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Abstract The tripartite industry classification, which divides all economic activities into three parts, 

is a classification method to reflect the dynamic process of economic development and the historical 

trend of the change of resource allocation structure.The fact shows that the proportion of each 

industry has become an important symbol of the level of national economic development. The 

proportion of each industry is compositional data,which is a kind of complex multidimensional data 

used in many fields. All components in the compositional data are non-negative and carry only 

relative information. In practice, there could be missing values in compositional data. However, 

general statistical analysis methods cannot be firstly used for compositional data with missing 

values. The complexity of the missing value of compositional data makes traditional imputation 

methods no longer suitable. Thus, how to carry out effective statistical inference for compositional 

data with missing values attracts the attention of many scholars, recently. In this paper, we focus 

on the imputation problem in compositional data containing missing values, and propose an 

Adaptive Least Absolute Shrinkage and Selection Operator (ALASSO) imputation method to obtain 

a complete datasets through variable selection and parameter estimation. Then, the new method is 

simulated and empirically analyzed, and a comparative study with mean imputation, k-nearest 

neighbor imputation, and iterative regression imputation is conducted. The results show that the 

ALASSO imputation method has the highest accuracy for different missing rates, dimensions and 

correlation coefficients. 

Keywords:  Missing Values, Compositional Data, Adaptive Lasso, Industry Composition. 
 

 

Introduction 
 

Compositional data appear in different disciplines, for example, geology, biology, economics, etc. For 
example, in geological literature, many geologists are interested in studying the mineral composition of 
rock samples [3]. Within biology, the studies of cells usually focus on the relative frequencies instead of 
the absolute amount [15]. In the course of world economic development in the 20-th century, an obvious 
feature is the rapid rise of the status of the third industry in the whole national economy. Large-scale and 
efficient logistics, commodity flow and information flow in the third industry link up a large number of 
production and consumption, so that material production has been greatly developed [31]. 

 

With the deepening of industrialization, highly developed financial, insurance and real estate systems 
have become important links in improving the overall efficiency of the national economy. City as a country 
or a region's economic development center, it must be economic and cultural development level is higher 
space system, its transport, trade, finance, service and other economic center function more developed, 
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so the proportion of the third industry should be higher than the national average level, some developed 
urban areas the proportion of the third industry will achieve a quite high level [19]. Taiyuan, the capital 
of Shanxi Province, is the national famous historical and cultural city, the national garden city, the core 
city of Taiyuan metropolitan area, and the political, economic, cultural, transportation and international 
exchange center of Shanxi Province. The development of the third industry is higher than the average 
level of other towns and cities [32]. From 2004 to 2020, the proportion of the added value of the third 
industry in the GDP of Taiyuan has increased from 42% to 57.8%. However, Taiyuan as a capital city, 
its third industry still has a lot of room for development. In order to observe the changes of three industrial 
structures in Taiyuan's GDP, the charts of industrial structure in 2004, 2011 and 2021 are listed in Table 
1. 

 

Table 1. Composition of Taiyuan’s there industries 

 

 

 

For a long time, Taiyuan has attached great importance to industrial infrastructure and industrial 
production in the development process, but seriously neglected the development of urban infrastructure 
and primary and tertiary industries, resulting in urban construction and management lagging behind 
economic development, low investment ratio in urban infrastructure, too much historical "debt"; the 
development of agriculture has long been at a low level, urban and rural. Agricultural development has 
been at a relatively low level for a long time, and the characteristics of the "dualistic" structure of urban 
and rural areas are obvious; the tertiary industry has been underdeveloped for a long time, and both the 
scale and structure cannot meet the objective needs of social production and people's life. 

 

From the viewpoint of industrial structure changes in Taiyuan, there are still a lot of problems in the 
internal structure of Taiyuan industry, and the industrial structure needs to be optimized. Taiyuan should 
be positioned as a new city, reform some backward, high energy consumption, high pollution enterprises, 
and develop some new industries, forming a "three, two, one" industrial pattern with heavy industry as 
the leading industry and secondary and tertiary industries leading economic growth [8]. 

 
Background Knowledge 
 

In this paper, it is necessary to define that each component in the compositional data is greater than or 
equal to zero and less than one. This is a very common situation in practical work, so this modeling 
method can be applied to most application problems. 

 

Compositional data are quantitative descriptions of relative information and is widely used in various of 
scientific fields, such as the study of time budgets of groups in psychology, mineral compositions of rocks 
in geology, and household budget compositions and income elasticities of demand in economics, etc. 
The concept of compositional data can be traced back to the work in [9], and a D - part simplex is defined 
as: 
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where the value of c is a random positive constant, usually normalized as 1 or 100. If 

],,,[ 21 Dxxxx =  is an element of 
DS , it is called a D - part composition. ],,,[ 21 Dxxxx =  

denotes a vector in  
DS , )1](,,,[ 21 −== Dpzzzz p  denotes a p  - part real valued vector. 

 

To deal with the positive component and the sum-constant contraints in compositional data, we consider 

the isometric logratio )(ilr  transformation is [6]: 

 

Year 
Primary 
Industry 

Secondary 
Industry 

Tertiary 
Industry 

2004 42.0% 55.0% 43.0% 

2011 52.8% 45.6% 1.60% 

2020 57.8% 41.3% 0.90% 
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 where the component 
D

D Sxxxx = ],,,[ 21  is converted into a vector of real numbers with p parts 

)1](,,,[ 21 −== Dpzzzz p . 

 

For a compositional data matrix ( )
DnijxX


= with n observations and D parts, the isometric logarithmic 

ratio transformation of the i - th composition vector  iDiii xxxx ,,, 21 = is 

  ),1;,,2,1(,,,)( 21 −==== Dpnizzzzxilr ipiiii  and the inverse transformation is as follows: 
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We transform the compositional data into a standard Euclidean space using the ilr transformation, and 

then we can apply standard statistical methods, and the ilr transformation makes the variable 

)(xilrz =  follows a multivariate normal distribution on
pR , its average vector and covariance matrix 

respectively   and . Consequently, the original compositional data x  follows a normal distribution 

on a single row space 
DS . 

 

To measure the difference between two components, we consider the Aitchison distance, which is a 
commonly used distance measure applicable to compositional data. It is defined in the ilr space. The ilr 
transformation is a method for converting compositional data into Euclidean space, avoiding the issue of 
absolute scale and making the data more suitable for applying Euclidean distance or other methods in 
Euclidean space [1]. In particular, the Aitchison distance between composition vectors 

],,,[ 21 Dxxxx = and   D

D Syyyy = ,,, 21    is defined as follows: 
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where )(xg  and )(yg are the geometric mean of composition vector x  and y , respectively. 

 

Existing Imputation Methods 
Now researchers have developed many methods for estimating component data with missing values. 

Imputation techniques can be classified as univariate imputation, such as MEAN imputation, k -nearest 

neighbor imputation, EM algorithm; and multivariate imputation such as regression imputation, Markov 
Chain Monte Carlo (MCMC) algorithm, and so on. More discussions can be found in [18]. In the following, 
we briefly introduce two of them. 

 

1. MEAN Imputation Method 
The mean imputation method is the simplest and easy-to-use replacement method, in which the missing 
values are first replaced by the mean of the already observed data when preprocessing the data, so that 
the data can be complete and then the correlations between variables can be analyzed using traditional 
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data mining methods. However, it is important to pay attention to the type of distribution to which the 
variables in the data belong, which is not described in detail here [28]. 
 

2. knn  Imputation Method 

The k -nearest neighbor imputation method has been proved to be successful for the multivariate data 

[5]. The knn method finds the most similar k observation in a combination containing missing values by 
using a distance metric, and then replaces the missing values with the available information of the 
selected neighbors. The Aitchison distance is generally used to measure the similarity in knn imputation 
method. 
 

Suppose a composition contains several cells that contain missing values. First, the knn  imputation 

method searches k -nearest neighbors among the observations with available information of the 

imputation variable, and determines the similarity according to the information of the units that are not 

missing. Thus, the k  observations can change during successive imputations. Secondly, the median 

value of the corresponding cell of k  nearest neighbor is used to replace the missing part. In general, 

the unit should be transformed according to the overall size of the part. 
 

The knn  imputation method also has some shortcomings [12]. First, the researcher had to determine 

the best number for the nearest neighbor k . Although the parameter k  can be found by simulation by 

randomly setting the absence of observation units, the computational burden is quite high. Second, in 
synthetic data, small sample sizes can be problematic when searching for nearest neighbors using 
available information, as it can lead to different neighbors. Now, though, most practical data sets are of 

reasonable size. Third, the knn imputation cannot fully account for multivariate relationships between 

components and can only be considered in search of k -nearest neighbor time. It can be seen that the 

model-based imputation process can improve the quality of imputation. 
 
The k-nearest neighbor imputation method has been proved to be successful for the multivariate data. 
The method finds the most similar observation in a combination containing missing values by using a 
distance metric, and then replaces the missing values with the available information of the selected 
neighbors. The Aitchison distance is generally used to measure the similarity in imputation method. 
 
Suppose a composition contains several cells that contain missing values. First, the imputation method 

searches k -nearest neighbors among the observations with available information of the imputation 

variable, and determines the similarity according to the information of the units that are not missing. 
Thus, the observations can change during successive imputations. Secondly, the median value of the 
corresponding cell of nearest neighbor is used to replace the missing part. In general, the unit should be 
transformed according to the overall size of the part. 
 
The imputation method also has some shortcomings [11]. First, the researcher had to determine the best 
number for the nearest neighbor. Although the parameter can be found by simulation by randomly setting 
the absence of observation units, the computational burden is quite high. Second, in synthetic data, small 
sample sizes can be problematic when searching for nearest neighbors using available information, as 
it can lead to different neighbors. Now, though, most practical data sets are of reasonable size. Third, 
the imputation cannot fully account for multivariate relationships between components and can only be 

considered in search of k -nearest neighbor time. It can be seen that the model-based imputation 

process can improve the quality of imputation. 
 
3. Iterative Regression Imputation Method 
Iterative regression imputation is an Iterative Least Squares Regression (ILSR) techniques to impute 
missing data [30]. For variables that contain some missing values, the previous observations are 
considered as covariates to establish an appropriate linear regression model, and to impute missing 
values. Repeating this the process, one can impute all the missing values. Specifically, suppose that 

variable jy is recorded with some missing values and variable vector ( )
pzzzz ,,, 21 =

 
is recorded 

completely, so the regression model is established as follows: 

jppj zzzy  +++++= 22110  

where ( )
p ,,,, 210 =  is regression coefficient, j  is a random noise which follows a normal 
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distribution ( )IN j

2,0  . We can estimate the regression coefficients   and 
2

j  by some methods 

such as ordinary least square and maximum likelihood. In k -th step of imputation, the new parameters 

are extracted from the posterior predictive distribution of the missing data, denoted as ( ))()(

1
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0 ,,, k

p

kk    

and 
)(k

j  according to the simulation ( )
p ,,,, 210   and 

j , then following [18], the missing 

value can be replaced by the following formula : 
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Where ( )
pzzzz ,,, 21 =  is observed values of the explanatory variables,   is a normal deviation. 

 

For the iterative regression imputation method, a data set of random residual need to be constructed. 
There are many methods of construction, for example, we stratify the entire sample according to the 
explanatory variables z , then in each stratum, put the deviations between the observed value and the 

average value as a residual. After getting jy  by regression method, in the residual set of the layer, we 

randomly extract residual item, and take it as the imputation of missing values, that is, jjj yy += ˆ , 

this method overcomes the distortion problem of sample distribution. 

 

It is worth noting that the relationship between the variables tends to artificially increase when using 
rigorous fitted regression equation to predict the target value. Therefore, only when the correlation 
between explanatory variables and target variables is higher, the regression imputation is more effective 
[23]. 

 

In general, both of the above-mentioned imputation methods have more or less their own advantages 
and disadvantages. In order to make the imputation effect more stable, more reliable and faster to handle 
the compositional data with missing values, we propose a novel imputation method -- Adaptive Lasso 
regression imputation. 

 
Methodology of the Adaptive Lasso Imputation  
 

In this section, we propose a new imputation method innovatively for compositional data with missing 
values--the Adaptive Lasso imputation. A fast and efficient computational algorithm is also given in this 
section. 

 

For simplicity, we define the following notations. Let 

                                            

1 11 12 1

2 21 22 2(1) (2) ( )

1 2

( , )

D

DD

n n n nD

x x x x

x x x x
X x x x

x x x x

   
   
   = = =
   
   
   

， ,

                                        (5) 

be the compositional data matrix, where n is observations, and D  is compositions. Using the isometric 

logarithmic ratio transformation 
1 2( ) ( , , , )( 1)i i i i ipilr x z z z z p D= = = − the compositional data in 

monomorphic space are transformed into real numbers in Euclidean space, so that we can use traditional 
statistical methods to deal with the problem in question [7]. 

 

Let the subset  1,2, ,lm n  as the index set of observations that were originally missing in the variable 

lx , and  1,2, , \l lo n m=  is the index set of observed cells corresponding to lx . The lo

lz  and lm

lz  

denote l - th balance the observed values and missing values, the corresponding variables are lx . Let 

the lo

lZ−  and lm

lZ−  to represent the indicators of missing and non-missing data in lx ,  while lo

lZ−  and lm

lZ−  

are the covariates needed during the solving process. 

 

The Adaptive Lasso is an improved version of Lasso regression [27]. The Adaptive Lasso (ALASSO) 
method uses different weights to punish the coefficients twice. The function of the penalty weights is to 
make the penalty smaller for the more important variables, so that the important variables can be 
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selected more easily, while the unimportant variables can be eliminated. This makes up for the defects 
of Lasso and satisfies the Oracle properties. In addition, the algorithm for solving the Adaptive Lasso 
problem can be used to solve the Lasso problem with good results [13]. 

 

The Lasso estimation is defined as 

1

2ˆ: arg min , , 0.
l

LASSO y subject to t t  = −  X                                        (6) 

Equivalent to 

2

1

ˆ: arg min .
p

j

j

LASSO y t  
=

  
= − + 

  
X

                                                          

 (7) 

Similarly, the Adaptive Lasso estimator is defined as 
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where 
nt  is the adjustment parameter used to balance the penalty term and empirical risk, and the 

variation of 
nt  with n ; ˆˆ 1 0



  = ，  is the adaptive penalty weight, which works by making the 

penalty less for the more important variables. The penalty term expression is 
1
ˆ

p

n j jj
t  

= , the 

regression coefficient   obtained with 
1l  parametric will have less non-zero components and get more 

sparse solutions, so 
1l  parametric number can be used for feature selection [2]. 

 

It is easy to see that the main improvement of the adaptive Lasso is the possibility to assign different 

weights to different coefficients. If we pick a suitable 
nt , the adaptive Lasso has the Oracle property, and 

a larger 
nt  means a larger penalty to the linear model, which can compress more regression coefficients 

to 0, then the adaptive lasso estimation satisfies sparsity and asymptotic normality [10,24]. 

 

Without loss of generality, we construct ˆ( )ols  the adaptive penalty weight  . Parameter 
nt  is used to 

adjust the sparsity of the model. If the value of 
nt  is too large, it may lead to substantial deviation in the 

estimation of large regression coefficients; If the value of 
nt  is too small, the solution of the model may 

not be sparse enough. Therefore, the value of 
nt  should be selected by certain criteria, such as BIC 

(Bayesian Information criterion), CV (cross validation function), GCV (generalized cross validation 

function), we use the cross-validation method to determine the optimal 
nt  and find an optimal pair ( , )nt  

Assume  ( )ˆ: 0 , (1,2,3, , )n

n jA j j p=   ,and  the imputed value of parameter β is 
1 2

ˆ ˆ ˆ ˆ( , , , )
l

T

o   = , 

the prediction vector of the response variable y is ŷ : 

1

ˆ ˆˆ
p

j j

j

y  
=

= =X X

                                                                

(9) 

and the sum of squared error is 

2 2

1

ˆ ˆ ˆ( ) ( )
lo

i i

i

S y y y y
=

= − = −                                                  (10) 

 

Denote 

1

ˆ ˆ( )
p

j

j

T  
=

=                                                                 (11) 

The ALASSO estimator ̂  is minimizes ˆ( )S   subject to a bound of the penalty parameter 
nt  on ˆ( )T  . 

The method of variable selection is essentially the reduction of a complex variable selection problem to 
a minimization problem of the objective function, the algorithms used to solve the minimization problem 
are commonly the least angle regression algorithm and the local quadratic approximation algorithm. In 
this paper, the least angle regression algorithm is used to perform variable selection [4, 25]. 

 

The compositional data with missing values, an iterative algorithm via ALASSO can be summarized as 
follows: 

Step (1): Set * ˆ1, 1, , , 1,2, ,n j j jl n A j p= = = = =X X . 

Step (2): Here all nt , the ALASSO problem is solved: 
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2

* *

1 1

ˆ ˆ: arg min .
p p

j j n j

j j

ALASSO y t  
= =

  
= − + 

  
 X                                  (12) 

Step (3): We use the estimates of the regression coefficients 

 *( ) *ˆ ˆ ˆn

j j j  = , 1,2, ,j p=   to replace the missing parts lm

lz  by 

1 1
ˆˆl l lm m m

lz z Z −= = .                                                               (13) 

Step (4): The values that were originally missing in the cells 
lm  in variable 

lx  are updated. Note that 

also the non-missing cells are updated, but the ratios between them do not change. 

Step (5): Let 1. 1l l n n= + = + , update
nA . 

Step (6): we repeat Step (1)-(5) until we have traversed all variables. 

 

After fill the missing parts using the above algorithm, one can get a complete data set. Comparing with 
the original compositional data, we assess the performance of imputation method using the normalized 
root mean squared error nrmse : 

                                                                 

2( )

( )

true imp

true

mean X X
nrmse

Var X

−
=                                                      (14) 

where trueX  is the original data, impX  is imputed data containing missing parts. 

 

This algorithm ensures that all variables included in the regression model keeping the same correlation 
degree with the current residual, and thus the algorithm performs much faster than forward selection or 
step forward process, while avoiding missing some important variables [14, 26]. 

 

Simulations Study 
 

In this section, the different missing rates, dimensions and the correlations are analyzed respectively 

[16]. Firstly, we generate an n p  real data matrix ( )ij n pZ z =  from ( , )p

rN   , and then obtain the 

compositional data matrix ( )ij n pX x =  by using the inverse transformation of isometric logratio 

transformation 1ilr − . In order to give the correlation between the components, we let 
1(0,0, ,0) D = , 

11 (1 )T

r r r I = + − , where 
11 (1,1, ,1)T

D= , I  is the identity matrix of order D . 

 

1. Scenario 1 

Comparison of simulation results of ALASSO imputation method with different missing rates and 
dimensions [29]. 

 

We consider 100,200,300n =  different missing rate mr = (5%, 10%, 20%, 30%) . and the repeat 100 

simulations for each setting, and take the true value (3,1, 2) = − . For a given (0.5,1,2) = , we use the 

cross-validation method to determine the optimal ( 0.5,0,0.5)nt = −  and find an optimal pair ( , )nt  by the 

ALASSO imputation method. Among them, the imputation results of ALASSO imputation method with 

sample size of 100n = is shown in Table 2, the imputation results of ALASSO imputation method with 

sample size of 200n =  is shown in Table 3, and the imputation results of ALASSO imputation method 

with sample size of 300n =  is shown in Table 4. 

 

Table 2. Comparison results of different missing rate and parameter pairs using the ALASSO method 
when sample size n=100 

Missing Values Parameter ( , )nt  Imputation Value ˆ( )  
Imputation Value

( )nrmse  

           5% (0.5,-0.5)   (3.184,2.720,-5.369) 30.4%(1.32) 

(0.5,0)   (2.081,1.832,-2.437)     25.3%(1.27) 

(0.5,0.5)   (2.803,2.195,-1.608)     38.4%(2.68) 

         10% 

(1,-0.5)  (4.250,0.871,-3.021)     27.6%(3.21) 

(1,0)   (1.503,1.253,-1.562)    22.1%(1.45) 

(1,0.5)   (2.214,3.021,-1.207)   19.2%(1.87) 

         20% (1,-0.5)   (0.035,0.982,-2.351)    31.9%(3.28) 
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Table 3. Comparison results of different missing rate and parameter pairs using the ALASSO method 
when sample size n=200 

 

 
 

Table 4. Comparison results of different missing rate and parameter pairs using the ALASSO method 
when sample size n=300 

 

 

 

From Table 2, Table 3 and Table 4, it can be seen the imputation values of the ALASSO method for 

different sample sizes and missing rates. We find the imputation value ˆ( )  and ( )nrmse  are getting 

bigger as the sample size increases from 100n = to 300n = with increasing missing rates, when the 

adjustment parameter 0.5nt = and the adaptive penalty weight 0.5. = So, the subsequent Adaptive 

Lasso method will use the optimal parameter pair ( , ) (0.5,0.5)nt =
 
to impute the missing values. 

 

Missing Values Parameter ( , )nt  Imputation Value ˆ( )  
Imputation Value

( )nrmse  

(1,0)   (2.551,1.284,-3.517)    24.6%(1.21) 

(1,0.5)   (1.335,3.630,-1.201)    20.5%(1.09)  

        30% (2,-0.5)   (7.256,4.784,-2.327)    26.2%(2.58) 

(2,0)   (2.627,4.851,-1.289)    32.4%(1.61) 

(2,0.5)   (2.256,1.023,-2.144) 28.9%(1.45)  

Missing Values Parameter ( , )nt  Imputation Value ˆ( )  
Imputation Value

( )nrmse  

5% (0.5,-0.5) (5.021,0.861,-1.885) 22.7%(2.30) 

(0.5,0) (2.982,1.778,-1.657) 31.1%(3.21) 

(0.5,0.5) (2.564,0.961,-4.781) 27.8%(1.85) 

10% (1,-0.5) (4.237,0.737,-1.327) 25.8%(1.55) 

(1,0) (2.651,2.841,-2.443) 20.1%(2.28) 

(1,0.5) (3.351,0.881,-1.652) 29.6%(1.99) 

20% (1,-0.5) (2.224,0.922,-1.871) 39.2%(3.27) 

(1,0) (2.630,1.831,-3.681) 32.2%(1.34) 

(1,0.5) (7.307,0.234,-1.327) 23.7%(2.18) 

30% (2,-0.5) (2.843,0.627,-1.853) 28.4%(3.48) 

(2,0) (5.853,3.701,-2.271) 32.9%(2.36) 

(2,0.5) (2.761,0.257,-1.337) 26.5%(5.02) 

Missing Values Parameter ( , )nt  Imputation Value ˆ( )  
Imputation Value

( )nrmse  

5% (0.5,-0.5) (3.241,1.782,-1.531) 42.7%(3.17) 

(0.5,0) (2.662,0.907,-2.902) 28.1%(2.64) 

(0.5,0.5) (2.307,0.264,-1.337) 25.4%(1.55) 

10% (1,-0.5) (1.154,3.322,-4.661) 27.6%(1.34) 

(1,0) (2.664,0.027,-1.881) 30.2%(2.61)  

(1,0.5) (2.981,0.634,-0.726) 28.8%(1.08)  

20% (1,-0.5) (1.017,1.854,-1.461) 33.7%(0.27) 

(1,0) (2.901,0.227,-1.037) 26.4%(1.36) 

(1,0.5) (4.087,2.663,-3.291) 27.2%(2.07) 

30% (2,-0.5) (2.364,0.277,-1.301) 20.1%(1.37) 

(2,0) (2.940,0.985,-2.385) 32.9%(3.20) 

(2,0.5) (6.027,1.248,-1.942)  25.7%(1.91) 
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With the same sample size n, for example, in Table 3, the value of the tuning parameter 𝑡𝑛 increases as 

the missing rate increases, the value of ( )nrmse  is also increasing, and the interpolation effect of 

ALASSO is decreasing. This indicates that the value of 𝑡𝑛 is too large and the interpretability of the model 
is not satisfactory. 

 

In the case of the same missing rate, for example, in Table 3, when the missing rate is 10%, as the value 
of the tuning parameter 𝑡𝑛 and the adaptive penalty weight increases, the interpolation effect of ALASSO 

imputation method will decrease rapidly with the increasing ( )nrmse , so that the estimated values 

obtained are not only not advantageous but even worse. 

 

2.  Scenario 2 

For different miss rates and dimensions, we compare various imputation methods to simulate 
experimental results [17]. 

 

Similar as we consider 100,200,300n = different missing rate mr = (5%, 10%, 20%, 30%) .  

 

We use the imputation methods based on penalty function (LASSO), the imputation method based on 

the Adaptive Lasso for the optimal pair ( , ) (0.5,0.5)nt = (ALASSO), the k -nearest method based on 

Aitchison distance ( knn ), the mean of the observed parts in corresponding component (MENA), and the 

iterative regression using least-squares estimation (ILSR). Where the imputation results of (ALASSO, 

LASSO, knn ,MENA, ILSR) method for a sample size of 100n = are shown in Table 5, the imputation 

results of (ALASSO, LASSO, knn , MENA, ILSR) method for a sample size of 200n =  are shown in Table 

6, the imputation results of (ALASSO,LASSO, knn , MENA,ILSR) method for a sample size of 300n =

are shown in Table 7 based on 100 Monte Carlo experiments. 

 

Table 5. Comparison results of different missing rate and dimensions with various imputation methods 
when sample size n=100 

 

 

 

 

 

 

 

 

Missing Values Parameter ( , )nt  Imputation Value ˆ( )  
Imputation Value

( )nrmse  

5% ALASSO (2.981,0.720,-1.084) 30.5%(1.66) 

LASSO (3.037,1.720,-1.552) 26.7%(5.20) 

knn (5.734,3.720,-4.468) 26.4%(3.21) 

MEAN (3.031,0.720,-3.391) 41.8%(1.29) 

ILSR (2.973,1.720,-0.764) 26.4%(3.07) 

10% ALASSO (2.337,1.720,-1.846) 27.8%(1.09) 

LASSO (1.637,0.720,-9.743) 29.9%(1.37) 

knn (3.982,5.720,-4.881) 36.7%(6.07) 

MEAN (4.307,1.720,-1.524) 25.4%(2.37) 

ILSR (7.620,4.720,-6.988) 26.2%(1.37) 

20% ALASSO (1.361,0.720,-1.772) 25.1%(1.61) 

LASSO (2.449,3.720,-1.652) 35.6%(2.71) 

knn (4.561,0.720,-2.794) 27.4%(3.94) 

MEAN (3.631,4.720,-1.274) 26.6%(2.07) 

ILSR (3.027,1.720,-5.631) 35.7%(0.91) 

30% ALASSO (2.329,1.720,-1.027) 33.1%(1.62) 

LASSO (3.094,0.720,-5.294) 25.0%(1.37) 

knn (5.671,3.720,-1.360) 21.1%(2.09) 

MEAN (2.627,3.720,-3.781) 28.5%(3.97) 

ILSR (3.554,2.720,-1.661)  33.4%(1.07) 
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Table 6. Comparison results of different missing rate and dimensions with various imputation methods 
when sample size n=200 

 

 

 

 

Table 7. Comparison results of different missing rate and dimensions with various imputation methods 
when sample size n=300  

 

 

 
 

Missing Values Parameter ( , )nt  Imputation Value ˆ( )  
Imputation Value

( )nrmse  

5% ALASSO (1.812,2.307,-1.869) 23.0%(3.07) 

LASSO (2.630,0.951,-6.552) 29.6%(1.02) 

knn (3.351,4.037,-1.367) 45.5%(2.07) 

MEAN (0.982,4.942,-0.027) 26.3%(5.37) 

ILSR (4.037,1.227,-1.981) 32.2%(6.30) 

10% ALASSO (2.207,0.631,-4.627) 29.6%(2.07) 

LASSO (2.851,1.027,-1.631) 25.3%(1.37) 

knn (4.037,3.907,-7.027) 20.2%(1.20) 

MEAN (1.559,5.861,-1.961) 33.6%(6.07) 

ILSR (3.840,2.607,-1.207) 25.5%(2.66) 

20% ALASSO (2.527,1.308,-3.327) 29.3%(2.09) 

LASSO (1.752,1.255,-1.395) 40.0%(3.91) 

knn (3.523,6.861,-5.566) 26.1%(1.01) 

MEAN (4.657,4.665,-1.329) 22.9%(4.05) 

ILSR (5.500,2.352,-2.782) 26.7%(3.32) 

30% ALASSO (3.135,4.961,-2.128) 25.4%(1.29) 

LASSO (2.623,1.127,-1.628) 24.1%(2.28) 

knn (0.650,2.898,-1.862) 36.3%(1.86) 

MEAN (1.920,3.038,-6.027) 23.7%(3.21)  

ILSR (2.537,2.954,-1.965)  31.0%(1.62) 

Missing Values Parameter ( , )nt  Imputation Value ˆ( )  
Imputation Value

( )nrmse  

5% ALASSO (1.237,1.373,-2.338) 28.9%(6.30) 

LASSO (2.636,0.661,-1.524) 30.2%(1.38) 

knn (7.851,3.162,-3.462) 29.3%(2.39) 

MEAN (0.207,3.661,-3.620) 25.4%(0.27) 

ILSR (1.711,4.021,-7.038) 26.6%(3.61) 

10% ALASSO (2.521,0.631,-0.950) 44.0%(3.20) 

LASSO (2.880,1.871,-1.630) 29.2%(5.25) 

knn (4.747,2.651,-4.368) 20.1%(5.90) 

MEAN (3.961,6.884,-3.983) 18.2%(2.07) 

ILSR (5.550,1.851,-3.360) 22.1%(3.12) 

20% ALASSO (4.274,0.651,-1.038) 26.3%(3.38) 

LASSO (2.895,0.631,-1.446) 25.6%(2.09) 

knn (0.451,3.884,-1.607) 32.9%(1.21) 

MEAN (3.337,5.531,-3.492) 23.7%(1.39) 

ILSR (6.094,2.981,-0.451) 23.0%(3.05) 

30% ALASSO (1.271,1.521,-2.963) 32.0%(1.33) 

LASSO (2.961,1.784,-2.850) 22.9%(2.08) 

knn (4.320,5.964,-1.637) 40.9%(1.99) 

MEAN (3.027,2.514,-4.960) 23.7%(4.45) 

ILSR (3.664,3.367,-1.861)  22.3%(6.60) 
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Observing Tables 5, 6 and 7, we can draw the following conclusions. 

 

(a)   With the increase of missing rate and sample size, the estimated value of the mean imputation 

method( knn ) is farther and farther from the true value, and the normalized root mean squared error

( )nrmse becomes larger and larger, which shows that the mean imputation method is very poor and only 

applicable to the case of low missing rate. 

 

(b)   Iterative Least Squares Regression (ILSR) is very effective for regression coefficient estimation, but, 
as the missing rate increases, the estimated values of the scale parameter and the estimated values of 

the skewness parameter are farther and farther from the true value, and the values of ( )nrmse gradually 

increases, and the parameter estimation is poor. 

 

(c)  Comparing with iterative regression imputation method, when the sample size increases, the 
parameter estimation effect is significantly improved after LASSO imputation method. 

 

(d)  The estimation of parameters after modified LASSO imputation method (ALASSO) is very good, and 
the estimation of all parameters is more stable as the missing rate increases. The parameter estimation 
effect is better than that after LASSO imputation method, and it is the best overall effect of parameter 
estimation among all imputation methods. Especially, as the missing rate and sample size increases, 
the above phenomenon is more obvious, which fully illustrates that the ALASSO imputation method is 
significant effect for the estimation of model parameters after imputation method of missing data. 

 

3. Scenario 3 

For different miss rates, dimensions and correlation coefficients, we compare various imputation 
methods to simulate experimental results [20-22]. 

 

Similar as we consider 100,200,300n = correlation coefficients (0.35,0.55,0.75,0.95)cc =  and 

different missing rate (from 5% to 40% by 5%) respectively. We use the imputation methods based on 
penalty function ( LASSO), the imputation method based on the Adaptive Lasso for the optimal pair  

( , ) (0.5,0.5)nt = (ALASSO), the k - nearest method based on Aitchison distance ( knn ), the mean of the 

observed parts in corresponding component (MENA), and the iterative least-squares regression 
estimation (ILSR). The imputation results results are showed in Figure 1, Figure 2 and Figure 3 based 
on 100, 200 and 300 Monte Carlo experiments.   

 

     
Figure 1. The simulation results of several imputation methods when sample size n=100 
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Figure 2. The simulation results of several imputation methods when sample size n=200 

 

                   

 
              Figure 3. The simulation results of several imputation methods when sample size n=300 

 

 

As showed in Figure 1, Figure 2 and Figure 3 the estimator of the iterative method using least squares 
regression estimation (ILSR) has preferable performance out-performs the other competitive methods in 
almost all settings, since the reference components has considered the linear correlation between the 
variables and is always included in the selected model. The ALASSO estimator performs better than 
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ILSR, moreover when the correlation is greater than 0.75 and the missing rate is larger than 15%, the 
value of  nrmse based on the ALASSO method is slightly smaller than the iterative regression method 

and knn method, whose error suddenly increases when the missing rate is lager than 15%. 

 

Compared with the knn  and ILSR method, we can also conclude that as the correlation and the 

dimensionality increase the higher correlation coefficient and dimensionality of variables, the ALASSO 
method interpolation effect is better. This is reasonable because the ALASSO method achieve model 
selection and dimension reduction estimator using penalty function, some regression coefficient directly 
can down to zero, achieving the purpose of variable selection, at the same time, it can reduce the 
dimension of data. For compositional data, the ALASSO method also built linear model between variable, 
made the explanatory of the model better. 

 

Application to Industry Composition of Employed Personnel in 
Taiyuan 
This section will use compositional data for the three industrial composition of employed personnel in 
Taiyuan, China, from 1991 to 2020. The dataset is provided by the official website of China Statistical 

Yearbook and contains 30 observations for 20 variables 30, 20n D= = and the variables 

1 2 20( , , , )x x x x= ( , ,Agriculture Forestry= ,  , , , )Mining Education International Organizations  

and satisfies the fixed sum limit 
1

100,( 1,2, , )
D

ijj
x i n

=
= = .The correlation coefficient matrix for this data 

set is calculated as follows: 

 

1.00 0.76 0.63 0.77 0.82 0.53 0.57 0.89

0.76 1.00 0.46 0.51 0.32 0.45 0.68 0.78

0.63 0.46 1.00 0.36 0.58 0.53 0.31 0.28

0.77 0.51 0.36 1.00 0.69 0.72 0.61 0.34

0.82 0.32 0.58 0.69 1.00 0.33 0.28 0.64

0.53 0.45 0.53 0.72 0.33 1.00 0.21 0.40

0.57 0.68 0.31 0.61 0.21 0.21 1.00 0.25

0.89 0.78 0.28 0.34 0.40 0.25 0.25 1.00

 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

The above characteristics of the correlation coefficient matrix indicate that the variables in the Taiyuan 
industrial structure data are highly correlated with each other, and the missing values can be interpolated 
by regression equations, and the interpolated values are not too bad. 

 

Let 
1 2( ) ( , , , )( 1,2,3 ,30; 19)i i i i ipilr x z z z z i p= = = = . Since the collected data are complete without 

missing data, it is assumed for the convenience of the study that the third observation of the sixth variable 

and the ninth variable are missing, that is 
36X  and 

39X is considered to be the corresponding variable
1y

and
2y . Here 5-Fold Cross-Validation(CV) is used to determine the estimates of parameter 

nt (see Figure 

4). The change process of the variable selection path and activity set of the ALASSO method, the 
detailed trajectory of the motion is shown in Figure 5. 
 

As can be seen from Figure 4, the Adaptive Lasso imputation method has the smallest CV values for 

both variables
36X and

39X at ( , ) (0.5,0.5)nt = , so we find the optimal parameter pair. As can be seen from 

Figure 5, the trend of each point in the graph represents the change of the corresponding variable into 
the model, where the horizontal axis is the total number of steps of the Adaptive Lasso, and the vertical 
axis is the estimated value of the regression coefficient for each missing value. It is intuitive to see that 

for the missing values 36X and 39X , there are nine lines whose values do not converge to 0 at the end, 

which correspond to the variables, respectively,
1 4 6 8 10 13 14 15 16( , , , , , , , , )X X X X X X X X X and 

2 4 7 8 9 12 14 15 16( , , , , , , , , )X X X X X X X X X .  
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Figure 4. Plots of CV vs. number of steps in the ALASSO for

36X and
39X  

 

 
                                                   Figure 5. Plots of the ALASSO regression coefficients and the number of steps in the ALASSO for the 

  missing variables 

 

 

This reflects the fact that the regression coefficients of these variables are not finally compressed to 0, 
and thus enter the regression model as independent variables to interpolate the missing values in the 
data. Specifically, the industry composition of employed personnel in Taiyuan data with missing values 
is selected by ALASSO variables, and the following regression equation can be established: 

1 1 1 4 4 6 6 8 8 10 10 13 13 14 14 15 15 16 16 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆŷ          = + + + + + + + + +X X X X X X X X X  

2 2 2 4 4 7 7 8 8 9 9 12 12 14 14 15 15 16 16 2
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆŷ          = + + + + + + + + +X X X X X X X X X  

where the estimated values of the regression coefficients corresponding to each variable are 

1 4 6 8 10 13 14 15 16
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , , , , ) (-1.05, -1.43, 1.46, 2.47, 4.52,2.52,-0.65,-1.81, 4.98)         =

2 4 7 8 9 12 14 15 16
ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , , , , , , , , ) (-0.24, 1.43, 2.55, 3.47, 4.52,2.52,-1.65,1.81, 3.25)         =  
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For the optimal pair ( , ) (0.5,0.5)nt = , we use the ALASSO imputation method introduced in this paper to 

impute the missing value and compare the results with mean imputation method, k -nearest neighbor 

method and iterative regression method. The results are summarized in Table 8, these results show that 
the nrmse of ALASSO is the smallest, indicate that the method proposed in this paper results in a more 

accurate imputation than other competitive methods in most cases. 
 

Table 8. The results of different optimal pair for the ALASSO method. The values inside the parentheses 

are the absolute errors between the estimation, and actual observed values respectively is (
36X =18.8%) 

and (
39X =2.4%) 

 
 
 

 
 

 
 
 
 
 
 

 
Conclusions and Discussion 
 

In recent decades, the research, theoretical discussion and practical processing of the data have 
gradually reached a mature stage. A number of good imputation methods have been proposed to deal 
with missing values in compositional data, and the application areas of each method. In this paper, we 
systematically discuss the imputation methods of missing values in compositional data and establish the 
imputation method based on the multiple regression model of ALASSO. The new ALASSO imputation 

method is compared with LASSO interpolation method, MEAN imputation method, knn  interpolation 

method and ILSR imputation method. The simulation and practical application results show that the 
ALASSO imputation method outperforms some existing methods in prediction accuracy and variable 
selection. 

 

The simulations and case analyses of different missing rates, correlation coefficients and dimensionality 
of composition data containing missing values. The ALASSO method is one of the first methods to 
achieve both variable selection and parameter estimation, not only to filter variables to make the highly 
correlated independent variables enter the prediction model, but also to accurately estimate the 
parameters to be estimated. The core idea is the penalty function, which makes the overall regression 

coefficients smaller by controlling the reconciliation parameter ( , )nt , and even makes some regression 

coefficients tend to 0 or equal to 0. 

 

It is worth noting that the ALASSO interpolation method in this paper has a prerequisite that the linear 
regression equation is built with the missing values as the dependent variable and the observed data as 
the independent variables. However, in practical problems, some missing variables are not linearly 
correlated with other observed variables, which does not satisfy the assumptions of this paper, and 
further discussion is needed to address this issue. 

 

Currently, LASSO-type methods have been successfully applied in the analysis of large-scale high-
dimensional data such as GWAS (Genome-Wide Association Studies) and NGS (Next-Generation 
Sequencing). For example, Bayesian LASSO has been utilized in a whole-genome association study of 
Spanish cattle, GLASSO (Group LASSO) has been applied to rheumatoid arthritis whole-genome 
association research, and the LASSO method has been employed in the analysis of the GAW dataset. 
With the development and maturation of biochip technology, the analysis of high-dimensional biological 
data has attracted increasing attention. LASSO-type methods, capable of handling high-dimensional 
problems, performing variable selection, and parameter estimation, are expected to gain more 
recognition and usage in the field. 

Parameter ( , )nt  Imputation Value ˆ( )  Imputation Value ( )nrmse  

(0.5,-0.5) 15.4% 2.0% 

(0.5,0) 15.2% 1.6% 

(0.5,0.5) 18.7% 2.3% 

(1,-0.5) 16.1% 1.5% 

(1,0) 13.2% 1.9% 

(1,0.5) 31.5% 6.8% 

(2,-0.5) 14.7% 2.2% 

(2,0) 20.8% 3.9% 

(2,0.5) 12.3% 2.0% 
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List of Notations 
 

alr: Additive log-ratio transformation. 
clr: Centered log-ratio transformation. 
ilr: Isometric log-ratio transformation. 

lm : The index set of observation parts in variable 
lx . 

lo : The index set of missing parts in variable 
lx . 

 lo

lz : The observed parts of the variable 
lz . 

lm

lz : The missing parts of the variable 
lz . 

lo

lZ− : The matrices of observed parts in transformed data z . 

lm

lZ− : The matrices of missing parts in transformed data z . 

MCMC: The algorithm of Markov Chain Monte Carlo. 
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