Fekete-Szegö Inequality for a Subclass of Biunivalent Functions by Applying Sălăgean q Differential Operator

Dayana Chang, Aini Janteng*
Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Malaysia

Abstract

Throughout this study, we propose a new subclass of bi-univalent functions by applying the Sălăgean q-differential operator and denoted as $\mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$. Additionally, we acquired the values of the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions $f \in \mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$ which yield to this study's preliminary result. Subsequently, the preliminary result was applied to obtain the upper bound of Fekete-Szegö inequality, $\left|a_{3}-\rho a_{2}^{2}\right|$, for functions $f \in \mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$.

Keywords: Fekete-Szegö Inequality, Bi-univalent Functions, Sălăgean q-Differential Operator.

Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disk $\mathcal{U}=\{z \in \mathbb{C}:|z|<1\}$.
Furthermore, let \mathcal{S} be the subclass of \mathcal{A} consisting of functions of the form (1.1) which are univalent in U.

For the two functions f and g, that are analytic in \mathcal{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathcal{U}, and write $f<g$ or $f(z) \prec g(z), z \in \mathcal{U}$, if there exists a Schwarz function $w(z)$, analytic in \mathcal{U} with $w(0)=0$ and $|w(z)|<1, z \in \mathcal{U}$, such that $f(z)=g(w(z)), z \in \mathcal{U}$. In particular, if the function g is univalent in U, the subordination is equivalent to $f(0)=g(0)$ and $f(U) \subset g(U)$. (see [23])

Apart from that, function f which belongs to \mathcal{S} has an inverse f^{-1} that can be written as $f^{-1}(f(z))=z$, $(z \in \mathcal{U})$ and $f\left(f^{-1}(w)\right)=w\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$. A function $f \in \mathcal{A}$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U.

Throughout this study, let Σ denote the class of bi-univalent functions defined in U. Since $f \in \Sigma$ has the Maclaurin series given by (1.1), its inverse $g=f^{-1}$ can be shown as the expansion of

$$
\begin{equation*}
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots . \tag{1.2}
\end{equation*}
$$

Currently, various subclasses of bi-univalent functions have been introduced by mathematicians and the study of coefficient problems, especially the Hankel determinant, is still actively studied. (see [9])

Noonan and Thomas [19] gave a definition for the m th Hankel determinant of f for integers $n \geq 1$ and $m \geq 1$ as

$$
H_{m}(n)=\left|\begin{array}{ccc}
a_{n} & \cdots & a_{n+m-1} \\
\vdots & \cdots & \vdots \\
a_{n+m-1} & \cdots & a_{n+2 m-2}
\end{array}\right|, \quad a_{1}=1 .
$$

By considering several values for m and n, the Hankel determinant $H_{2}(1), H_{2}(2)$ and $H_{2}(3)$ will be obtained. There are many results related to the results of $H_{2}(1), H_{2}(2)$ and $H_{2}(3)$ for subclasses of univalent and bi-univalent functions that have been widely explored by mathematicians, such as $[4,5,8$, $9,13,14,15,18,24]$.

Recently, the field of q-calculus has become a research trend among mathematicians. Researchers are interested in conducting research in this field because of its application in various branches of mathematics and physics. The application of q-calculus was initiated by Jackson [12]. He was the first to develop the q-integral and q-derivative in a systematic way.

For a function $f \in \mathcal{A}$ given by (1.1) and $0<q<1$, the q-derivative of a function f is defined by Jackson [12]

$$
\mathcal{D}_{q} f(z)=\left\{\begin{array}{cc}
\frac{f(z)-f(q z)}{(1-q) z}, & \text { for } \quad z \neq 0 \tag{1.3}\\
f^{\prime}(0), & \text { for } \quad z=0
\end{array}\right.
$$

and $\mathcal{D}_{q}^{2} f(z)=\mathcal{D}_{q}\left(\mathcal{D}_{q} f(z)\right)$. From (1.3), Jackson [12] has shown that

$$
\begin{equation*}
\mathcal{D}_{q} f(z)=1+\sum_{n=2}^{\infty}[n]_{q} a_{n} z^{n-1} \tag{1.4}
\end{equation*}
$$

where $[n]_{q}$ in (1.4) can be calculated by the formulae

$$
\begin{equation*}
[n]_{q}=\frac{1-q^{n}}{1-q} \tag{1.5}
\end{equation*}
$$

If $q \rightarrow 1^{-}$in the formulae (1.5) then $[n]_{q} \rightarrow n$.
Besides that, Sălăgean [22] has proposed the following Sălăgean differential operator for $f(z) \in \mathcal{A}$ as follows:

$$
\begin{gathered}
\mathcal{D}^{0} f(z)=f(z) \\
\mathcal{D}^{1} f(z)=\mathcal{D} f(z)=z f^{\prime}(z) \\
\mathcal{D}^{k} f(z)=\mathcal{D}\left(\mathcal{D}^{k-1} f(z)\right) \quad(k \in \mathbb{N}=1,2,3, \cdots)
\end{gathered}
$$

By substituting $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$, the $k t h$ order of differential operator will be

$$
\begin{equation*}
\mathcal{D}^{k} f(z)=z+\sum_{n=2}^{\infty} n^{k} a_{n} z^{n}, \quad k \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \tag{1.6}
\end{equation*}
$$

Numerous authors have been exploring the Sălăgean differential operator in the past few years, among them are as [3, 7, 11].

Further, Govindaraj and Sivasubramanian [6] had generalized (1.6) and defined the Sălăgean q differential operator for $f \in \mathcal{A}$ as given below:

$$
\begin{gather*}
\mathcal{D}_{q}^{0} f(z)=f(z), \\
\mathcal{D}_{q}^{1} f(z)=z \mathcal{D}_{q} f(z), \\
\mathcal{D}_{q}^{k} f(z)=z \mathcal{D}_{q}^{k}\left(\mathcal{D}_{q}^{k-1} f(z)\right), \\
\mathcal{D}_{q}^{k} f(z)=z+\sum_{n=2}^{\infty}[n]_{q}^{k} a_{n} z^{n} \quad\left(k \in \mathbb{N}_{0}, z \in \mathcal{U}\right) \tag{1.7}
\end{gather*}
$$

The study associated with the Sălăgean q-differential operator had been comprehensively studied by such researchers [2, 10, 16, 17].

Several authors had investigated the Fekete-Szegö functional $H_{2}(1)$ for various subclasses of biunivalent functions associated with the Sălăgean q-differential operator (see [20, 25, 26]). Motivated by that investigation, using the Sălăgean q-differential operator given by (1.7) and the principle of subordination, for functions g of the form (1.2), we define

$$
\begin{equation*}
\mathcal{D}_{q}^{k} g(w)=w-a_{2}[2]_{q}^{k} w^{2}+\left(2 a_{2}^{2}-a_{3}\right)[3]_{q}^{k} w^{3}+\cdots, \tag{1.8}
\end{equation*}
$$

we also introduce a new subclass of Σ which is denoted by $\mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$. The target of this study is to determine the upper bound of Fekete-Szegö functional $H_{2}(1)=\left|a_{3}-\rho a_{2}^{2}\right|$, for the function f belongs to $\mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$. We begin with the following definition first.

Let $\phi(0)=1, \phi^{\prime}(0)>0$, be an analytic function in U with positive real part, which is symmetrical with respect to the real axis. The function has a series expansion of the form

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots \quad\left(B_{1}>0\right) . \tag{1.9}
\end{equation*}
$$

Now, we present a new subclass of Σ as the following.
Definition 1.1. For $0 \leq \lambda<1$, a function $f \in \Sigma$ of the form (1.1) is said to be in the class $\mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$ if the following subordination hold

$$
\frac{\mathcal{D}_{q}^{k+1} f(z)}{(1-\lambda) \mathcal{D}_{q}^{k} f(z)+\lambda \mathcal{D}_{q}^{k+1} f(z)}<\phi(z)
$$

and

$$
\frac{\mathcal{D}_{q}^{k+1} g(w)}{(1-\lambda) \mathcal{D}_{q}^{k} g(w)+\lambda \mathcal{D}_{q}^{k+1} g(w)}<\phi(w),
$$

where $\mathcal{D}_{q}^{k} g(w)$ is given by (1.8) and (1.7).
Remark 1.1. For $0 \leq \lambda<1$ and $k=0$, a function $f \in \Sigma$ of the form (1.1) is said to be in the class $\mathcal{L} \Sigma_{q}^{0}(\lambda, \phi)$ if the following subordination hold

$$
\frac{z \mathcal{D}_{q} f(z)}{(1-\lambda) f(z)+\lambda\left(z \mathcal{D}_{q} f(z)\right)}<\phi(z),
$$

and

$$
\frac{w \mathcal{D}_{q} g(w)}{(1-\lambda) g(w)+\lambda\left(w \mathcal{D}_{q} g(w)\right)}<\phi(w)
$$

where $z, w \in U$ and $\mathcal{D}_{q}^{k} g(w)$ is given by (1.8).
To obtain the upper bound of $\left|a_{3}-\rho a_{2}^{2}\right|$ for $f \in \mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$, we need the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$, which will be discussed in the following section.

Lemma 1.1 ([21]) If a function $p \in \mathcal{P}$ is given by

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots \quad(z \in \mathcal{U})
$$

then

$$
\left|p_{i}\right| \leq 2 \quad(i \in \mathbb{N})
$$

where \mathcal{P} is the family of all functions p, analytic in $z \in \mathcal{U}$, for which

$$
p(0)=1 \quad \text { and } \quad \operatorname{Re}(p(z))>0 \quad(z \in \mathcal{U})
$$

Main Results

Next, we state our main result. Before that, we get the values for the initial coefficients a_{2} and a_{3}.
Lemma 2.1 Let f given by (1.1) be in the class $\mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$. Then

$$
\left|a_{2}\right| \leq \frac{\beta_{1} \sqrt{\beta_{1}}}{\sqrt{\left|\left(\left(\lambda^{2}-1\right)[2]_{q}^{2 k}+2(1-\lambda)[3]_{q}^{k}\right) \beta_{1}^{2}+(1-\lambda)^{2}[2]_{q}^{2 k}\left(\beta_{1}-\beta_{2}\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\beta_{1}}{2(1-\lambda)[3]_{q}^{k}}+\left(\frac{\beta_{1}}{(1-\lambda)[2]_{q}^{k}}\right)^{2}
$$

where $0 \leq \lambda<1$.
Proof Let $f \in \mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$ and $g=f^{-1}$. Then there are analytic functions $u, v: \mathcal{U} \rightarrow \mathcal{U}$, with $u(0)=0=$ $v(0)$, satisfying

$$
\begin{equation*}
\frac{\mathcal{D}_{q}^{k+1} f(z)}{(1-\lambda) \mathcal{D}_{q}^{k} f(z)+\lambda \mathcal{D}_{q}^{k+1} f(z)}=\phi(u(z)) \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathcal{D}_{q}^{k+1} g(w)}{(1-\lambda) \mathcal{D}_{q}^{k} g(w)+\lambda \mathcal{D}_{q}^{k+1} g(w)}=\phi(v(w)) . \tag{2.2}
\end{equation*}
$$

Let us first work on the left-hand side of the above equations. From (2.1) and (1.7), we have

$$
\begin{gather*}
\mathcal{D}_{q}^{k} f(z)=z+[2]_{q}^{k} a_{2} z^{2}+[3]_{q}^{k} a_{3} z^{3}+\cdots \\
\mathcal{D}_{q}^{k+1} f(z)=z+2[2]_{q}^{k} a_{2} z^{2}+3[3]_{q}^{k} a_{3} z^{3}+\cdots . \tag{2.3}
\end{gather*}
$$

Then,

$$
\begin{equation*}
(1-\lambda) \mathcal{D}_{q}^{k} f(z)+\lambda \mathcal{D}_{q}^{k+1} f(z)=z+(1+\lambda)[2]_{q}^{k} a_{2} z^{2}+(1+2 \lambda)[3]_{q}^{k} a_{3} z^{3}+\cdots \tag{2.4}
\end{equation*}
$$

Therefore, by dividing equation (2.3) with equation (2.4), we obtain

$$
\begin{align*}
& \frac{\mathcal{D}_{q}^{k+1} f(z)}{(1-\lambda) \mathcal{D}_{q}^{k} f(z)+\lambda \mathcal{D}_{q}^{k+1} f(z)} \tag{2.5}\\
& \quad=1+(1-\lambda)[2]_{q}^{k} a_{2} z+\left[2(1-\lambda)[3]_{q}^{k} a_{3}-\left(1-\lambda^{2}\right)[2]_{q}^{2 k} a_{2}^{2}\right] z^{2}+\cdots
\end{align*}
$$

For (2.2), let

$$
\begin{align*}
\mathcal{D}_{q}^{k} g(w) & =w-[2]_{q}^{k} a_{2} w^{2}+[3]_{q}^{k}\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \\
\mathcal{D}_{q}^{k+1} g(w) & =w\left(1-2[2]_{q}^{k} a_{2} w+3[3]_{q}^{k}\left(2 a_{2}^{2}-a_{3}\right) w^{2}+\cdots\right) \\
& =w-2[2]_{q}^{k} a_{2} w^{2}+3[3]_{q}^{k}\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \tag{2.6}
\end{align*}
$$

Then,

$$
\begin{align*}
(1-\lambda) \mathcal{D}_{q}^{k} g(w)+ & \lambda \mathcal{D}_{q}^{k+1} g(w) \\
& =w-(1+\lambda)[2]_{q}^{k} a_{2} w^{2}+(1+2 \lambda)[3]_{q}^{k}\left(2 a_{2}^{2}-a_{3}\right) w^{3}+\cdots \tag{2.7}
\end{align*}
$$

Therefore, by dividing equation (2.6) with equation (2.7), we have

$$
\begin{align*}
& \frac{\mathcal{D}_{q}^{k+1} g(w)}{(1-\lambda) \mathcal{D}_{q}^{k} g(w)+\lambda \mathcal{D}_{q}^{k+1} g(w)} \tag{2.8}\\
& \quad=1+(\lambda-1)[2]_{q}^{k} a_{2} w+\left[\left(\lambda^{2}-1\right)[2]_{q}^{2 k} a_{2}^{2}+2(1-\lambda)[3]_{q}^{k}\left(2 a_{2}^{2}-a_{3}\right)\right] w^{2}+\cdots
\end{align*}
$$

Now, for the right-hand side of equation (2.1) and (2.2), we define the functions $m(z)$ and $n(z)$ by

$$
\begin{equation*}
m(z)=\frac{1+u(z)}{1-u(z)}=1+m_{1} z+m_{2} z^{2}+\cdots, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
n(z)=\frac{1+v(z)}{1-v(z)}=1+n_{1} z+n_{2} z^{2}+\cdots \tag{2.10}
\end{equation*}
$$

or, equivalently, from (2.9) and (2.10), we obtain

$$
\begin{equation*}
u(z)=\frac{1}{2}\left[m_{1} z+\left(m_{2}-\frac{m_{1}^{2}}{2}\right) z^{2}+\cdots\right] \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z)=\frac{1}{2}\left[n_{1} z+\left(n_{2}-\frac{n_{1}^{2}}{2}\right) z^{2}+\ldots\right] . \tag{2.12}
\end{equation*}
$$

Then, $m(z)$ and $n(z)$ are analytic in U with $m(0)=1=n(0)$. Since $u, v: \mathcal{U} \rightarrow \mathcal{U}$, the functions $m(z)$ and $n(z)$ have a positive real part in $\mathcal{U},\left|m_{i}\right| \leq 2$ and $\left|n_{i}\right| \leq 2$.
Substituting equation (2.11) to equation (1.9), we obtain

$$
\begin{equation*}
\phi(u(z))=1+\frac{1}{2} \beta_{1} m_{1} z+\left[\frac{1}{2} \beta_{1}\left(m_{2}-\frac{m_{1}^{2}}{2}\right)+\frac{1}{4} \beta_{2} m_{1}^{2}\right] z^{2}+\cdots \tag{2.13}
\end{equation*}
$$

Substituting equation (2.12) into equation (1.9), we acquire

$$
\begin{equation*}
\phi(v(w))=1+\frac{1}{2} \beta_{1} n_{1} w+\left[\frac{1}{2} \beta_{1}\left(n_{2}-\frac{n_{1}^{2}}{2}\right)+\frac{1}{4} \beta_{2} n_{1}^{2}\right] w^{2}+\cdots . \tag{2.14}
\end{equation*}
$$

Substituting equation (2.5) and (2.13) into (2.1), we have

$$
\begin{align*}
1+(1-\lambda)[2]_{q}^{k} a_{2} z & +\left[2(1-\lambda)[3]_{q}^{k} a_{3}-\left(1-\lambda^{2}\right)[2]_{q}^{2 k} a_{2}^{2}\right] z^{2}+\cdots \\
& =1+\frac{1}{2} \beta_{1} m_{1} z+\left[\frac{1}{2} \beta_{1}\left(m_{2}-\frac{m_{1}^{2}}{2}\right)+\frac{1}{4} \beta_{2} m_{1}^{2}\right] z^{2}+\cdots \tag{2.15}
\end{align*}
$$

Comparing the coefficients of z and z^{2} of both sides of equation (2.15), we get

$$
\begin{align*}
& z: \\
& (1-\lambda)[2]_{q}^{k} a_{2}=\frac{1}{2} \beta_{1} m_{1} \tag{2.16}\\
& z^{2}: \tag{2.17}\\
& 2(1-\lambda)[3]_{q}^{k} a_{3}-\left(1-\lambda^{2}\right)[2]_{q}^{2 k} a_{2}^{2}=\frac{1}{2} \beta_{1}\left(m_{2}-\frac{m_{1}^{2}}{2}\right)+\frac{1}{4} \beta_{2} m_{1}^{2}
\end{align*}
$$

Substitute (2.8) and (2.14) into (2.2),

$$
\begin{align*}
1+(\lambda-1)[2]_{q}^{k} a_{2} w & +\left[\left(\lambda^{2}-1\right)[2]_{q}^{k} a_{2}^{2}+2(1-\lambda)[3]_{q}^{k}\left(2 a_{2}^{2}-a_{3}\right)\right] w^{2} \\
= & 1+\frac{1}{2} \beta_{1} n_{1} w+\left[\frac{1}{2} \beta_{1}\left(n_{2}-\frac{n_{1}^{2}}{2}\right)+\frac{1}{4} \beta_{2} n_{1}^{2}\right] w^{2}+\cdots \tag{2.18}
\end{align*}
$$

Comparing the coefficients of w and w^{2} of both sides of equation (2.18), we have

$$
\begin{equation*}
w: \quad(\lambda-1)[2]_{q}^{k} a_{2}=\frac{1}{2} \beta_{1} n_{1} \tag{2.19}
\end{equation*}
$$

$w^{2}: \quad\left(\lambda^{2}-1\right)[2]_{q}^{k} a_{2}^{2}+2(1-\lambda)[3]_{q}^{k}\left(2 a_{2}^{2}-a_{3}\right)=\frac{1}{2} \beta_{1}\left(n_{2}-\frac{n_{1}^{2}}{2}\right)+\frac{1}{4} \beta_{2} n_{1}^{2}$.
From (2.16) and (2.19), it shows that

$$
\begin{equation*}
m_{1}=-n_{1} \tag{2.21}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1}^{2}+n_{1}^{2}=\frac{8(1-\lambda)^{2}[2]_{q}^{2 k} a_{2}^{2}}{\beta_{1}^{2}} \tag{2.22}
\end{equation*}
$$

From (2.17), (2.20) and (2.22), we acquire

$$
\begin{equation*}
a_{2}^{2}=\frac{\beta_{1}^{3}\left(m_{2}+n_{2}\right)}{4\left[\left(\left(\lambda^{2}-1\right)[2]_{q}^{2 k}+2(1-\lambda)[3]_{q}^{k}\right) \beta_{1}^{2}+(1-\lambda)^{2}[2]_{q}^{2 k}\left(\beta_{1}-\beta_{2}\right)\right]} . \tag{2.23}
\end{equation*}
$$

As a result, by taking the modulus of both sides of equation (2.23) and applying Lemma 1.1 to the coefficient $\left|m_{2}\right|$ and $\left|n_{2}\right|$, we attain

$$
\left|a_{2}\right| \leq \frac{\beta_{1} \sqrt{\beta_{1}}}{\sqrt{\left|\left(\left(\lambda^{2}-1\right)[2]_{q}^{2 k}+2(1-\lambda)[3]_{q}^{k}\right) \beta_{1}^{2}+(1-\lambda)^{2}[2]_{q}^{2 k}\left(\beta_{1}-\beta_{2}\right)\right|}}
$$

By subtracting equation (2.17) from equation (2.20), then using (2.21) and (2.22), we get

$$
\begin{equation*}
a_{3}=\frac{\beta_{1}\left(m_{2}-n_{2}\right)}{8(1-\lambda)[3]_{q}^{k}}+\frac{\beta_{1}^{2}\left(m_{1}^{2}+n_{1}^{2}\right)}{8(1-\lambda)^{2}[2]_{q}^{2 k}} \tag{2.24}
\end{equation*}
$$

By taking the modulus on both sides of equation (2.24) and utilizing Lemma 1.1 once again to the coefficients $\left|m_{1}\right|,\left|m_{2}\right|,\left|n_{1}\right|$ and $\left|n_{2}\right|$, we obtain

$$
\left|a_{3}\right| \leq \frac{\beta_{1}}{2(1-\lambda)[3]_{q}^{k}}+\left(\frac{\beta_{1}}{(1-\lambda)[2]_{q}^{k}}\right)^{2}
$$

Therefore, the proof for Lemma 2.1 is completed.
For $\lambda=0$ in Lemma 2.1, we have the following result.
Corollary 2.1. Let f given by (1.1) be in the class $\mathcal{L} \Sigma_{q}^{k}(0, \phi)$. Then

$$
\left|a_{2}\right| \leq \frac{\beta_{1} \sqrt{\beta_{1}}}{\sqrt{\left|\left(-[2]_{q}^{2 k}+2[3]_{q}^{k}\right) \beta_{1}^{2}+[2]_{q}^{2 k}\left(\beta_{1}-\beta_{2}\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\beta_{1}}{2[3]_{q}^{k}}+\left(\frac{\beta_{1}}{[2]_{q}^{k}}\right)^{2}
$$

From Remark 1.1, Lemma 2.1 generates the following corollary.
Corollary 2.2. Let f given by (1.1) be in the class $\mathcal{L} \Sigma_{q}^{0}(\lambda, \phi)$. Then

$$
\left|a_{2}\right| \leq \frac{\beta_{1} \sqrt{\beta_{1}}}{\sqrt{\left|\left(\left(\lambda^{2}-1\right)[2]_{q}+2(1-\lambda)[3]_{q}\right) \beta_{1}^{2}+(1-\lambda)^{2}[2]_{q}\left(\beta_{1}-\beta_{2}\right)\right|}}
$$

and

$$
\left|a_{3}\right| \leq \frac{\beta_{1}}{2(1-\lambda)[3]_{q}}+\left(\frac{\beta_{1}}{(1-\lambda)[2]_{q}}\right)^{2}
$$

The main result is stated as follows.
Theorem 2.1. Let the function $f(z) \in \mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$ and $\rho \in \mathbb{C}$, then

$$
\left|a_{3}-\rho a_{2}^{2}\right| \leq\left\{\begin{aligned}
\frac{B_{1}}{2(1-\lambda)[3]_{q}^{k}}, & 0 \leq|\Theta(\rho)|<\frac{1}{8(1-\lambda)[3]_{q}^{k}} \\
4 B_{1}|\Theta(\rho)|, & |\Theta(\rho)| \geq \frac{1}{8(1-\lambda)[3]_{q}^{k}}
\end{aligned}\right.
$$

where

$$
\Theta(\rho)=\frac{\beta_{1}^{2}(1-\rho)}{4\left[\left(\left(\lambda^{2}-1\right)[2]_{q}^{2 k}+2(1-\lambda)[3]_{q}^{k}\right) \beta_{1}^{2}+(1-\lambda)^{2}[2]_{q}^{2 k}\left(\beta_{1}-\beta_{2}\right)\right]}
$$

Proof. From (2.24), we know that

$$
a_{3}=\frac{\beta_{1}\left(m_{2}-n_{2}\right)}{8(1-\lambda)[3]_{q}^{k}}+a_{2}^{2} .
$$

Hence,

$$
\begin{equation*}
a_{3}-\rho a_{2}^{2}=\frac{\beta_{1}\left(m_{2}-n_{2}\right)}{8(1-\lambda)[3]_{q}^{k}}+(1-\rho) a_{2}^{2} \tag{2.25}
\end{equation*}
$$

Substituting equation (2.23) to (2.25), we have

$$
a_{3}-\rho a_{2}^{2}=\beta_{1}\left[\left(\Theta(\rho)+\frac{1}{8(1-\lambda)[3]_{q}^{k}}\right) m_{2}+\left(\Theta(\rho)-\frac{1}{8(1-\lambda)[3]_{q}^{k}}\right) n_{2}\right]
$$

where

$$
\Theta(\rho)=\frac{\beta_{1}^{2}(1-\rho)}{4\left[\left(\left(\lambda^{2}-1\right)[2]_{q}^{2 k}+2(1-\lambda)[3]_{q}^{k}\right) \beta_{1}^{2}+(1-\lambda)^{2}[2]_{q}^{2 k}\left(\beta_{1}-\beta_{2}\right)\right]}
$$

Since all β_{j} are real and $\beta_{1}>0$, we have

$$
\left|a_{3}-\rho a_{2}^{2}\right| \leq 2 \beta_{1}\left|\left(\Theta(\rho)+\frac{1}{8(1-\lambda)[3]_{q}^{k}}\right)+\left(\Theta(\rho)-\frac{1}{8(1-\lambda)[3]_{q}^{k}}\right)\right|
$$

where

$$
\left|a_{3}-\rho a_{2}^{2}\right| \leq \frac{\beta_{1}}{2(1-\lambda)[3]_{q}^{k}} \text { for } 0 \leq|\Theta(\rho)|<\frac{1}{8(1-\lambda)[3]_{q}^{k}}
$$

and

$$
\left|a_{3}-\rho a_{2}^{2}\right| \leq 4 \beta_{1}|\Theta(\rho)| \text { for }|\Theta(\rho)| \geq \frac{1}{8(1-\lambda)[3]_{q}^{k}}
$$

Therefore, the proof for Theorem 2.1 is completed.
For $\lambda=0$ in Theorem 2.1, we obtain the following result.
Corollary 2.3. Let the function $f(z) \in \mathcal{L} \Sigma_{q}^{k}(0, \phi)$ and $\rho \in \mathbb{C}$, then

$$
\left|a_{3}-\rho a_{2}^{2}\right| \leq\left\{\begin{array}{lc}
\frac{B_{1}}{2[3]_{q}^{k}}, & 0 \leq|\Theta(\rho)|<\frac{1}{8[3]_{q}^{k}} \\
4 B_{1}|\Theta(\rho)|, & g \\
& |\Theta(\rho)| \geq \frac{1}{8[3]_{q}^{k}}
\end{array}\right.
$$

where

$$
\Theta(\rho)=\frac{\beta_{1}^{2}(1-\rho)}{4\left[\left(-[2]_{q}^{2 k}+2[3]_{q}^{k}\right) \beta_{1}^{2}+[2]_{q}^{2 k}\left(\beta_{1}-\beta_{2}\right)\right]}
$$

Conclusions

Throughout this study, a new subclass of bi-univalent functions by applying the Sălăgean q-differential operator had been presented. Along with that, we had also determined the initial coefficients, $\left|a_{2}\right|$ and $\left|a_{3}\right|$ and the upper bound of Fekete-Szegö inequality for function f belongs to the new subclass $\mathcal{L} \Sigma_{q}^{k}(\lambda, \phi)$ had been discovered.

Conflicts of Interest

The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper.

Acknowledgment

The work presented here was partially supported by SBK0485-2021.

References

[1] Ali, R. M., Lee, S. K., Ravichandran V. \& Supramaniam S. (2011). Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Applied Mathematics Letters, 25(3), 344-351.
[2] Aouf, M. K., Mostafa, A. O. \& Morsy, R. E. E. L. (2020). Coefficient bounds for general class of bi-univalent functions of complex order associated with q-Sălăgean operator and Chebyshev polynomials. Electronic Journal of Mathematical Analysis and Applications, 8(2), 251-260.
[3] Çağlar, M. \& Deniz, E. (2017). Initial Coefficients for a subclass of bi-univalent functions defined by Salagean differential operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 85-91.
[4] Choo, C. P. \& Janteng, A. (2013). Estimate on the second hankel functional for a subclass of close-to-convex functions with respect to symmetric points. International Journal of Mathematical Analysis, 7(13-16), 781-788
[5] Frasin, B. A. \& Aouf, M. K. (2011). New subclasses of bi-univalent functions. Appl. Math. Lett., 24, 1569-1573.
[6] Govindaraj, M. \& Sivasubramanian, S. (2017). On a class of analytic function related to conic domains involving q-calculus. Analysis Math., 43(3), 475-487.
[7] Halim, S. A. (1992). On a class of analytic functions involving the Salagean Differential Operator. Tamkang Journal of Mathematics, 23(1), 51-58.
[8] Halim, S. A., Janteng, A. \& Darus, M. (2006). Classes with negative coefficients and starlike with respect to other points II. Tamkang Journal of Mathematics, 37(4), 345354.
[9] Huey, K. S., Janteng, A., Janteng, J. \& Hern, A. L. P. (2023). Second Hankel determinant of bi-univalent functions. Malaysian Journal of Fundamental and Applied Sciences, 19(2), 269-279.
[10] Hussain, S., Khan, S., Zaighum, M. A. \& Darus, M. (2017). Certain subclass of analytic functions related with conic domains and associated with Salagean q differential operator. AIMS Mathematics, 2(4), 622-634.
[11] Ibrahim, R. W. \& Darus M. (2019). Subordination inequalities of a new Salageandifference operator. International Journal of Mathematics, 14(3), 573-582.
[12] Jackson, F. H. (1908). On q-functions and a certain difference operator. Transactions of the Royal Society of Edinburgh, 46(2), 253-281.
[13] Janteng, A. \& Halim, S. A. (2009). A subclass of quasi-convex functions with respect to symmetric points, Applied Mathematical Sciences, 3(12), 551-556.
[14] Li, X. F. \& Wang, A. P. (2012). Two new subclasses of bi-univalent functions. Int. Math. Forum, 7, 1495-1504.
[15] Liew, A. P. H., Janteng, A. \& Omar, R. (2020). Hankel determinant H_{2} (3) for certain subclasses of univalent functions. Mathematics and Statistics, 8(5), 566-569.
[16] Murugusundaramoorthy, G. \& Vijaya K. (2017). Subclasses of bi-univalent functions defined by Sălăgean type q-difference operator. arXiv:1710.00143v1.
[17] Murugusundaramoorthy, G., Yalçin, S. \& Altınkaya, Ş. (2019). Fekete-Szegö inequalities for subclass of bi-univalent functions associated with Sălăgean type q difference operator. Afrika Matematika, 30, 979-987.
[18] Mustafa, N., Murugusundaramoorthy, G. \& Janani, T. (2018). Second Hankel determinant for a certain subclass of bi-univalent functions. Mediterranean Journal of Mathematics, 15(3), 1-17.
[19] Noonan, J. W. \& Thomas, D. K. (1976). On the second Hankel determinant of areally mean p-valent functions. Trans. Am. Math. Soc., 223, 337-346.
[20] Orhan, H., Magesh, N., Balaji, V. K. (2016). Fekete-Szegö problem for certain classes of Ma-Minda bi-univalent functions. Afrika Matematika, 27(5-6), 889-897.
[21] Pommerenke, C. (1975). Univalent functions. Vandenhoeck and Ruprecht, Göttingen.
[22] Sălăgean, G. S. (1983). Subclasses of univalent functions, Complex analysis Proceedings 5 ${ }^{\text {th }}$ Romanian-Finnish Seminar, Busharest, 1013, 362-372.
[23] Srivastava, H. M. \& Attiya, A. A. (2004). Some subordination results associated with certain subclass of analytic functions. Appl. Math. Sci., 5(4), 1-6.
[24] Srivastava, H. M., Mishra, A. K. \& Gochhayat, P. (2010). Certain subclasses of analytic and bi-univalent functions. Applied Mathematics Letters, 23(10), 1188-1192.
[25] Tang, H., Srivastava, H. M., Sivasubramanian, S. \& Gurusamy, P. (2016). The Fekete-Szegö functional problems for some subclasses of m-fold symmetric biunivalent functions. Journal of Mathematical Inequalities, 10(4), 1063-1092.
[26] Zaprawa, P. (2014). On the Fekete-Szegö problem for classes of bi-univalent functions. Bull. Belg. Math. Soc. Simon Stevin, 21(1), 169-178.

