 = 4|𝑆𝑡−1 = 2) 

= 𝑃(𝑆𝑡
∗ = 2, 𝑆𝑡−1

∗ = 2|𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2) 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−1

∗ = 1, 𝑆𝑡−2
∗ = 2)

𝑃(𝑆𝑡−1
∗ = 1, 𝑆𝑡−2

∗ = 2)
 

= 0 

𝛾31 = 𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 3) 
= 𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 1|𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 1) 

=
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 1)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1)
 

= 0. 
 
𝛾32 = 𝑃(𝑆𝑡 = 2|𝑆𝑡−1 = 3) 

= 𝑃(𝑆𝑡
∗ = 1, 𝑆𝑡−1

∗ = 2|𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1) 

= 
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 1)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1)
 

= 
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1)
 

= 𝑃(𝑆𝑡
∗ = 1|𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 1) 

= 𝑃(𝑆𝑡
∗ = 1|𝑆𝑡−1

∗ = 2) 
= 𝛾21

∗  
  
𝛾33 = 𝑃(𝑆𝑡 = 3|𝑆𝑡−1 = 3) 

= 𝑃(𝑆𝑡
∗ = 2, 𝑆𝑡−1

∗ = 1|𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1) 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 1)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1)
 

= 0 
 
𝛾34 = 𝑃(𝑆𝑡 = 4|𝑆𝑡−1 = 3) 

= 𝑃(𝑆𝑡
∗ = 2, 𝑆𝑡−1

∗ = 2|𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1) 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 1)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1)
 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 1)
 

= 𝑃(𝑆𝑡
∗ = 2|𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 1) 

= 𝑃(𝑆𝑡
∗ = 2|𝑆𝑡−1

∗ = 2) 
= 𝛾22

∗  
 
𝛾41 = 𝑃(𝑆𝑡 = 1|𝑆𝑡−1 = 4) 

= 𝑃(𝑆𝑡
∗ = 1, 𝑆𝑡−1

∗ = 1|𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2) 

=
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 2)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2)
 

= 0 
 
𝛾42 = 𝑃(𝑆𝑡 = 2|𝑆𝑡−1 = 4) 

= 𝑃(𝑆𝑡
∗ = 1, 𝑆𝑡−1

∗ = 2|𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2) 

=
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 2)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2)
 

=
𝑃(𝑆𝑡

∗ = 1, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2)
 

= 𝑃(𝑆𝑡
∗ = 1|𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 2) 

= 𝑃(𝑆𝑡
∗ = 1|𝑆𝑡−1

∗ = 2) 
= 𝛾21

∗  
 
𝛾43 = 𝑃(𝑆𝑡 = 3|𝑆𝑡−1 = 4) 

= 𝑃(𝑆𝑡
∗ = 2, 𝑆𝑡−1

∗ = 1|𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2) 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 1, 𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 2)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2)
 

= 0 
 
𝛾44 = 𝑃(𝑆𝑡 = 4|𝑆𝑡−1 = 4) 

= 𝑃(𝑆𝑡
∗ = 2, 𝑆𝑡−1

∗ = 2|𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2) 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 2)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2)
 

=
𝑃(𝑆𝑡

∗ = 2, 𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2)

𝑃(𝑆𝑡−1
∗ = 2, 𝑆𝑡−2

∗ = 2)
 

= 𝑃(𝑆𝑡
∗ = 2|𝑆𝑡−1

∗ = 2, 𝑆𝑡−2
∗ = 2) 

= 𝑃(𝑆𝑡
∗ = 2|𝑆𝑡−1

∗ = 2) 
= 𝛾22

∗  
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Based on the above equations and the nature of the probability for the transition matrix that the sum in 
one row must be worth 1, then to estimate the transition matrix 𝛤 in MNHMM-I it is enough to estimate 

𝛾11
∗  and 𝛾22

∗  and acquire a transition matrix 

Γ = (

𝛾11
∗  0

𝛾11
∗ 0

𝛾12
∗ 0

𝛾12
∗ 0

0 𝛾21
∗

0  𝛾21
∗

 0 𝛾22
∗

0 𝛾22
∗

). 

 
 

Appendix 2 (Proof of Lemma 2) 

Take any �̂� ∈ 𝚽, 

𝐷10𝐻(�̂�|�̂�) =∑𝜕�̂�(ln 𝑝(𝑥|𝑦, �̂�)) 𝑝(𝑥|𝑦, �̂�)

𝑥

=∑
𝜕�̂�𝑝(𝑥|𝑦, �̂�)

𝑝(𝑥|𝑦, �̂�)
𝑝(𝑥|𝑦, �̂�)

𝑥

= 𝜕�̂� (∑𝑝(𝑥|𝑦, �̂�)

𝑥

) = 𝜕�̂�(1)

= 0. 
 
 
Appendix 3 (Proof of Lemma 3) 

Take any 𝜙, �̂� ∈ 𝚽. If 𝑓(𝑥) = ln
1

𝑥
, then from Jensen's inequality it is obtained, 

ln

(

 
 1

𝐸�̂� (
𝑝(𝑥|𝑦, 𝜙)

𝑝(𝑥|𝑦, �̂�)
|𝑦)
)

 
 
≤ 𝐸�̂�

(

 
 
ln

(

 
 1

𝑝(𝑥|𝑦, 𝜙)

𝑝(𝑥|𝑦, �̂�)
)

 
 
|𝑦

)

 
 

 

⟺−ln(𝐸�̂� (
𝑝(𝑥|𝑦, 𝜙)

𝑝(𝑥|𝑦, �̂�)
|𝑦)) ≤ −𝐸�̂� (ln(

𝑝(𝑥|𝑦, 𝜙)

𝑝(𝑥|𝑦, �̂�)
) |𝑦) ⟺𝐸�̂� (ln(

𝑝(𝑥|𝑦,𝜙)

𝑝(𝑥|𝑦, �̂�)
) |𝑦) ≤ ln(𝐸�̂� (

𝑝(𝑥|𝑦, 𝜙)

𝑝(𝑥|𝑦, �̂�)
|𝑦)) 

⟺ 𝐸�̂� (ln (
𝑝(𝑥|𝑦, 𝜙)

𝑝(𝑥|𝑦, �̂�)
) |𝑦) ≤ ln(∑

 𝑝(𝑥|𝑦,𝜙)

𝑝(𝑥|𝑦, �̂�)
 𝑝(𝑥|𝑦, �̂�)

𝑥

) ⟺𝐸�̂� (ln(
𝑝(𝑥|𝑦,𝜙)

𝑝(𝑥|𝑦, �̂�)
) |𝑦) ≤ ln(1) 

 

⟺ 𝐸�̂� (ln(
𝑝(𝑥|𝑦,𝜙)

𝑝(𝑥|𝑦, �̂�)
) |𝑦) ≤ 0 

⟺𝐸�̂�(ln 𝑝(𝑥|𝑦, 𝜙)|𝑦) − 𝐸�̂�(ln 𝑝(𝑥|𝑦, �̂�)|𝑦) ≤ 0 

⟺ 𝐸�̂�(ln 𝑝(𝑥|𝑦, 𝜙)|𝑦) ≤ 𝐸�̂�(ln 𝑝(𝑥|𝑦, �̂�)|𝑦) ⟺𝐻(𝜙|�̂�) ≤ 𝐻(�̂�|�̂�). 

 
 
Appendix 4 (Proof of Theorem 1) 

1. Suppose that 𝑇, 𝑝,𝑚, and 𝜀 > 0 are sufficiently small that close to 0 are given. Define the set 

diameter 

diam 𝚽 = √ (
1

𝜀
− 𝜀)

2
+ (

1

𝜀
− 𝜀)

2
+⋯+ (

1

𝜀
− 𝜀)

2
+ 12 + 12 + (

1

𝜀
− 𝜀)

2
 

 
 
 

= √(𝑝𝑚 + 1) (
1

𝜀
− 𝜀)

2
+ 2 < √(𝑝𝑚 + 1) (

1

𝜀
)
2
+ 2 <

𝑝𝑚+1

𝜀
+ 2 < ∞. 

As a result, Φ is a finite subset of ℝ𝑝×𝑚+3. 

 

2. ln 𝐿𝑇(𝜙) is the sum from the multiplication of continuous functions in 𝚽 and differentiable in 𝚽, then 

ln 𝐿𝑇(𝜙) is continuous in 𝚽 and differentiable in interior 𝚽. 

 

3. Take any 𝜙(0) ∈ 𝚽. It will be proved that 𝚽𝜙(0) is compact, i.e. 𝚽𝜙(0) is finite and closed. 

𝚽𝜙(0) ⊂ 𝚽, while 𝚽 is finie (based on the 1st Wu condition). Consequently, 𝚽𝜙(0) is finite. To show 

𝚽𝜙(0) is closed, sufficient proof 𝚽𝜙(0)̅̅ ̅̅ ̅̅ ̅ ⊂ 𝚽𝜙(0) . Take any 𝜙∗ ∈ 𝚽𝜙(0)̅̅ ̅̅ ̅̅ ̅. Then 𝜙∗ is the limit point of 

𝚽𝜙(0). Since the point 𝜙∗ is the limit point of the set 𝚽𝜙(0) if and only if there is a distinct sequence  

in 𝚽𝜙(0) which converging to 𝜙∗, then ∃ the sequence {𝜙(𝑘)} in 𝚽𝜙(0) is such that lim
𝑘→∞

𝜙(𝑘) → 𝜙∗, 

with 𝜙(𝑘) ≠ 𝜙∗ for every k. 
 

Suppose 𝜙∗ ∉ 𝚽𝜙(0) , then ln 𝐿𝑇(𝜙
∗) < ln 𝐿𝑇(𝜙

(0)). Determine 𝜀 = ln 𝐿𝑇(𝜙
(0)) − ln 𝐿𝑇(𝜙

∗) > 0. Since 

lim
𝑘→∞

𝜙(𝑘) → 𝜙∗ and ln 𝐿𝑇(𝜙) are continuous in 𝚽, then lim
𝑘→∞

ln 𝐿𝑇(𝜙
(𝑘)) = ln 𝐿𝑇(𝜙

∗).  For > 0 above, 

1 × 2 

 

𝑝 ×𝑚 1 × 1 
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then ∃ 𝑘∗ ∈ ℕ such that for ≥ 𝑘∗ it satisfies 

|ln 𝐿𝑇(𝜙
(𝑘)) − ln 𝐿𝑇(𝜙

∗)| < 𝜀 

⟹ ln𝐿𝑇(𝜙
(𝑘)) − ln 𝐿𝑇(𝜙

∗) < 𝜀 ⟹ ln𝐿𝑇(𝜙
(𝑘)) − ln 𝐿𝑇(𝜙

∗) < ln 𝐿𝑇(𝜙
(0)) − ln 𝐿𝑇(𝜙

∗) 

⟹ ln𝐿𝑇(𝜙
(𝑘)) < ln 𝐿𝑇(𝜙

(0)). 

This is contradicts with 𝜙(𝑘) ∈ 𝚽𝜙(0) . So 𝚽𝜙(0) is a closed set. 

 

4. Because 𝑄(𝜑|𝜙) is the addition and multiplication of the functions 𝛼𝑡(𝑖|𝜙), 𝛽𝑡(𝑖|𝜙), 𝛾𝑖𝑗(𝜙), 𝜇𝑖𝑗(𝜙),

𝜎𝑖𝑗𝑘(𝜙), ln 𝛿𝑖 (𝜑), ln 𝜇𝑖𝑗(𝜑) , ln 𝜎𝑖𝑗𝑘(𝜑) , ln 𝛾𝑖𝑗(𝜑) which are continuous in 𝚽×𝚽, for 𝑡 = 1,2,… , 𝑇, and 

𝑖, 𝑗 ∈ {1,2,3,… ,𝑚}. As a result 𝑄(𝜑|𝜙) is a continuous function with respect to 𝜑,𝜙 in 𝚽 ×  𝚽. 
 
 
Appendix 5 (Proof of Lemma 5) 
By using the definition of the set-value function 𝑇, from the function 𝑄(𝜑′|𝜙′) the information is obtained 

that 𝜑′ ∈ 𝑇(𝜙′), with 𝜑′, 𝜙′ ∈ 𝚽. Take any �̅� ∈ 𝚽\𝚿. According to the 4th Wu condition 𝑄(𝜑|𝜙) is a 

continuous function with respect to 𝜑 and 𝜙 at 𝚽 × 𝚽, i.e. 
 

if 𝜙(𝑘) → �̅� and 𝜑(𝑘) → �̅�, then 𝑄(𝜑(𝑘)|𝜙(𝑘)) → 𝑄(�̅�|�̅�), 

when 𝑘 → ∞. 
 

Consequently, obtained 𝜑(𝑘) ∈ 𝑇(𝜙(𝑘)) for 𝑘 = 0,1,2,…, and satisfy 

 

if 𝜙(𝑘) → �̅� and 𝜑(𝑘) → �̅�, then �̅� ∈ 𝑇(�̅�), 
when 𝑘 → ∞. 
 

As a result the 𝑇 function is closed, the EM algorithm is a special case by replacing 𝜑(𝑘) to 𝜙(𝑘+1). 
  

 
 

 


