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Keywords: Hidden Markov model inhomogeneous, Multivariat normal, Likelihood function, Expectation
Maximization, Monotone convergence.

Introduction

The hidden Markov model (HMM) is a pair of stochastic processes, namely the observation process and
the process causing the observation [1]. It is assumed that the stochastic processes that influence these
observations are not observed and form a Markov chain, that is, the probability of the effect of an
observation at one time only depends on the effect of the observation several units of time before. The
effect of this observation is usually called state [2]. HMM is widely applied in various problem areas in
the form of time series data such as air pollution problems [3], [4], weather predictions [5], [6], stock price
predictions [7], [8], [9], [10], [11], speech recognition [12], [13], [14], prediction of DNA sequences [15]
[16], and and It is hoped that it can be applied to diagnose partial discharge acoustic in insulation [17],
[18], [19], [20]. This is because HMM maintains relevance to the issues discussed and offers
simplification in calculations (memoryless properties) [21]. As for the application to longitudinal data,
even though it offers efficiency, it is still very little. This is because the required analyzes are not as easy
as when applied to time series data.

To apply to longitudinal data, multivariate assumptions are needed in the model which is the focus of this
study, namely the normal hidden Markov multivariate model (MNHMM). The normal hidden Markov
multivariate model (MNHMM) is one of the hidden Markov models where the probability of an observation
if the state is known is assumed to be a normal multivariate distribution [22], [23], [24]. In previous studies
[22], [23], [24], parameter estimation and convergence analysis of MNHMM or simulation have been
carried out, but the Markov chain is still assumed to be homogeneous so that the objective function in
the form of the likelihood function will obtained less than maximum results. Therefore, in this study, it is
assumed that the Markov chain is not homogeneous and the proposed model is the multivariate normal
hidden Markov model inhomogeneous at one time before (MNHMM-I) which is expected to later be used
to increase the maximum likelihood function obtained and can be used for clustering or predict more
accurately.

The novelty in this research is constructing the MNHMM-I, estimating parameters and analyzing the
convergence of the parameter estimators. Model construction was carried out using a combination of

10.11113/mijfas.v19n5.3041

840


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

MJFAS

Fikri et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 840-854

homogeneous multivariate [24] and multiple non-homogeneous [25], [26]. Parameter estimation is done
by maximizing the likelihood function. The likelihood function is calculated using the forward-backward
algorithm [27], [28], which is then recursively maximized using the Expectation Maximization algorithm
(EM algorithm) to obtain the formula for estimating model parameters with primary references [25], [26],
[24] . Due to the estimation and convergence of the parameters of the covariance matrix, it has its own
complexity and analysis (multivariate analysis), so it will be published separately. This complexity can be
seen in several studies related to covariance matrices [31], [32], [33], [34], [35], [36]. Therefore, this
research will discuss recursive parameter estimation and its convergence for multivariate normal hidden
Markov inhomogeneous models.

Multivariate Normal Hidden Markov Inhomogeneous
Model

The normal hidden Markov inhomogeneous multivariate model (MNHMM-I) is a discrete-time model
consisting of a pair of stochastic processes {X;, Y; };en [1], Where {X,};cy is the cause the assumed event
is not observed and forms a Markov chain that is inhomogeneous at one time before and ergodic
(irreducible, positive recurrent and aperiodic) [2] with state space Sy = {1,2,--,m}, whereas {Y,};cy is the
observation process which depends only on {X,}:ey. Then the random variable Y; is known X, assumed
to be a normal multivariate distribution, for every t € N [22], [23], [37].

To simplify writing, the following 10 points are symbolized for further writing:
Observation process: Y = {Y,}T_,;

Markov chain: X = {X.}T_,;

MNHMM-I: Z = {X,, Y, }T_q;

data of process {Y.}_;: y = (¥1,¥2, .., 1), (called incomplete data);

state of process {X:}T_;: x = (iy, iz, ..., i7);

data of process {X;, Y:}1_;: z = (i, y1, ..., it, y7) = (x,y), (called data complete);
the probability mass function of Z: P(Z = z|¢p) = p(z; ¢) = p(x,y|p);

the probability of Y: L(¢) = P(Y = y|d) = p(¥|d);

likelihood function of complete data: L% (¢p) = p(z|¢p) = p(x, y|P);

lO the probability mass function of X = x under condition Y =y: P(X =x|Y =y,¢) = p(x|y, p) =
p(zl$) _ pyld) _ Li(d)
plp) Wl  Lr()

CoNARAWNE

Referring to [25][38][22][23][24][26], in this study the form of MNHMM-I is:

Yo —us; = ‘P(Yt—1 - #s;_l) + & ¢y
where

1. €, ~ multivariate normal(0,X) and i.i.d for each ¢;

2. {Y.}is the observed process and scalar (longitudinal data);

3. {S;} is Markov chain with state space S; = {1,2}, with transition matrix ['* = (;ﬁil ;:2*1> =
12 22

P(Si =18t =1);

4. The MNHMM-| parameters are pq, iy, %, ¢ € R.

In this case Y; does not only depend on S; but also depends on S/_; so that in order to comply with
Markov properties it is necessary to define a new process S; where

Se=1ifSf=1andS;_; =1 2)
Se=2ifSf=1and S;_, =2 3)
Se=3ifSf=2andS;_; =1 “)
S;=4ifS; =2and S;_, =2, (5)

so that the transition matrix parameters take the form

Y11 Y12 Y13 Yis

Y21 Y22 VY22 VYaa
Y31 V32 V33 V3a [

Ya1 Vaz Va3 VYaa
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Lemma 1 (Condition Sufficiently Estimating Parameters of Transition Matrix ' on MNHMM-I)
If the state of transition matrix is defined in equations (2) — (5), then in order to comply with the Markov
property, it is sufficient to estimate the parameters y;; and y;, where the transition matrix I' has the
following form
i 0 yiz 0
i 0 vz O
[= . . 6
0 vz 0 vz ©)
0 y31 0 3
Proof, see Appendix 1.
Furthermore,
FYt(Yt) =P(Y: <y
= P(ﬂs; + ‘P(Yt—l - Hs;) +& < Yt)
=P (St <y — Hs; — <P(Yt—1 - lls;_l))
Yr—#S’E—<P(Yt—1—#S’E_1)

1 gl =7l
= J‘ > 1 e 2 dgt. (7)
0 (2m2 [zZ]2

So equation (7) can be written as follows

v

Fyv) = [ ————
o of @b |22

1 _52,2_1&
e 2 deg.

Consequently,

fYt(yt) = a_thYt(yt)
1 _vi'Z7hvy gy
=— ¢ D ——
p 1
@y [z]2 0t
1 vii' 27 vy
=—F7 e 2 1
(2m)z |Z]2
1 vi'E vy
T p,.1°¢
(2m)z 2]z

So that the conditional probability density function in MNHMM-I can be written as equation (8)

1 vu'E vy
p_1°
(2m)z |22
1 Vu'E e,
FelSe = L, Yoy P) — 1¢
| fOelSe =2,Yei; ) | _ | Cm2 |Z|2
IO =t s =39 uvp) | =] 1 v | ®
Se =4,Ye_1; p 1°
f(elSe Yi-1;0) (2m)2 |32
1 _Ve'E e
p_1°
(2m)z [Z|2
where vy; =y, — ug; — ¢(Ye—1 — us;_, ), thatis
V1e1 Vie =t — @Yie—1 — 1) V1t2 Vie =ty — @(Yieq — pi2)
Vatr | _ | Yoe — 1 — @(Yapm1 — 11) |. | V2o | _ | Yar — 1 — @(Yaro1 — 12)
vy=| % |= : v = = : ;
Upt1 pt — H1 — @(th—1 - #1) Upt2 Ypt — H1 — <P(ypt—1 - ﬂz)
V1t3 Yie —H2 — @(Y1em1 — ) Vita Vie — 2 — @ (Y1em1 — U2)
Vats | _ | Yar —H2 — o(Yoeeg —pq) |, _ | Vata | _ | Yor — 2 — o(Yoeq — p2)
3=\ : |= 8 R D :
Vpts pt — U2 — @(th—1 - .U1) Vpt4 Ypt — M2 — <P(ypt—1 - #2)
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Here's a basic MNHMM-I resume:

Y11 Y12 yir
Y21 Y22 Yor | . L .

1. y, = L ys s e yr = : is the longitudinal data to be modeled, where p is the
Yp1 Yp2 Yot

number of cross data and T is the amount of time series data. The MNHMM-I parameters are
M, %, T, 9,8 [22], with

Hi1 Hi2
. 12551 H22
M = (g, ), with puy =1 "% k2 :
Mpl Mpz
011 012 O1p
p=| 2 o2 o)
Op1 Opz - Opp
Yin 0 viz O
= Y11 *0 Y12 *0 with T* = (V11 V€1>'
0 vzz 0 vz Yiz V22
0 vi 0 v

@ € R,and § € R™¥1,

2. The conditional probability Y; if known X; = i (t € N) is a normal multivariate random variable with the
mean parameter u and the covariance matrix X. For each y € RP, the probability matrix from the

observation process Il = [m,;] in [39] [22] is

1 vii'E vy
my,i, = Py = v Xy = ie, @) = — > 1 e 2z
(2mz |22
fori;=12,..,4and t =12,..,T
Vtilz_lvti
f f f dy, dy, ... dy, = 1.
* (211)2 IEI2

3. Transition probability matrix I' = [y;;], where I matrix is of size m x m and i, j € Sy, satisfies:
® yisz(thjlxt—l=i)=P(X2=j|X1=i)'
e ;=0
. Z}”:ly,-j =1,foreachi=12,..,m

4. ¢ € R, is a scalar-valued parameter contained in equation (1).

8
5. Let§ = ( : ) be the initial state distribution and the long-term proportion § is usually called the

Oin
stationary distribution. Based on [2] the Markov chain {X,};ey Which is assumed to be ergodic, the

stationary distribution § can be obtained uniquely, that is, it satisfies

[é =4. C)]
with
6l=P(X1=i), VLESX
m
Z 5 =1
i=1

Foreacht € Nand y € RP, the marglnal distribution function of Y, |e

P(t, =) = Z P(Y, = ylX, = DP(X, = 1) = Z iy
i=1

Based on the discussion above, MNHMM-I {X;, Y; },¢y is characterized by §, M, %, T, ¢. The most important
thing in MNHMM-I is to estimate the parameters of this model by maximizing its likelihood function.
Furthermore, equation (9) informs that § will be obtained when T is obtained (eigen vector) so that § is
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not a parameter that must be estimated. In addition, for the transition matrix based on Lemma 1, it is
sufficient to estimate the diagonal elements y;; and y;, which are symbolized by ['. Due to the estimation
and convergence of the parameters of the covariance matrix, it has its own complexity and analysis
(multivariate analysis), so it will be published separately. The parameter estimation in this study is limited
to ¢ = (M, T, (p). In order to estimate the parameters and analyze the convergence of this model, it is
necessary to clarify the parameter space and its assumptions, the likelihood function and the parameter
estimation process which will be discussed in the following discussion.

Parameter Estimation

Suppose the number of observation times T, the number of cross-sectional data p, the number of states
m, and the observation sequence y = (y4,y,, ..., yr ) are defined. Given that any € > 0 is small enough

- pxm
to approach 0, define the MNHMM-I parameter space: ¢={¢=(M,F,¢):Me[e,§] ,Te

[01]%%,p€eR }. For each ¢ed 8(¢)=(5(4) M) =(u;(8)), 2(¢) = (01;()), T () =
(y,-]-(¢)), o(p) = (@) [22][37], the following five continuity points are assumed to be satisfied.

6;: @ - R, with §;(¢) = §; is a function that is continuous in @, V i € Sy.
M;: ® - R, with M;(¢) = M; is a function that is continuous in @, V i € Sy,
I @ - R, with Z;(¢) = Z; is a function that is continuous in ®, V i € Sy,
vij: @ = R, with y;;(¢) = y;; is a function that is continuous in @, V i, j € Sy,
@: ® - R, with ¢(¢p) = ¢ is a function that is continuous in ®.

apwbdPE

The likelihood function of the Y observation process is defined in equation (10):
Lr(¢p) =P(Yy =y, Y2 =2, ... Y7 = y7|9)
=p(1 Y2 - y7ld)
=p(l$)
m m

Z Z (”3’1i1n3’2i2 "'HYTiT) x (6i1)/i1i2)/i2i3 "'yiT—liT)

ii=1 ir=1

m m L
Z Z 81, Ty, i, nyit—ﬂtn)’tit' o
t=2

i=1 ir=1

In the previous discussion, it has been explained that the main problem in MNHMM-I is finding the
parameter ¢* € & which maximizes the likelihood function L(¢). For large enough T observation data,
calculating the L(¢) function takes quite a long time. To deal with this problem, the forward-backward
algorithm is used. The working principle of the forward-backward algorithm is to calculate recursively,
thus speeding up computation time. This algorithm is divided into two, namely the forward algorithm and
the backward algorithm. Baum et al. [40] define forward probability as follows:

a:(i|¢) =P(Y1 =y, Y2 = Y2, ., Vi = Ye, X = i]D),

ﬁt(lld)) = P(Yt+1 = Vt+1r "'!YT = yTlxt = i, d))'

and backward probability:
fort=1,2,..T,and i € Sy.
The formulation for forward probability and backward probability recursively [27][28] which is commonly

called the forward algorithm is as follows:
a,(i|¢) = my, ;65

@ (le) = | Y @iy |y,

i€Sy
and backward algorithm
Br(lp) =1,
BeGI®) = ) Bea GBIy, i vyt
€Sy

fort=1,..,T—1,and i,j € Sx.

Then [27][28] uses forward and backward algorithms to calculate the likelihood function Ly (¢), which is
commonly called the forward-backward algorithm and obtains:
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Lr(@) = ) aGl$)B(il),
i€Sx
foranyt =1,2,...,T,and i € Sy.
The likelihood function of the complete data can be seen in equation (11)

T
L5(¢) = 8;,my 5, 1_[ Yie_yis Ty, - (11)
t=2

Based on equations (10) and (11), the relationship between the likelihood function of incomplete data
and complete data is as follows:

Lr(®) = pyI$) = Z Z &lnylll]_[ylt T, = Zp(y,xw) —ZL @).

ir=1
To obtain ¢* € ® which maX|m|zes Ly(¢) is a dlf'flcult problem. ¢ € @ which maX|m|zes In L(¢) will
also maximize Ly(¢). For ¢ € @, holds

Inp(xly, @) = In ng — InLp($) = InL5(6) — In p(xly, ).

Note that for any ¢ € & also holds

Eg(nLr(9) [y) = Eg(InL5() |y) — Eg(Inp(xly, $)1y), 12)
and
Ezg(nLr (@) |y) = ElnLT(¢)p(x|y,¢>) Zlnp(y|¢)p(x|y,¢) Zl p(y|¢)p(( T(L‘l)’)
lnp(yl¢>) Inp(y|$)
- 1 =InL , 13
p(y|$) Z (x 2(13) ———==p(y1¢) = Inp(y|$) = In Ly (¢) (13)

so that based on equations (12) and (13) is obtained
InLr(¢) = Q(¢19) — H(¢1), (14)

with Q(¢1) = E3(InL§(¢)|y) dan H(p|) = E(np(x|y, d) |y).
To get ¢* which maximizes In Ly (¢), the first step is to solve the equation d4(InLr(¢)) = 0 to get a
stationary point. By following the pattern of equation (12), it will be obtained directly

¢ (In Ly (¢)) = E (0 (In L7 ())]y) (15)
Corollary of equations (14) and (15), then

dg(In Ly () = Eg(04(n Lr(@D]y) = Eg(9g InL5(9) [y) — E5(dg Inp(xly, §)ly).  (16)
Define[29]

DRQ($16) = By (350 5@y, a7

a9

and
~ 0
DH(9IP) = By (55 npCely. &) 1y). (18)
so by substituting equations (17) and (18) into equation (16), will obtained
95 (n L1 (9)) = D1°Q(¢|$) — D'°H(p|$). (19)

Lemma 2 (see [29])

Suppose D°H(¢p|¢p) = E¢( Inp(x|y, ) |y) then D*°H($|p) = 0, for every ¢ € ®.
Proof, see Appendix 2.

Lemma 3 (see [29])

Suppose H(¢|$) = Ez(Inp(x|y, ¢) ), then H(¢|$) < H(H|), for every ¢, $ € ®.
Proof, see Appendix 3.
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To get the stationary point of In L(¢), based on equation (14), Lemma 2 and Lemma 3, it is enough to
find the stationary point from Q(¢|¢) to ¢ € ®. However, D°Q(|¢) is a non-linear function and is
difficult to solve explicitly with respect to the parameter ¢ € ®, as a result to obtain a stationary point
from Q(¢>|¢3) to ¢ € @ is an analytical problem difficult, so this problem is solved using the Expectation
Maximization algorithm.

The Expectation Maximization (EM) algorithm is a recursive algorithm which consists of two steps in
each iteration, namely step E and step M. The steps in the EM algorithm are, take ¢*) as an estimate
for the MNHMM-I parameter obtained at k™" iteration. In the (k + 1)™ iteration, step E and step M are
defined as follows:

1. Give error tolerance, maximum iteration and initial value of parameter ¢>(") for k =0,
2. E Step — Given ¢®, compute
Q(¢: 9®) = Eyuo(In L5(d)|Y = y)
116U, (i1 ™ T o (il6®)8. (i|p® 1 W E vy
= al(l|¢l )(f)l(ll(pl 2}() In 6[(¢) + Z Zt_l at(ll|¢ (k))ﬁt(lll(p (k)) In ) 1 e_%
iestzesXat( [pYN B (L] p")) ieSXZlESXat( [pYN B (L p")) n)z |2z
+ 2122y (99 ac (i1 “)P(Yers = yeralXerr =, %) B (j19%)
i ZIESX at(ll(p(k))ﬁt (l|¢(k))
3. M Step - Finding the ¢ **1) that maximizes Q(¢; ), so that
Q™ 1p®) = Q(plp™®),

Iny;; ().

For every ¢ € @,
4. Replace k with k + 1 and repeat step 2 to step 4 until |[InLy(¢%**?) —InL;(¢®)] is less than the
given error (in other words {In L;(¢*)} converges) or the maximum iteration is reached.

(k)
In M Step, the estimation of the average parameter MNHMM-I is obtained by method 20(¢1¢™) _ 0, so

0 puw(P)
that for w = 1 obtained

S A + 211 Agew + XFc1 Birwer + 2ie1 Batwe1 + Xte1 Crtwiz + 2iet Cotwz
25y ((1 —20+ ) X acW|pENB(w[p®) + XT_) ar(w + 1| B(w + 1)) + 92 XT_ ) ar(w + 2|p ") B (w + 2|¢(k)))

Huw

with
p 14
Atpw = at(W|¢(k))ﬁt(W|¢(k)) Z Siy Vi W (W, w) + Z Sui ViewW™ (W, w) |;
i=1 i=1
i*u

i*u
Agrw = at(w|¢(k))ﬁt(w|¢(k))(Zsuu(—1 + Q) Yur — o Yut—1)):
Bitws1 = ar(w + 119 ®) B (w + 119 ®) (Z?ﬂ Siu View+ 1 W W + L,w) + X0_; sy Vigws i W (W + 1,W)>;
i#u i#u
Batw+1 = at(W + 1|¢(k))ﬁt(w + 1|¢)(k))(25uu(_1)(Yut —oYu1+ <Plluw));
P P

Ciewsz = at(w + 2|9 ®) B (w + 2|9 ®) Z Siu View+2W* (W + 2,w) + Z Sui Vigw+2W* W + 2,w) |;
=1 =1
i*u

i*u
Cotwaz = a’t(W + 2|¢(k))ﬁt(w + 2|¢(k))(25uu(ﬂ(}’ut — oYyt — #uw))-

Forw =2
toy = — Y1 Avew + 21 Aoew + Xic1 Biews1 + 2ie1 Barw+1 + 2i=1 Ciewsz + 2ie1 Cotws2
“ (2su) (@2 XToq ac(W|dENB (w|p®) + BT ar(w + 1|pW) B (w + 1| ") + (1 — 29 + 92 BTy ar(w + 2|p®) B (w + 2] )Y’

with
p p
Arpw = at(W|¢(k))ﬁt(W|¢(k)) z Siy ViewW* (W, w) + Z Sui View W (W, w) |;
=1 i=1
i#u

AZtW = at(Wl¢(k)).8t(wl¢(k))(25uu((p)(Yut - Yut—l - .uuw))
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14 14

Bitw+1 = at(W + 1|¢(k))ﬂt(w + 1|¢(k)) Z Siu Views 1 W (W + Lw) + z Sui Views 1t W (W + Lw) |;
=1 =1
i#u i*u

Batws1 = ae(w + 1|¢%)Be(w + 119 %) (2500 (1) e — @Yur—1 + @btuns));
P p

Citwsz = at(W + 2|¢(k))5t(w + 2|¢(k)) Z Siu Vitw+2W* W + 2,w) + Z Sui View+2W (W +2,w) |;

i=1

i*u i*u
Cotwsz = at(W + 2|¢(k))5t(w + 2|¢(k))(25uu(_1 + @) Yur — <Pyut—1))i
Sll 512 e Slp
S S w. S
where u = 1,2,...,p,and 271 = AR 2:p
Sp1 Sp2 Spp

To obtain the parameter y;,(¢%*V) which maximizes Q(¢|¢p®)) toward ¢ € @, used the Lagrange
multiplier method with the constraint Y7, y/;(¢) = 1, for i = 1,2. In order for the parameter I to still fulfill
the inhomogeneous Markov property one time before, then based on Lemma 1 it is enough to update

* * * aG ®
iz and y3,. Suppose G(#l¢®) = Q(#1¢®) - T2, 6:(Tv; ¥ij(@) — 1), for any 6; € R. Then 22212
0 (for u = 1,2) implies

?;11 Vu*u(¢(k))at(u|¢(k))P(Yt+1 Ver1lXes1 = U, ¢(k))ﬁt+1(u|¢(k))
at(u|¢’(k)) ﬁt(ul¢("))

Yiru (¢(k+1)) =

As for y,;,, (for u,v = 1,2 and u # v), it is updated using the probability property for the transition matrix,
namely
w = 1= Vi
Yii 0 viz O
Yiu 0 iz 0
0 y3: 0 v
0 y31 0 vy

So that the MNHMM-I transition matrix is obtained by means of ' =

39(19™)

20(0) = 0, so that obtained

The estimation of the ¢ parameter is obtained by method

_ Sl A + 211 Age + XToq Age + Xioq Ay
2(Xf=1Bie + Xtoq Boe + Xy Bar + X2y Ba)’

with
p D P D
A = a (19 ®)B(119™) (Z Z sij(Yiem1 = i) (Vje — #ja) + Z Z sij(Yem1 = #0) ie = ”i1)>
=1i=1 1i=1
Jp p Jp 14
Ay = a,(210®) B (2190 ®) (Z Z sij(Yiem1 — i) (Vje — #ja) + Z Z sij(Yem1 = tj2) Oie = ”i1)>
];1 1;1 1;1 L;l
Age = a,(319%®)B. (316 ®) (Z D syiers = ki) (e — 1) + Z sij(Ye-1 = i) Oie = ﬂi2)>
j=1i=1 =1i=1
]p 4 JP P
Age = a (4107 (419™) (Z Z 5ij(Yiemr — u2) (Ve = 1j2) + Z Z 5ij (Ge-1 = #j2) O = 'uiZ))
j=1i=1 =1i=1
]p P ]
By = a;(1]¢p®)B,(1]9p®) (Z Z sij(Yie-1 = #j2) (Wie—1 — ;m))
j=1i=1
]p P
By = a;(2|¢®) B, (2|9 ™) (Z z sij(Yie-1 = tj2) Wiem1 — ui2)>
j=1i=1
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B3 = at(3|¢(k))ﬁt(3|¢(k)) Sij (th—l - Aujl)(yit—l - Mi1)

%L
N~ i

=

By = “t(4|¢(k))ﬂt(4|¢(k))

J

sij(Yiem1 = wy2) Wiem1 — i) |-

1i

1l
fay

Parameter Estimator Sequence Convergence MNHMM-I

Furthermore, will proved that the sequence {In L;(¢®))} converges to In L;(¢*) using the EM algorithm,

where ¢® is the MNHMM-I parameter estimator in the k™ iteration and ¢* is a stationary point of the
function InL;(¢). This will be discussed in Wu's Theorem (Theorem 2). Before discussing Wu's
Theorem, the following symbols are exemplified to simplify writing:

1. Let k denotes the iteration of the EM algorithm, namely k € {0,1,2,3, ... };
2. LetW ={¢ €int® : ¢ stationary point of In L;(¢)};

3. LetT T be the set-valued function defined at ® and with the range @ such that for any ¢ € ®
satisfies

T(¢) ={o’' € ®: Q(¢'1}) = Q(¢|P) for every ¢ € @},
As a result, the EM algorithm applies ¢ **V € T(¢p®);
4. Let®,o = {p € ®:InLy(¢) = InLy(¢©@)}.

Theorem 1 (WU Conditional on MNHMM-I [24] [41] [37] )

If ® is the MNHMM-I parameter space, then the following 4 conditions are fulfilled.
1. & is a finite subset of RP*™m*3,

2. InLy(¢) is continuous in @ and differentiable in the interior @,

3. @, is acompact set, for any ¢© € @, with InL;(¢©®) > —oo,

4. Q(p]|¢) is a continuous function with respect to ¢ and ¢ at ® x .

Proof, see Appendix 4.

Before entering the Wu Theorem (Theorem 2), will proved the following Lemmas:

Lemma 4 (see [24] [29] [41])

If @ € W, then InLy(¢**V) > InL;(¢p®) for every p*+1 e T(¢®).
Proof

Determine k € {0,1,2, ...}, and take any ¢®) € W. Note that

In Ly (¢**D) —In Ly (¢®) = (Q(¢(k+1)|¢,(k)) - H(¢(k+1)|¢(k))) - (Q(¢(k)|¢,(k)) - H(¢(k)|¢,(k)))

= (Q(¢(k+1)|¢(k)) — Q(¢(k)|¢(k))) — (H(¢(k+1)|¢(k)) — H(¢(k)|¢(k)))_ (20)
Based on the definition of the M Step in the EM algorithm,
Q(p"*19®) = @(®19®).

Corollary,
Q(p**1p®) — (@19 ™) > 0. (21)
Based on Lemma 3
H(¢(k+1)|¢)(k)) < H(¢(k)|¢(k)),
as a result
H(p®|p®) — H(p®|p®)) < 0. (22)

From (20),(21), dan (22) are obtained
In Ly (p%*D) —InLy(¢®) > 0.
So
InLy(¢®**V) > InLy(p®).

Lemma 5 (see [24] [29] [41] [42)])

If @ ¢ W, then InLy(¢®+D) > InLy (™) for all p¥+D e T(¢®),

Proof

Determine k € {0,1,2, ...}, and take any ¢ ¢ W. Using equation (19), will obtained

a¢<k)(1nLT(¢(’<>)) =D1Q(¢p®|p®) — D H(p®|p®). (23)
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Furthermore, based on Lemma 2, D'°H(¢®|¢¥)) = 0. Then equation (23) becomes
dpa0(InLy(p®)) = D0Q(p™®|p®). (24)
However ¢® ¢ W,50 940 (InLr(¢™®)) # 0. As aresult,
D1Q(¢® ™) = o.
Therefore, ¢ is not a local maximum of Q(¢|¢*) toward ¢ € @, thatis ¥ © < & which contains
¢®,3 ¢ € O such that
Qe™19®) < Q(416®). (25)

However according to the definition of M step in the EM algorithm,

Qo™+ V19p™) 2 Q(¢19™),
For every ¢ € ®. So this is also true for ¢ = ¢, that is

Q(p**1p®) = QP10 ™). (26)
From (25) and (26), obtained

Q(p®1p®) < Q(p*+Vp®). (27)
From (20), (27), and Lemma 3 (H(¢>(k+1)|¢>(")) < H(¢>(")|¢>("))), obtained

InLr(¢p%*D) > In Ly (¢®).
Lemma 6 (see [24] [42])

The function T is closed in ®\W.
Proof, see Appendix 5.

Theorem 2 (Wu Theorem on MNHMM-I [24] [29] [41] [42])
Let the Q(¢|¢) is continuous function with respect to ¢, ¢ in ® x @ Let {d)(k)} be a parameter estimators
sequence of MNHMM:-I obtained using the EM algorithm. If lim ¢ = ¢* then,

1. ¢* is the stationary point of the function In L+ (¢),
2. limIn Lr(¢®) = InL;(¢*), where the convergence increases monotone.

Proof,
1. Let ,lim ¢ = ¢*. Suppose ¢* is not a stationary point, which is ¢* ¢ W. Determine the sequence

{¢p®*V}” , which is for every k, ¢+ € T(¢®). Under the 3¢ Wu Condition in Theorem 1, the
sequence {cp("“)}f=1 is in the compact set D 0. Consequently there is a subsequence

{qb("“)m}::l such that ¢®*Dm — $ when m — co. A sequence converges to a point if and only if its
subsequence converge to that point, consequently,

dp&*D S B if k> oo, (28)

Based on Lemma 6 above, T is closed in ®\¥ and by the assumption ¢* ¢ W, so that ¢ € T(¢").
Consequently, based on Lemma 5 then

InLy($) >InLy(¢"). (29)
Based on (28) and the continuity function In L(¢) in @ then
: k+1)) = |5 iy
lim In L7 (¢®*V) = lim In L7($), (30)
besides that because In L1(¢) is a continuous function and the assumption is Ilim ¢ = ¢* then
Jim In Lr(¢®) =InLy(¢*) 31)
and
; R = i (k+1)
Jim InL7(¢1) = lim In Ly (¢%+?). (32)
From (30), (31) and (32) will obtained
InLy(p) =InLr(p"). (33)

However (29) and (33) are contradict, so that ¢* is stationary point.

2. Based on the 15t Wu Theorem, will get ¢* as the stationary point of the function In L;(¢). So it only
remains to prove the monotony of {InL;(¢®)}. Based on Lemma 4 and Lemma 5 above,
{InL(¢®)} is an ascending monotone sequence, which immediately proves this theorem.

Proven
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Conclusions

In conclusion, the multivariate normal hidden Markov model which assumed the Markov chain are

inhomogeneous, ergodic and fulfills the assumption of continuity of parameters, then

1. Parameter Estimation of MNHMM-I using the EM algorithm produces a formula that maximizes the
likelihood function,

2. The obtained parameter estimator sequence algorithm is converges to the stationary point of the
likelihood function monotonically increasing.
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Appendix 1 (Proof of Lemma 1)
Suppose the transition matrix is defined as equations (2) — (5), then consider the following

equations
Y1 =P =15, =1) Y31 = P(S; = 1]S-; = 3)
=PS;=18_,=1S;",=18,=1) =P(S;=18_,=1S,=25_,=1)
_PGi=18,=15,=18,=1) _PGE =185 =15,=28,=1)
PGS, =18_,=1) P(S;_1=28_,=1)
_P(Si=1,5,=15_,=1) =0.
P(S;,=18_,=1)
=P =15, =15_,=1) Y32 = P(S; = 2|S;_1, = 3)
=PS;=1S,=1) =P(S{=18_1=2|S_1=25_,=1)
i, P =1Si, =250, =25,=1
P(S;_1=2,85,=1)
Y12 =P(S; =2|S;., =1) _ P(S;=1,5_41=2S_,=1)
=P(S{ =1,5{1=2|S;_ 1_1StZ:1) P(S;,=25_,=1)
P(St =1,51=28,=15,=1) =P(S;=1|5;,=2,5_,=1)
P(S_ —LSt_z_l) =P(St*=1lst*—1=2)
=0 = ygl
Vi3 =P(S; =3[, =1) Y33 = P(S; = 3|S,-, = 3)
=P(S; =28 1=1S,1=1S5,=1) =P(S;=2S1=1S,1=2S,=1)
CPSi=2850 =15 ,=15,=1) CPSi=285 =15 ,=25,=1)
PSS, =15_,=1) P(S;1 =25 _,=1)
_P(Si=2,85,=15_,=1) =0
PGS, =18_,=1)
=P(S;=2IS;.,=1,5_,=1) Y34 = P(S; = 4[5, = 3)
=P(S;=2|S;.,=1) =P(S{=2,5{1=2|S.1=2,5_,=1)
=y _P(S;=2,85{,1=25_,=2S_,=1)
P(St*—l - 2’5[—2 - 1)
Vs =P(S; =4|S;..=1) _P(S{=285{,=2S,=1)
= P(St: =2, St:—1 = 2|S€:_1 =1, S{_Z =1) P(S;_,=2S5_,=1)
_ P(S;=2,5_,1=25_1=15,=1) =P(S;=2|S;_,=2,5_,=1)
P(Siy=18,=1) =P(S=2IS,=2)
=0 =V22
Y21 =P(S; = 1|51 = 2) Yar=P(S;=1IS;.1=4)
=P(S; =18, =151 =1,5_,=2) =P =18 ,=1|S1=25_,=2)
_PGi=18,=15,=18,=2) _PGI=185,=15,=2S8,=2)
P(S;_,=1,8_,=2) P(S;_1=2,8_,=2)
CP(S{=1,5,=1,5_,=2) =0
P(S, =15 ,=2)
=P(S;=1|S;,=1,5_,=2) Yoo = P(S; =2|S;1=4) )
=P(S;=1|S;,=1) =P(Si =18 1=2|S1=2,5,=2)
=vhL _ P(S;=1,851=2,5_1=2,5_,=2)
P(S;_1=2,85_,=2)
Y22 = P(S; = 2|S;4 = 2) _P(Sg‘:l,St*_l:Z,Sg‘_z:Z)
=P(S; =18, =2|S{1=1,5_,=2) P(S;_,=2,5_,=2)
_PGi=18,=25,=18,=2) =P(S;=1|S;,=2,5_,=2)
P(Si1=1,5_,=2) =P(S; =1IS{4, =2)
=0 =V
Y23 = P(S; =3|S;-1 = 2) Yaz = P(S; =3|S;-1 =4)
=P(S; =281 =1S{1=1,5_,=2) =P(S; =251 =151 =2,5_,=2)
_PGi=285,=15,=18,=2) _ PG =25,=15,=2S8,=2)
P(S;_1=1,8_,=2) P(S;_1=2,8_,=2)
CP(S{=2,5,=1,5_,=2) =0
P, =15 _,=2)
=P(S;=2IS;,=1,5_,=2) Yas = P(S; = 4151 =4)
=P(S; =2|S;.,=1) =P(S; =251 =2|S1=2,5_,=2)
=V1i2 _P(S; =285/ ,=2,5_,=2S,=2)
P(S,,=25_,=2)
Vo4 = P(S; = 4|5, =2) _ P(S;=2,5;1=2,5_,=2)
= P(S[: =2, 5{—1 = 2|S€_1 =1, 5{—2 =2) P(S;_, =2,5,_,=2)
_PGi=2S5,=25,=15,=2) =P(S;=2IS;1 =2,5_,=2)
P(S;_1=1,8_,=2) =P(S; =2|S;..=2)
=0 =V
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Based on the above equations and the nature of the probability for the transition matrix that the sum in
one row must be worth 1, then to estimate the transition matrix I in MNHMM-I it is enough to estimate
y11 and y5, and acquire a transition matrix

yii 0 iz 0

Yiin 0 vz O

0 yz: 0 v f

0 yz1 0 v

Ir =

Appendix 2 (Proof of Lemma 2)
Take any ¢ € &,

DUOH(GIF) = Y 0g(inp(xly, 6)) p(xly. 6) = Zajf("—m'%?p ) =o0, (Z p(x|y.qs)) = 051

=0.

Appendix 3 (Proof of Lemma 3)
Take any ¢, ¢ € ®. If f(x) =In % then from Jensen's inequality it is obtained,

L))

n| —————————— »4\) D,

)\ | =)
)< (o) o) 20

_ p(xly, @) p(xly. ¢) - S E; (1 (p(xly.di))l )31 (¢Y)
= F <ln<p(xly,<5)>|y>gln( —p(x1y, $) p(xly'¢)> "\l ) )"

=k <ln <P(x|y.¢3)>| > <0 < Eg(np(xly, 9)|y) — Ea,(lnp(x|y,g5)|y) <0
p(xly, $) A X -
& Eg(Inp(xly, §)Iy) < E5(Inp(xly, $)ly) = H(plp) < H(HI).

Appendix 4 (Proof of Theorem 1)
1. Suppose that T,p,m, and ¢ > 0 are sufficiently small that close to 0 are given. Define the set

diameter
giam® = [(2=e) + (2me) 4t (bme) w121z (Poe)
\ ) H_J H{_}

plm 1x2 1x1

2
=J(pm+1) e—e) +2<J(pm+1) ( ) +2 <pm+1+2<oo.
As a result, @ is a finite subset of RP>*™+3,

2. InLg(¢) is the sum from the multiplication of continuous functions in @ and differentiable in @, then
In L1(¢) is continuous in @ and differentiable in interior ®.

3. Take any ¢©@ € @. It will be proved that ® 40 is compact, i.e. @ 4 is finite and closed.
®,0 C P, while @ is finie (based on the 15t Wu condition). Consequently, @40 is finite. To show
®,0 is closed, sufficient proof @4 c D0 Take any ¢* € @4©. Then ¢* is the limit point of
® . Since the point ¢* is the limit point of the set ® ) if and only if there is a distinct sequence
in ® ;o which converging to ¢*, then 3 the sequence {¢*)} in @ ;« is such that Jim P - ¢,
with ¢ = ¢* for every k.

Suppose ¢* & ® 4, thenIn Ly (¢*) < In Lr(¢®). Determine & = In Ly(¢®) — In L (¢*) > 0. Since
lim $® — ¢* and In L+(¢) are continuous in ®, then Jim In Lr(¢®) =InLy(¢*). For > 0 above,

k—co
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then 3 k* € N such that for > k* it satisfies
[InLr(¢®) —InLr(¢p")| <e

=InLr(¢®) —InLr(¢p") <e =1L (¢¥) —InLr(¢*) <InLp(¢p®) —InLr (¢
= InL(¢6®) < InLy(¢©).

This is contradicts with ¢® € @40 SO @40 is a closed set.

4. Because Q(¢|¢) is the addition and multiplication of the functions a.(i|¢), B:(i|¢), vij (), ui; (@),
0ijk ($),In 6; (¢), In ;i (@), In 0355 (¢) , Iny;;(¢) which are continuous in & X ®, fort = 1,2,...,T, and
i,j €{1,2,3,...,m}. As aresult Q(¢p|¢) is a continuous function with respect to ¢, ¢ in ® x .

Appendix 5 (Proof of Lemma 5)

By using the definition of the set-value function T, from the function Q(¢’|¢") the information is obtained
that @' € T(¢"), with ¢', ¢’ € ®. Take any ¢ € ®\W. According to the 4™ Wu condition Q(¢|¢) is a
continuous function with respect to ¢ and ¢ at ® x @, i.e.

if ) - ¢ and p® - @, then Q(o®|p®) - Q(H19),
when k — oo,

Consequently, obtained ¢® € T(¢®) for k = 0,1,2, ..., and satisfy

if @ = @ and 9™ - @, then & € T(P),
when k — oo,

As a result the T function is closed, the EM algorithm is a special case by replacing ¢® to ¢ &+,
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