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Abstract Particulate matter is the most common atmospheric pollutant with some negative 

consequences on human health, environment, and the ambient air quality. In this study, the 

concentration of particulate matter in sixty-five air quality monitoring stations across Malaysia during 

January to December 2018 is analyzed. We investigated the degree of persistence and trend of the 

particulate matter series and developed a forecasting model using both the autoregressive integrated 

moving average (ARIMA) and the autoregressive fractionally integrated moving average (ARFIMA) time 

series methods for each monitoring station separately. Mean absolute deviation (MAD), mean absolute 

percentage error (MAPE) and root mean square error (RMSE) are used to determine the best fitted 

model for forecasting each monitoring station. Ljung-Box test of uncorrelated residuals confirmed the 

adequacy of each of the model. The results confirmed the evidence of transitory form of persistence in 

the level of particulate matter pollutant at sixty-four monitoring stations while trend increases in 

seventeen monitoring stations. Forecast error analysis indicates that ARFIMA models performed better 

than ARIMA models by producing smaller RMSE values in forty-two of the sixty-five monitoring stations. 

However, the overall result indicates that none of the model could be regarded as universal in forecasting 

particulate matter concentration, and their performance is independent of the category or location of a 

given monitoring station. 

Keywords: Particulate Matter, Long memory, ARIMA, Mann-Kendall Trend, Forecasting. 
 

 

Introduction 
 
The sources of air pollution are complex, and typically comes from various sources. In Malaysia, before 
the year 2018, the calculation of Air Pollution Index (API) was based on five major pollutants namely, 
ground level ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulphur dioxide (SO2) and 
particulate matter of size 10 microns or less in diameter (PM10) [1]. On the 16th of August 2018, the 
particulate matter of size 2.5 microns or less in diameter (PM2.5) was included in the API calculation as 
the sixth pollutant. The API is classified according to its range as good, moderate, unhealthy, very 
unhealthy, and hazardous. The Department of Environment (DOE) which is a unit of the Malaysian 
Ministry of Environment is saddled with the responsibility of monitoring air quality status across all 
Malaysian states. To adequately handle these very important responsibilities, the DOE had in the middle 
of April 2017, increased the number of its air quality monitoring stations to sixty-five continuous 
monitoring stations. These stations are strategically located in rural, suburban, urban and industrials 
areas to monitor changes in the ambient air quality. The Malaysian ambient air quality standard for the 

year 2018 stood at 45𝜇𝑔/𝑚3 which is less than the world health organization’s standard of 50𝜇𝑔/𝑚3 [1]. 
 
Particulate matter of size 10 micron or less in diameter (PM10) is identified as the most visible and 
comparatively more rampant air pollutant in Peninsular Malaysia that affects human health and 
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environment [2, 3, 4, 5, 6, 7]. PM10 pollutants are microscopic in nature of solid and liquid forms commonly 
found in the air. Their sources can be natural or through human activities such as in industrial, power 
generation and other developmental activities, and through emissions from motor vehicles, land clearing 
open burning and forest fires. These particles can penetrate the upper respiratory tract; while some of 
these particles can be eliminated from the body by sputum spitting, toxic particles possessed quicker 
and greater chances of harming individuals. The particles can enter human bronchi and obstruct gas 
exchange in the lungs, resulting in disorders such as asthma, bronchitis, and cardiovascular diseases 
[8, 9, 10, 11, 12]. Long-term exposure to these pollutants increases the risk of developing heart, lung, 
and other respiratory health concerns, which can lead to a significant decrease in life expectancy [13, 
14, 15, 16]. Furthermore, particulate matter pollutant is a large contributor to hazy weather [17, 18] which 
has a significant impact on day-to-day life as well as social production [19, 20]. The presence of PM10 on 
vegetation's surface produces radiative heating, a decline in photosynthesis rate, and changes in 
decomposition cycles, all of which affects the animal groups [21]. 
 
Various studies have been conducted to study the trend and concentration of air pollutants, including the 
particulate matter across the globe. For example, Li et al. [17] studied the concentration of PM10 and 
PM2.5 pollutants in relation to the meteorological condition from seven air monitoring stations in 
Shijiazhuang city of China over a three-month duration. The average daily concentration of PM2.5 was 

94.45𝜇𝑔/𝑚3 while that of PM10 was calculated at 219.15𝜇𝑔/𝑚3, which exceeded the WHO tolerance limit 
of the pollutants. However, they realized significant positive correlation coefficient between the 
atmospheric pressure and the pollutants, while significant negative correlation was observed between 
the atmospheric temperature and the particulate matter pollutants. 
 
In India, Naveen and Anu [22] analyzed and forecasted the varying trend of outdoor air quality using the 
dataset recorded at different monitoring air quality stations in the district of Thiruvananthapuram, Kerala, 
India. The analysis was conducted using the Seasonal Autoregressive Integrated Moving Average 
(SARIMA) and ARIMA models, and ARIMA model was observed to have performed better in giving more 
accurate forecast values. The study noted that the most disturbing and rampant pollutant in the study 
area was the respirable suspended particulate matter. Mishra and Goyal [23], had earlier reported that 
air quality of Delhi, India, has deteriorated and falls within the ranges of “bad” and “very bad” categories. 
 
Kliengchuay et al. [24] identified the best fitted model for prediction of particulate matter concentration 
especially the PM10 in Thailand’s city of Chiang Rai among other models. Hourly air pollution and weather 
data recorded at two different stations for eight-year period (2011 until 2018) were used to develop four 
different stepwise multiple linear regression (MLR) models with steps as annual, summer, rainy and 
winter. The result revealed that daily maximum PM10 concentration was observed in the summer season 
for the two stations while the minimum daily concentration was detected in the rainy season. It also 
revealed that seasonal variation of PM10 is significantly different between the two stations while CO 
emission was moderately related with the PM10 emission during the summer season. The PM10 summer 
model was graded by the authors as the best MLR model to predict PM10 concentration during haze 
episode over the other three stepwise MLR models. In addition,  Aladağ [25] forecasted the particulate 
concentration (PM10) using traditional and hybridized ARIMA model in Turkey’s Erzurum city. Twelve-
year monthly observations were used with the first ten-year data used for testing the model while the 
remaining two-year data used to validate and identify the best performing model over the other. It was 
established that the wavelet-transform hybridized WT-ARIMA outperformed the conventional ARIMA 
model through RMSE, R2, IA, MAE and MAPE. 
 
To the best of our knowledge, little or not much has been done to study the persistence behavior or long 
memory in PM10 concentrations across Malaysia. Therefore, the purpose of this paper is to study the 
statistical issues of long memory and trend in PM10 concentrations and to identify the best forecasting 
time series model for the sixty-five air monitoring stations spread across Peninsular Malaysia, with the 
view of providing insight on the level of pollutant to public and relevant government agencies. 
 
The long-range dependence (LRD) also known as long memory was first tested in hydrological data by 
British hydrologist H. E. Hurst [26], and later in econometrics, earth and environmental sciences, network 
traffic and linguistics. It is based on the Hurst parameter which means the presence of strong connection 
effect between values at different lags. The LRD statistically refers to the slower or non-exponential 
decay of the autocorrelation function (ACF) so that the area under the curve of the function is infinite. 
 
Geweke and Porter-Hudak (GPH) as one of the most popular method for estimating the degree of 
persistence in the time series data, is employed in this paper to check the presence or otherwise of the 
long memory using the parameter estimator d in the ARFIMA (p,d,q) model structure. The GPH estimator 
is based on the regression equation using the periodogram function as an estimate of the spectral 
density. In addition, the Mann-Kendall test for trend estimation is used to prove if the contaminant 
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concentrations are increasing or decreasing over time. It is a nonparametric test with the null hypothesis 
of no trend in the series, the test was found very useful by numerous researchers in estimating the 
statistical trend in hydrological, climatological and air pollutants studies  [27, 28, 29]. The remainder of 
this research paper is categorized as follows: Section 2 describes the study area including geo-locations, 
nature of data used for the study, presents the methodological flowchart, and gives definitions of some 
statistical terms. Section 3 gives some descriptive statistics, presents boxplot graphical representation, 
tables of stationarity test and results of main analyses. Section 4 gives some concluding remarks. 

 
Materials and Methods 
 

Study Area and Data Used 
Malaysia is a country located in southeastern Asia. There are thirteen states and three federal territories 
separated by South China Sea into two regions, Peninsular Malaysia, and East Malaysia. Peninsular 
Malaysia shares a land and maritime border with Thailand, and maritime borders with Singapore, 
Vietnam, and Indonesia. East Malaysia shares land and maritime borders with Brunei and Indonesia, 
and maritime border with Philippines and Vietnam. The country which is having its national capital at 
Kuala Lumpur city has the total population estimated at over 32 million people, this placed the country 
as 43rd most populous country in the world. Malaysia is located between latitude 00 53’ 82.652” north 
and 70 1’ 19.014” north of the equator. It is on longitude 1010 4’ 8.444” east and 1190 6’ 722” east of 
prime meridian. The study utilized a daily data collected over a one-year period (January 1st to December 
31st, 2018) for all sixty-five monitoring stations located across Malaysia's fourteen states obtained from 
the Malaysian government's Department of Environment (DOE), which is part of the Ministry of 
Environment. Table 1 displays the information about the monitoring stations, including the location and 
its category of location. 
 
Table 1. Locations of Air Monitoring Stations in Malaysia 
 

Location 
Station Latitude Longitude Category 

Batu Pahat 01° 55' 09.56" N 102° 51' 59.82" E Sub Urban 

Kluang 02° 02' 16.37" N 103° 18' 43.42" E Urban 

Kota Tinggi 01° 33' 50.60" N 104° 13' 31.10" E Urban 

Larkin 01° 29' 40.65" N 103° 44' 09.50" E Industrial 

Pasir Gudang 01° 28' 12.43" N 103° 53' 36.44" E Industrial 

Pengerang 01° 23' 22.16" N 104° 08' 58.50" E Sub Urban 

Segamat 02° 29' 38.09" N 102° 51' 45.69" E Urban 

Tangkak 02° 17' 41.26" N 102° 34' 17.74" E Urban 

Alor Setar 06° 08' 13.49" N 100° 20' 48.71" E Urban 

Kulim Hi-tech 05° 24' 05.82" N 100° 35' 22.70" E Sub Urban 

Langkawi 06° 19' 53.54" N 099° 51' 30.45" E Sub Urban 

Sungai Petani 05° 37' 46.63" N 100° 28' 03.83" E Sub Urban 

Kota Bharu 06° 08' 50.75" N 102° 14' 57.24" E Urban 

Tanah Merah 05° 48' 40.21" N 102° 08' 04.20" E Industrial 

Alor Gajah 02° 22' 15.33" N 102° 13' 28.53" E Sub Urban 

Bandaraya 
Melaka 

02° 11' 27.36" N 102° 15' 25.40" E Urban 

Bukit Rambai 02° 16' 06.57" N 102° 11' 37.19" E Industrial 

Balok Baru 03° 57' 38.31" N 103° 22' 55.76" E Industrial 

Indera 
Mahkota 

03° 49' 09.18" N 103° 17' 47.57" E Sub Urban 

Jerantut 03° 56' 54.09" N 102° 21' 59.87" E Background 

Rompin 02° 55' 35.92" N 103° 25' 09.11" E Urban 

Temerloh 03° 28' 17.77" N 102° 22' 35.06" E Urban 
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Location 
Station Latitude Longitude Category 

Balik Pulau 05° 20' 13.61" N 100° 12' 59.21" E Urban 

Minden 
(USM) 

05° 21' 22.35" N 100° 18' 28.51" E Urban 

Seberang 
Jaya 

05° 23' 53.41" N 100° 24' 14.20" E Sub Urban 

Seberang 
Perai 

05° 19' 45.68" N 100° 26' 36.51" E Industrial 

Pegoh 04° 33' 12.00" N 101° 04' 48.84" E Urban 

Seri Manjung 04° 12' 01.23" N 100° 39' 48.08" E Sub Urban 

Tanjung 
Malim 

03° 41' 15.92" N 101° 31' 28.17" E Sub Urban 

Taiping 04° 53' 55.86" N 100° 40' 44.78" E Industrial 

Tasek Ipoh 04° 37' 45.99" N 101° 06' 59.94" E Industrial 

Kangar 06° 25' 47.71" N 100° 12' 39.84" E Sub Urban 

Keningau 05° 20' 21.54" N 116° 09' 49.16" E Urban 

Kota Kinabalu 05° 52' 46.87" N 116° 03' 23.13" E Urban 

Kimanis 05° 32' 17.60" N 115° 51' 02.00" E Sub Urban 

Sandakan 05° 51' 52.08" N 118° 05' 27.92" E Sub Urban 

Tawau 04° 14' 59.22" N 117° 56' 09.11" E Urban 

Bintulu 03° 10' 37.50" N 113° 02' 27.92" E Sub Urban 

ILP Miri 04° 29' 41.24" N 114° 02' 36.29" E Rural 

Kuching 01° 33' 44.02" N 110° 23' 20.24" E Industrial 

Kapit 02° 00' 52.19" N 112° 55' 38.49" E Rural 

Limbang 04° 45' 32.00" N 115° 00' 49.20" E Sub Urban 

Mukah 02° 52' 59.65" N 112° 01' 11.07" E Sub Urban 

Miri 04° 25' 28.84" N 114° 00' 44.73" E Sub Urban 

Sibu 02° 18' 51.86" N 111° 49' 54.89" E Urban 

Samalaju 03° 32' 13.41" N 113° 17' 42.60" E Urban 

Sarikei 02° 07' 58.11" N 111° 31' 22.33" E Urban 

Samarahan 01° 27' 17.47" N 110° 29' 29.41" E Rural 

Sri Aman 01° 13' 10.76" N 111° 27' 53.25" E Urban 

Banting 02° 49' 00.08" N 101° 37' 23.36" E Sub Urban 

Klang 03° 00' 53.60" N 101° 24' 47.19" E Urban 

Kuala 
Selangor 

03° 19' 16.70" N 101° 15' 22.47" E Sub Urban 

Petaling Jaya 03° 07' 59.40" N 101° 36' 28.83" E Industrial 

Shah Alam 03° 06' 16.98" N 101° 33' 22.39" E Sub Urban 

Nilai 02° 49' 18.09" N 101° 48' 41.34" E Industrial 

Port Dickson 02° 26' 28.97" N 101° 52' 00.68" E Urban 

Seremban 02° 43' 24.17" N 101° 58' 06.58" E Urban 

Besut 05° 44' 54.41" N 102° 30' 56.27" E Urban 

Kuala 
Terengganu 

05° 18' 29.13" N 103° 07' 13.41" E Urban 

Kemaman 04° 15' 43.46" N 103° 25' 32.90" E Industrial 

Paka 04° 35' 53.03" N 103° 26' 05.34" E Industrial 

Batu Muda 03° 12' 44.78" N 101° 40' 56.02" E Urban 
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Location 
Station Latitude Longitude Category 

Cheras 03° 06' 22.44" N 101° 43' 04.50" E Urban 

Labuan 05° 19' 57.81" N 115° 14' 17.62" E Urban 

Putrajaya 02° 54' 53.33" N 101° 41' 24.17" E Urban 

 
Methodology 
 
Time series can be regarded as the realization of a stochastic process that is, a series of random 
variables ordered in time. Many problems related to atmospheric systems among which PM10 is included 
deal with temporal data that need to be analyzed by means of time series analysis. The statistical models 
to describe and forecast PM10 data are given in this section and the framework of the methodology is 
depicted in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Flowchart summarizing the methodological framework. 

 
Mann-Kendall Test 
 
This test uses a time series data to verify an increase or decrease in time trend for the dataset. The test 
can therefore be used to investigate whether concentrations of contaminant is increasing or decreasing 
over time. The test compares the relative magnitude of the portion of dataset (sample) instead of the 
entire values of a given dataset (population).  
 
The Mann-Kendall test statistic is defined as: 
 

   𝑆𝑚𝑘 = ∑ ∑ 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)𝑁
𝑗=𝑖+1

𝑁−1
𝑖=1      (1) 

where 
 

   𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = {

1, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) > 0

0, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) = 0

−1, 𝑖𝑓 (𝑥𝑗 − 𝑥𝑖) < 0

 

 

and is the number of positive differences less the number of negative differences. If the sign 𝑆 = 0 
translates to mean that the trend of the dataset is neither increasing nor decreasing. The trend is 
decreasing if 𝑆 < 0 indicating the decrease in the emission of pollutant over time interval. The emission 

of the contaminant is increasing over a given time interval when 𝑆 > 0. The Mann-Kendall trend test is a 
distribution free and less sensitive to outliers than corresponding parametric approaches. The magnitude 
of the trend in the test is described by the Mann-Kendall 𝜏 estimator at 95% confidence level [28]. 

Data Dynamic 

Time Series Data Input 

ARIMA Modelling ARFIMA Modelling 

Forecasting 

Forecasts Errors comparison  
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The Mann-Kendall 𝜏 statistic give the magnitude of the trend of a given series while the Mann-Kendall 𝑆 
statistic as defined in the equation (1) above can be used to tell whether the trend is increasing or 

decreasing. The trend is said to be increasing if the 𝑆 value is positive and decreasing if it is negative.The 
probability value (p-value) of the test can be used to take appropriate decision about the rejecting or 
accepting the null hypothesis of no trend in the series. Rejecting the null hypothesis indicates the 
acceptance of an alternative hypothesis that the trend exists in the series at given level of significance. 

 
Time Series Models 
 

A time series process X at a time t  (𝑋𝑡), that is, {𝑋𝑡, 𝑡 = 0, ±1, ±2, … } is said to be stationary if the mean 

and the variance are time independent and the covariance between any two given observations depends 
on the temporal distance between them, not on their exact location in time. These requirements must be 
satisfied for any series to make statistical inference [30]. Given a zero-mean covariance stationary 

process {𝑋𝑡, 𝑡 = 0, ±1, … } with autocovariance function 𝛾𝜇 = 𝐸[𝑋𝑡,  𝑋𝑡+𝜇],  𝑋𝑡 is said to be integrated of 

order 0 if 

 

∑ |𝛾𝜇| < ∞∞
𝜇=−∞ .  (2) 

  

In such a case, we denote 𝑋𝑡  ≈ 𝐼(0). If a time series is nonstationary, a possibility of transforming the 
series to a stationary is to take its first differencing as 
 

(1 − 𝐵)𝑋𝑡 =  𝑌𝑡,       

where B is the lag operator (𝐵𝑋𝑡 =  𝑋𝑡−1, ) and 𝑌𝑡 is I(0). If the nonstationary series becomes stationary 

after first differencing, then 𝑋𝑡 is said to be integrated of order 1 and is denoted as   𝑋𝑡  ≈ 𝐼(1).  Otherwise, 
more differencing may be needed to make the series stationary. If the series become stationary after the 
second differencing, we denote 𝑋𝑡  ≈ 𝐼(2). 
 
In some cases, the number of differencing required to make the series stationary is fractional, not an 
integer. In such a case, the process is said to be fractionally integrated, and 𝑋𝑡 is I(𝑑). 
That is,  

(1 − 𝐵)𝑑𝑋𝑡 =  𝑌𝑡 .                          (3) 

 

Equation (3) can be expressed in terms of binomial expansion, such that ∀𝑑 ∈ ℝ. By the properties of 

binomial expansion, 

  (1 − 𝐵)𝑑 =  ∑ (𝑑
𝑟

)𝑑
𝑟=0 𝐵𝑟(−1)𝑟 

 

    = 1 − 𝑑𝐵 +
𝑑(𝑑−1)

2
𝐵2 −

𝑑(𝑑−1)(𝑑−2)

3!
𝐵3 + ⋯  

 

where B is lag operator, that is 𝐵𝑋𝑡 = 𝑋𝑡−1, 𝐵
2𝑋𝑡 = 𝑋𝑡−2, …  . 

     

 Expanding equation (3) in terms of 𝑋𝑡 can now be seen as 

 

𝑋𝑡 =  𝑑𝑋𝑡−1 −
𝑑(𝑑−1)

2
𝑋𝑡−2 +

𝑑(𝑑−1)(𝑑−2)

3!
𝑋𝑡−3 … + 𝑌𝑡 .   (4) 

 
If d is a positive integer value, Xt will be a function a finite number of past records, while if d is not an 
integer, Xt depends strongly on the values of time series data in previous far [31, 32]. However, the 
higher the value of d, the more the observations are going to be related between themselves [33]. To 
testify the stationarity condition, the Augmented Dickey-Fuller Test (ADF) was carried out for all series. 
 

Estimation of Order of Integration 
 

The procedure for estimating the degree of persistence in time series data developed by John Geweke 

and Susan Porter-Hudak [34] is employed for the purpose of this article. The test is semiparametric which 

is based on the simple linear regression of the log periodogram on a deterministic regressor and was 
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found efficient by numerous researchers to estimate the degree of persistence [35, 30]. 

The spectral density function 𝑓(𝜃) of the fractionally integrated process {𝑌𝑡} is given by, 

  𝑓(𝜃) = [2𝑠𝑖𝑛(𝜃/2)]−2𝑑𝑓𝑢(𝜃),      (5) 

where 𝜃 is the Fourier frequency, 𝑓𝑢(𝜃) is the spectral density corresponding to 𝑢𝑡, 𝑢𝑡 is a stationary short 

memory noise with 0 mean. 

Consider the set of harmonic frequencies 𝜃𝑘 = (2𝜋𝑘/𝑛), where 𝑘 = 0, 1, . . . 𝑛/2, 𝑛 is the sample size. 

Applying the logarithm to both sides of equation (5) we obtain 

ln𝑓(𝜃𝑖)  = ln𝑓𝑢(0) − 𝑑ln[4𝑠𝑖𝑛2(𝜃𝑘/2)].      (6) 

Equation (5) can be seen as 

ln𝑓(𝜃𝑘) = ln𝑓𝑢(0) − 𝑑ln[4𝑠𝑖𝑛2(𝜃𝑘/2)] +ln[
𝑓𝑢(𝜃𝑘)

𝑓𝑢(0)
].     (7) 

based on Wang et al. [36]. 

The parameter d for fractional differencing can be estimated by the regression equation as in (6) above. 

Using the periodogram estimate of 𝑓(𝜃𝑘), if the number of frequencies p used in equation (6) is a function 

𝑔(𝑛), n sample size, 𝑝 = 𝑔(𝑛) =  𝑛𝑥 with 0 < 𝑥 < 1. The least squares estimate �̂� using the above 

regression equation is asymptotically normally distributed in large sample and reliable in at least 50 

observations [34]. That is, 

�̂�~𝑁 (𝑑,
𝜋2

6 ∑ (𝑈𝑘−𝑈)2𝑔(𝑛)
𝑘=1

), where 𝑈𝑘 =ln[4𝑠𝑖𝑛2(𝜃𝑘/2)] and �̅� is the sample 𝑈𝑘, 𝑘 = 1, … 𝑔(𝑛). 

With the null hypothesis of short memory (𝑑 = 0), the 𝑡 statistic  

td=0 = d̂ (
π2

6 ∑ (Uk−U̅)2g(n)

k=1

) has a limiting standard normal distribution. 

 
Autoregressive Moving Average (ARMA) Process 
 
It is an important class of linear time series process that provides a general framework for studying 
stationary process. A stationary time series process is also known as ARMA process [37]. The process 
is said to be autoregressive integrated moving average (ARIMA) when it is non-stationary, and the series 
is differenced to make it stationary before modelling it with ARMA model. For dealing with univariate time 
series, the traditional ARMA algorithm is seen to be an efficient and reliable method. The ARMA process 
has advantage of not requiring any additional variables because it is based on the values of its historical 
observations, provided the series is stationary and the minimum number of observations in the data is 
at least fifty [38]. The process {𝑋𝑡} is said to be ARMA (𝑝, 𝑞) if it is stationary and for every 𝑡,                

 

                     𝑋𝑡 − 𝜙1𝑋𝑡−1 − ⋯ − 𝜙𝑝𝑋𝑡−𝑝 =  𝑍𝑡 + 𝜃1𝑍𝑡−1 + ⋯ + 𝜃𝑞𝑍𝑡−𝑞                   (8) 

 

where {𝑍𝑡} ~ 𝑊𝑁 (0, 𝜎2), (1 − 𝜙1𝑍 − ⋯ − 𝜙𝑝𝑍𝑝) and (1 + 𝜃1𝑍 + ⋯ + 𝜃𝑞𝑍𝑞) are polynomials with no 

common factors [37]. 

 

Autoregressive Fractionally Integrated Moving Average 
(ARFIMA) Process 
 
The ARFIMA (p, d, q) process is one of the best-known classes of long-memory models. The process is 
commonly employed in long-range dependence (LRD) time series modeling, particularly for high 
frequency air pollution data, network traffic, and hydrology datasets, among other things. In practice, 
several time series exhibit LRD in their data, prompting the development of several estimation and 
prediction approaches to account for the slowly decaying autocorrelations [39]. 

An ARFIMA process {𝑦𝑡} can be defined as: 

                                                 𝜙(𝐵)𝑦𝑡 =  𝜃(𝐵)(1 − 𝐵)−𝑑𝜀𝑡.     (9) 
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Here, 𝜙(𝐵) = 1 + 𝜙1𝐵 + ⋯ + 𝜙𝑝𝐵𝑝  and 𝜃(𝐵) = 1 + 𝜃1𝐵 + ⋯ + 𝜃𝑞𝐵𝑞 are the autoregressive and moving 

average polynomials respectively, while (1 − 𝐵)−𝑑 is an operator representing fractional that can be 

defined by the binomial expansion as 

(1 − 𝐵)−𝑑 =  ∑ 𝜂𝑗

∞

𝑗=0

𝐵𝑗 =  𝜂(𝐵), 

where 𝜂𝑗 =  
Γ(𝑗+𝑑)

Γ(𝑗+1)Γ(1)
, 𝑑 <

1

2
,  and {𝜀𝑡} is error term with stationary (finite) variance.  

 
Long memory is feature of time series that are characterized by a high degree of dependence between 
observations at higher lags. It comprehensively covers different statistical issues of time series such as 
short memory (𝑑 = 0). If −0.5 < 𝑑 < 0.5, the process is stationary and ergodic with a bounded and 
positively valued spectrum at all frequencies. The process has a short memory, and the sum of absolute 
autocorrelations is constant when −0.5 < 𝑑 < 0. For 0 < 𝑑 < 0.5, the process exhibit long memory in the 

sense of equation (3) since its autocorrelations are all positive and decay at hyperbolic rate. For 0.5 ≤
𝑑 < 1, the process is non-stationary and mean reverting, unit roots (𝑑 = 1), and has explosive or 

permanent effects when 𝑑 ≥ 1 [30, 40]. 

 
Results and Discussion 
 

Descriptive Statistics 
Table 2 provides the descriptive statistics of PM10 emission from monitoring stations across Malaysian 
states. In each of the stations, average concentration was calculated to observe station with highest 
concentration of the pollutant. Minimum and maximum values for each of the stations were also 
identified, lastly the standard deviation was also calculated to measure the level of disparity between the 
daily records from their respective mean values. Taiping and Tanjung Malim monitoring stations 
produced highest and least average concentration respectively. Tanjung Malim station has the least 
volatile series while Klang station has the most volatile series of PM10 emission during the period and 
locations covered by the study. 
 

Table 2. Descriptive statistics of PM10 pollutant for sixty-five Malaysian monitoring stations in daily 
scale for the period January to December 2018 

 

Station Mean Minimum Maximum Std. Dev Category 

Batu Pahat 41.49 17.33 95.49 13.71 Sub Urban 

Kluang 41.73 13.47 107.74 15.08 Urban 

Kota Tinggi 33.68 7.57 87.82 12.75 Urban 

Larkin 48.82 14.09 172.66 16.85 Industrial 

Pasir Gudang 51.18 11.08 199.95 19.69 Industrial 

Pengerang 50.64 15.66 349.96 29.37 Sub Urban 

Segamat 39.88 12.22 125.00 17.43 Urban 

Tangkak 49.26 15.17 122.21 16.89 Urban 

Alor Setar 37.76 11.70 229.31 20.32 Urban 

Kulim Hi-Tech 46.56 19.45 188.36 20.12 Sub Urban 

Langkawi 38.52 12.06 168.60 17.82 Sub Urban 

Sungai Petani 44.15 15.08 182.92 17.99 Sub Urban 

Kota Bharu 53.67 14.60 261.26 30.60 Urban 

Tanah Merah 52.82 13.32 176.82 22.31 Industrial 

Alor Gajah 45.02 13.82 208.60 23.45 Sub Urban 



 

10.11113/mjfas.v19n5.2965 741 

Isma’il et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 733-753 

Station Mean Minimum Maximum Std. Dev Category 

Bandaraya Melaka 45.65 10.33 184.19 22.10 Urban 

Bukit Rambai 53.45 18.85 183.30 20.57 Industrial 

Balok Baru 54.57 13.46 184.61 24.70 Industrial 

I. Mahkota 37.42 11.26 273.87 24.20 Sub Urban 

Jerantut 34.19 8.62 107.33 14.62 Background 

Rompin 44.58 9.42 306.66 28.58 Urban 

Temerloh 52.95 15.40 358.17 31.12 Urban 

Balik Pulau 39.79 12.01 182.61 20.54 Urban 

Minden (USM) 45.03 17.76 190.96 22.07 Urban 

Seberang Jaya 49.37 14.41 239.36 20.80 Sub Urban 

Seberang Perai 49.32 14.12 345.30 25.76 Industrial 

Pegoh 59.52 23.56 266.73 22.29 Urban 

Seri Manjung 49.40 16.29 197.18 25.10 Sub Urban 

Tanjung M. 24.44 11.46 82.81 9.02 Sub Urban 

Taiping 92.37 16.83 456.03 54.44 Industrial 

Tasek Ipoh 50.33 20.73 215.99 20.82 Industrial 

Kangar 36.54 12.61 233.97 19.13 Sub Urban 

Keningau 42.21 17.32 133.60 18.84 Urban 

Kinabalu 28.94 10.54 110.83 13.80 Urban 

Kimanis 28.94 10.54 110.83 13.80 Sub Urban 

Sandakan 34.34 15.50 116.18 11.11 Sub Urban 

Tawau 32.56 10.24 132.71 11.55 Urban 

Bintulu 67.42 17.29 200.31 27.61 Sub Urban 

ILP Miri 40.33 14.24 923.54 67.21 Rural 

Kuching 44.72 12.68 347.70 31.73 Industrial 

Kapit 36.87 10.16 140.58 19.82 Rural 

Limbang 36.87 10.16 140.58 19.82 Sub Urban 

Mukah 49.75 12.42 426.51 51.50 Sub Urban 

Miri 45.48 15.68 303.22 32.95 Sub Urban 

Sibu 49.93 17.12 718.93 45.87 Urban 

Samalaju 53.24 19.00 293.93 31.76 Urban 

Sarikei 40.44 13.89 386.61 32.53 Urban 

Samarahan 36.63 14.67 141.26 18.99 Rural 

Sri Aman 35.44 11.02 148.02 19.39 Urban 

Banting 60.91 19.22 173.82 23.40 Sub Urban 

Klang 90.64 29.29 1453.98 126.02 Urban 

Kuala 46.95 11.57 330.67 23.38 Sub Urban 

Petaling Jaya 57.49 22.03 130.95 16.99 Industrial 

Shah Alam 57.70 22.87 168.49 16.62 Sub Urban 
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Station Mean Minimum Maximum Std. Dev Category 

Nilai 73.59 28.18 319.87 29.79 Industrial 

Port Dickson 39.53 17.49 117.45 13.66 Urban 

Seremban 42.65 13.83 117.70 16.73 Urban 

Besut 42.30 11.57 255.19 22.17 Urban 

Kuala 51.92 12.22 905.76 50.87 Urban 

Kemaman 46.68 14.49 488.44 36.45 Industrial 

Paka 37.15 13.18 120.21 15.80 Industrial 

Batu Muda 49.97 14.18 129.14 19.01 Urban 

Cheras 57.15 22.53 291.82 21.51 Urban 

Labuan 45.86 11.68 257.96 30.31 Urban 

Putrajaya 53.15 21.13 221.06 22.92 Urban 

 
Figure 2 give the PM10 representation on boxplot for all the sixty-five monitoring stations. The lower and 
upper outlier values for each of the monitoring stations can be seen from the boxplot graphical 
representation. Minimum and maximum emission were also displayed alongside the first, second and 
third quartile deviations. It can be seen from the graph that significant number of PM10 emissions 

exceeded the World Health Organization (WHO) standard of 50𝜇𝑔/𝑚3. 
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Figure 2. Boxplot summarizing PM10 concentration in sixty-five monitoring stations 

 
Figure 2 successfully presents the pictorial distribution of PM10 emission in all the sixty-five monitoring 
stations including their outlier values. It also gives for each monitoring station; first quartile, second 
quartile (median), and the third quartile. Generally, the concentration of outlier values in all the 
considered monitoring stations is from the right direction, that is above the upper fence of the boxplot 
graphical representation of each monitoring station. 
 
The results of long memory and Mann-Kendall trend analyses of the PM10 emission are presented in 
Table 3. The degree of persistence of PM10 pollutant across Malaysia was estimated using parameter d 
of long memory analyses at 95% confidence bands. The estimated results of persistence are in the 
interval (0,1) which indicates evidence of long memory and fractional integration. The result of long 
memory analysis reveals the evidence of persistence in the emission of the pollutant in most of the 
monitoring sites at (0 < 𝑑 < 0.5). This is preceded by number of stations with non-stationary process but 

mean reverting at (0.5 ≤ 𝑑 < 1) which translate to mean that the adverse effects (shocks) of pollutant is 
transitory not permanent, while Keningau station in the state of Sabah has a stationary short memory 
process. The shocks in the series remain transitory so long the parameter 𝑑 < 1, but permanent or 

explosive when 𝑑 ≥ 1. However, the higher the value of d the higher the degree of persistence and vice 
versa [41]. In the overall, the result of our analysis reveals strong evidence of persistence in the level of 
PM10 emission but with transitory (not permanent) shocks in sixty-four of the sixty-five monitoring sites 
across Malaysia. This means strong anti-pollution measures need to be strengthened to combat the 

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

0
20

0
40

0
60

0
80

0

Boxplot of PM10 Concentration...2

Stations

PM
10

 C
on

ce
nt

ra
tio

n

1 2 3 4 5 6 7 8 9 11 13 15 17 19 21

0
50

0
10

00
15

00

Boxplot of PM10 Concentration...3

Stations

PM
10

 C
on

ce
nt

ra
tio

n



 

10.11113/mjfas.v19n5.2965 744 

Isma’il et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 733-753 

persistence though mean reverting effects of the PM10 pollutant. 
 
The results of Mann-Kendall trend test on the other hand, reveals the evidence of increasing and 
decreasing trend in the emission of PM10 pollutant at most of the monitoring sites, with evidence of no 
trend in twenty-four of the sixty-five monitoring sites representing 37%. The monotonic trend increases 
in seventeen monitoring sites (Kluang, Kota Tinggi, Larkin, Pasir Gudang, Alor Gajah, Temerloh, 
Seberang Jaya, Seberang Perai, Kota Kinabalu, ILP Miri, Kuching, Kapit, Mukah, Miri, Sri Aman, Nilai 
and Batu Muda) representing 26% and decreases in remaining twenty-four monitoring sites representing 
37%. Decreasing trend in the emission of PM10 pollutant translates to mean the corresponding decrease 
in the adverse effects of pollutant on human health, ambient air quality and the environment. It is 
therefore recommended for the government to maintain the anti-pollutant measures put in place at sites 
with evidence of decreasing trend and strengthen those measures at the sites of other two cases. 
 
Table 3. The results of Long Memory and Mann – Kendall trend analyses of PM10 pollutant for sixty-
five Malaysian monitoring stations in daily scale during January to December 2018 

 

Station d value Kendall’s 𝝉 Kendall’s S p-value Trend Interpretation 

Batu Pahat 0.450 0.0333 2212 0.343 No Trend 

Kluang 0.358 0.0745 4949 0.034 Increasing Trend 

Kota Tinggi 0.310 0.1529 10159 
    

<0.0001 Increasing Trend 

Larkin 0.859 0.2810 18667 
    

<0.0001 Increasing Trend 

Pasir Gudang 0.667 0.2028 13470 
    

<0.0001 Increasing Trend 

Pengerang 0.424 0.0305 2026 0.385 No Trend 

Segamat 0.112 0.0512 3403 0.144 No Trend 

Tangkak 0.153 -0.0061 -0.0061 0.877 No Trend 

Alor Setar 0.199 -0.1611 -10705 
   

<0.0001 Decreasing Trend 

Kulim Hi-Tech 0.287 -0.1370 -9099 
   

<0.0001 Decreasing Trend 

Langkawi 0.331 -0.2437 -16190 
   

<0.0001 Decreasing Trend 

Sungai Petani 0.086 0.0593 3938  0.091 No Trend 

Kota Bharu 0.606 -0.1115 -7407  0.002 Decreasing Trend 

Tanah Merah 0.210 -0.1305 -8670    0.0002 Decreasing Trend 

Alor Gajah 0.490 0.1215 8071  0.001 Increasing Trend 

Bandaraya 
Melaka 0.406 -0.1220 -8102 0.001 Decreasing Trend 

Bukit Rambai 0.363 0.0626 4156 0.074 No Trend 

Balok Baru 0.622 -0.1822 -12106 
    

<0.0001 Decreasing Trend 

Indera 
Mahkota 0.432 

-0.0812 
-5394 0.021 Decreasing Trend 

Jerantut 0.347 0.0148 981 0.674 No Trend 

Rompin 0.502 -0.0195 -1294 0.579 No Trend 

Temerloh 0.094 0.0685 4553 0.051 Increasing Trend 

Balik Pulau 0.342 -0.0583 -3871 0.097 Decreasing Trend 

Minden 
(USM) 0.286 -0.1214 -5700 0.002 Decreasing Trend 

Seberang 
Jaya 0.457 0.1893 12578 

    
<0.0001 Increasing Trend 
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Station d value Kendall’s 𝝉 Kendall’s S p-value Trend Interpretation 

Seberang 
Perai 0.673 0.0680 4516 0.053 Increasing Trend 

Pegoh 0.547 -0.0271 -1798       0.44 No Trend 

Seri Manjung 0.260 -0.1198 -7960 0.001 Decreasing Trend 

Tanjung 
Malim 0.261 

-0.1868 
-12406 

   
<0.0001 Decreasing Trend 

Taiping 0.250 -0.1424 -9459   <0.0001 Decreasing Trend 

Tasek Ipoh 0.328 -0.1390 -9233   0.0001 Decreasing Trend 

Kangar 0.117 -0.1468 -9753 
   

<0.0001 Decreasing Trend 

Keningau -0.031 -0.0292 -1938 0.406 No Trend 

Kota Kinabalu 0.261 0.1702 11304   <0.0001 Increasing Trend 

Kimanis 0.132 0.0496 3293 0.158 No Trend 

Sandakan 0.211 -0.0433 -2875 0.217 No Trend 

Tawau 0.632 -0.0846 -5623 0.016 Decreasing Trend 

Bintulu 0.253 0.0447 2968 0.203 No Trend 

ILP Miri 0.345 0.2150 14283   <0.0001 Increasing Trend 

Kuching 0.535 0.1230 8169 0.001 Increasing Trend 

Kapit 0.312 0.1390 9234  0.0001 Increasing Trend 

Limbang 0.473 0.0518 3438       0.14 No Trend 

Mukah 0.440 0.1857 12333 
   

<0.0001 Increasing Trend 

Miri 0.480 
0.1841 

12227 
   

<0.0001 Increasing Trend 

Sibu 0.383 0.0490 3258 0.162 No Trend 

Samalaju 0.399 -0.0007 -49 0.984 No Trend 

Sarikei 0.430 -0.0123 -814 0.727 No Trend 

Samarahan 0.491 0.0575 3818 0.101 No Trend 

Sri Aman 0.546 0.2047 13595   <0.0001 Increasing Trend 

Banting 0.450 0.0130 864 0.711 No Trend 

Klang 0.471 -0.1733 -11509   <0.0001 Decreasing Trend 

Kuala 
Selangor 0.399 -0.0291 -1936 0.406 No Trend 

Petaling Jaya 0.296 -0.1622 -10775   <0.0001 Decreasing Trend 

Shah Alam 0.152 -0.0762 -5061 0.030 Decreasing Trend 

Nilai 0.657 0.2147 14261 
   

<0.0001 Increasing Trend 

Port Dickson 0.432 -0.0172 -1142 0.624 Decreasing Trend 

Seremban 0.282 0.0178 1184 0.612 No Trend 

Besut 0.206 -0.1045 -6944 0.003 Decreasing Trend 

Kuala 
Terengganu 0.004 -0.1232 -8186  0.0004 Decreasing Trend 

Kemaman 0.228 -0.0464 -3080 0.186 No Trend 

Paka 0.407 -0.0108 -715 0.759 No Trend 
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Station d value Kendall’s 𝝉 Kendall’s S p-value Trend Interpretation 

Batu Muda 0.313 0.1587 10543 
   

<0.0001 Increasing Trend 

Cheras 0.524 -0.1461 -9708 
   

<0.0001 Decreasing Trend 

Labuan 0.132 -0.0820 -3853  0.032 Decreasing Trend 

Putrajaya 0.072 0.0206 1367  0.558 No Trend 

 
In Table 3, the p-value in each case of monitoring station was compared with 5% level of significance. 
Null hypothesis of no trend in the emission of pollutant is rejected when the p-value is less than 0.05 
level of significance concluding that there is evidence of increase or decrease in the trend of PM10 at 
given monitoring station depending on the corresponding value of 𝑆 statistic. On the other hand, the null 
hypothesis is not rejected if the p-value is greater than 0.05 level of significance concluding that the trend 
of the series of PM10 is neither increasing nor decreasing. 
 

ARIMA and ARFIMA Modelling 
The dataset for ARIMA model needs to be stationary which means realization of constant mean and 
variance. The results from stationarity test by the ADF for some of the monitoring stations are presented 
in Table 4. Thus, the non-stationary series are transformed to stationary by means of differencing. The 
differencing is whether fractional or once to produce a stationary data. 
 
Table 4. Results of ADF Test 
 

Station Statistic Lag P-value Status 

Shah 

Alam 

-3.3085 36 0.06982 Non-stationary 

Cheras -1.9754 36 0.5873 Non-stationary 

Tanjung 

Malim 

-1.6865 36 0.7091 Non-stationary 

Kota 

Tinggi 

-0.9184 36 0.9505 Non-stationary 

Kuching -2.5152 36 0.3595 Non-stationary 

Alor 

Gajah 

-0.5869 36 0.9776 Non-stationary 

Pasir 

Gudang 

-0.747 36 0.9658 Non-stationary 

Pegoh -2.0375 36 0.561 Non-stationary 

Nilai -1.6521 36 0.7237 Non-stationary 

Taiping -3.269 36 0.0765 Non-stationary 

Tawau -1.0136 36 0.9356 Non-stationary 

Kulim 

Hi-Tech 

-2.7736 36 0.2504 Non-stationary 

 
In each monitoring station, 358 observations were used to develop ARIMA and ARFIMA models, while 
the last seven observations were used to assess the performance of the developed model using forecast 
error analysis, which involved comparing the forecasted with the actual observations. The three 
measures of error accuracy used for this research for assessing forecasting are Mean Absolute Deviation 
(MAD), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error (RMSE). Due to the 
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presence of outliers as observed in most PM10 dataset across the monitoring stations, RMSE should be 
regarded as the best measure of forecast accuracy over others [42, 43]. Any of the two models with the 
least RMSE value in the column is then identified as the best performing model. 
 
Table 5 displays the ARIMA and ARFIMA model parameters, Ljung-Box test result to confirm models’ 
adequacy and three measures of error accuracy to determine the best performing model in each 
monitoring station separately. The fractional integration parameter d values for each ARFIMA model 
were also indicated in model structure. The two models were observed to have adequately fitted the 
PM10 concentration from the sixty-five monitoring stations across Malaysia due to achieving uncorrelated 
model residuals using Ljung-Box test statistic at 5% level of significance. We failed to reject the null 
hypothesis of uncorrelated model residuals in all the developed ARIMA and ARFIMA models. 
 
Table 5. Seven-day ahead Forecast and Results of Error Analysis 

 

Station ARIMA/ 
ARFIMA 

Ljung 
Box 

(p-value) MAD 
MAPE 

(%) RMSE 

Segamat 
1, 1, 1 0.8104 10.00 24.76 12.84 

2, 0.291, 1 0.8236 9.62 27.08 11.71 

Batu Pahat 
2, 1, 1 0.9440 11.38 26.24 12.25 

1, 0.280, 1 0.1969 9.37 24.47 10.25 

Kluang 
2, 0, 1 0.9987 18.03 40.31 19.47 

1, 0.219, 2 0.6262 17.00 38.94 18.94 

Larkin 
2, 1, 1 0.9570 11.12 28.53 14.17 

2, 0.354, 1 0.9194 11.74 30.26 14.51 

Pasir 
Gudang 

2, 1, 2 0.9865 6.07 13.64 7.63 

3, 0.363, 0 0.1605 7.64 18.53 9.23 

Pengerang 
1, 1, 1 0.9973 9.90 26.23 11.70 

2, 0.329, 1 0.9827 9.39 28.79 11.28 

Kota Tinggi 
2, 1, 1 0.8865 5.36 19.65 6.27 

1, 0.351, 2 0.9195 6.36 18.67 7.07 

Tangkak 
3, 0, 0 0.9349 27.39 30.95 32.81 

3, 0.251, 0 0.4138 29.14 32.97 34.52 

Langkawi 
0, 1, 3 0.8237 6.18 17 8.35 

1, 0.270, 3 0.8571 6.42 20.63 7.61 

Alor Setar 
1, 0, 2 0.8815 7.86 27 9.67 

1, 0.302, 2 0.6413 6.66 22.37 7.49 

Sungai 
Petani 

1, 0, 2 0.9030 17.59 33 24.57 

2, 0.33, 1 0.4423 17.71 33.30 24.65 

Kulim Hi-
Tech 

3, 1, 1 0.9888 7.61 18.57 8.71 

3, 0.116, 1 0.9794 6.32 16.31 8.27 

Tanah 
Merah 

1, 1, 1 0.2714 15.36 25.21 21.17 

3, 0.409, 3 0.4984 15.76 30.99 19.16 

Kota Bharu 
2, 1, 1 0.9279 22.81 25.87 32.03 

2, 0.145, 1 0.3927 22.05 26.83 29.24 
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Station ARIMA/ 
ARFIMA 

Ljung 
Box 

(p-value) MAD 
MAPE 

(%) RMSE 

Alor Gajah 
0, 1, 3 0.8115 31.06 28.81 66.76 

2, 0.341, 0 0.2183 28.50 27.16 63.87 

Bukit 
Rambai 

2, 1, 1 0.9905 8.92 22.37 10.75 

2, 0.289, 1 0.4541 8.36 23.61 11.83 

Bandaraya 
Melaka 

1, 1, 2 0.8188 6.04 21.54 7.32 

1, 0.366, 2 0.8120 6.79 24.87 8.35 

Rompin 
5, 1, 2 0.8763 16.29 51.44 17.83 

6, 0.423, 3 0.9597 16.55 53.16 17.62 

Temerloh 
1, 1, 2 0.9965 4.71 11.73 5.78 

1, 0.213, 2 0.7369 6.80 17.60 8.03 

Jerantut 
3, 1, 1 0.9972 6.98 30.05 8.59 

3, 0.4, 1 0.7544 7.97 34.49 9.42 

Indera 
Mahkota 

1, 1, 1 0.8113 3.09 14.35 3.37 

1, 0.256, 1 0.1701 7.36 34.33 7.86 

Balok Baru 
0, 1, 2 0.8814 9.56 35.22 12.77 

2, 0.354, 1 0.9675 13.46 46.26 15.81 

Seberang 
Jaya 

1, 1, 1 0.7895 13.63 33.57 17.72 

2, 0.358, 1 0.7746 12.84 32.12 17.42 

Seberang 
Perai 

1, 1, 1 0.7570 9.68 21.10 13.01 

3, 0.353, 1 0.2858 11.09 25.86 12.88 

Minden 
(USM) 

2, 0, 5 0.8805 5.95 22.24 9.53 

1, 0.373, 2 0.5809 5.56 21.41 8.73 

Balik Pulau 
1, 0, 2 0.9627 6.37 19.81 7.39 

1, 0.285, 2 0.8923 5.60 17.46 6.73 

Pegoh 
1, 0, 2 0.9268 8.78 19.02 10.63 

3, 0.306, 0 0.2766 9.06 19.79 10.57 

Seri Manjung 
1, 0, 1 0.9442 14.44 50.54 15.86 

2, 0.171, 1 0.6588 12.73 44.70 13.97 

Taiping 
0, 1, 3 0.9794 48.14 38.68 51.48 

2, 0.176, 1 0.8621 32.62 25.39 37.48 

Tanjung 
Malim 

2, 1, 1 0.9646 3.67 16.29 4.25 

2, 0.318, 0 0.0996 2.43 11.22 2.78 

Tasek Ipoh 
1, 1, 2 0.8729 5.82 12.28 7.47 

1, 0.339, 2 0.7704 5.56 12.75 7.09 

Kangar 
1, 0, 0 0.6686 3.66 8 6.13 

1, 0.003, 1 0.4722 3.81 8.47 6.03 

Tawau 1, 1, 2 0.9846 5.99 29.58 7.23 
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Station ARIMA/ 
ARFIMA 

Ljung 
Box 

(p-value) MAD 
MAPE 

(%) RMSE 

1, 0.379, 2 0.7276 7.65 40.86 8.60 

Sandakan 
1, 0, 0 0.8488 9.76 32.35 11.68 

2, 0.127, 1 0.9985 8.93 28.28 11.30 

Kota 
Kinabalu 

1, 1, 3 0.6899 25.47 67.15 30.81 

0, 0.057, 9 0.0969 22.17 54.68 29.48 

Kimanis 
1, 0, 1 0.9869 5.67 33.99 7.11 

2, 0.066, 2 0.1677 5.91 35.40 7.32 

Keningau 
1, 0, 2 0.9387 9.25 38.73 11.74 

1, 0.200, 2 0.6223 8.71 36.78 11.29 

Limbang 
1, 0, 1 0.4243 4.32 19.29 6.28 

1, 0.109, 1 0.0886 4.12 18.39 6.07 

ILP Miri 0, 1, 2 0.7313 10.22 37.42 11.35 

1, 0.119, 0 0.1152 12.35 48.14 12.73 

Miri 
0, 1, 1 0.4147 23.69 58.52 33.33 

3, 0.264, 0 0.1204 23.31 75.42 33.28 

Samalaju 
3, 1, 2 0.9725 21.26 47.24 27.41 

3, 0.308, 2 0.9932 21.40 47.07 27.39 

Bintulu 
1, 0, 1 0.8890 18.31 53.26 23.66 

1, 0.153, 1 0.0594 17.67 51.33 22.80 

Mukah 
1, 1, 1 0.4673 11.80 48.38 12.56 

2, 0.279, 0 0.2483 16.74 68.06 17.54 

Kapit 
2, 1, 1 0.8827 9.14 22.42 12.33 

2, 0.126, 1 0.4428 9.57 24.94 11.95 

Sibu 
1, 1, 2 0.9965 9.73 28.71 10.28 

1, 0.287, 2 0.9770 10.04 29.89 10.66 

Sarikei 
1, 0, 2 0.9323 8.37 42.07 10.21 

1, 0.001, 2 0.9120 8.53 42.79 10.36 

Sri Aman 
1, 1, 2 0.7817 12.33 53.89 12.90 

1, 0.174, 2 0.8483 13.30 57.91 13.78 

Samarahan 
1, 1, 2 0.9156 4.89 18.41 6.26 

1, 0.120, 2 0.9283 6.39 25.28 7.64 

Kuching 
0, 1, 2 0.9886 13.25 27.62 18.06 

2, 0.191, 1 0.9241 12.53 29.45 16.39 

Kuala 
Selangor 

1, 0, 2 0.9672 15.55 43.57 15.98 

2, 0.37, 0 0.0500 13.79 37.73 14.57 

Petaling 
Jaya 

1, 1, 1 0.9838 7.53 14.19 9.42 

2, 0.269, 1 0.9864 7.99 16.58 8.82 
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Station ARIMA/ 
ARFIMA 

Ljung 
Box 

(p-value) MAD 
MAPE 

(%) RMSE 

Shah Alam 
2, 0, 2 0.9035 11.76 29.56 13.47 

2, 0.229, 2 0.2852 11.41 28.76 13.20 

Klang 
1, 0, 1 0.4682 29.28 71.30 31.35 

2, 0.330, 2 0.9848 29.17 71.07 31.27 

Banting 
2, 1, 1 0.9463 16.14 28.69 18.77 

2, 0.336, 0 0.0954 15.37 29.99 17.06 

Nilai 
0, 1, 2 0.9602 10.69 16.94 13.95 

2, 0.362, 2 0.1153 10.10 15.81 12.93 

Seremban 
1, 0, 2 0.9447 13.69 24.39 17.03 

3, 0.204, 0 0.2013 14.09 24.54 17.83 

Port Dickson 
1, 0, 2 0.9285 8.54 19.87 9.77 

2, 0.234, 2 0.9785 8.69 19.91 10.14 

Kemaman 
1, 0, 1 0.8645 12.67 39.35 13.69 

1, 0.191, 1 0.1963 10.06 30.86 11.12 

Paka 
3, 1, 1 0.7880 12.23 30.23 15.11 

3, 0.157, 1 0.7050 13.11 37.22 14.50 

Kuala 
Terengganu 

0, 1, 1 0.4190 27.14 36.25 32.84 

2, 0.117, 1 0.9828 23.77 33.33 29.29 

Besut 
1, 1, 2 0.9835 14.36 29.02 16.37 

1, 0.025, 1 0.1138 13.21 29.10 15.12 

Batu Muda 
2, 1, 1 0.6686 8.53 18.94 11.07 

2, 0.335, 1 0.8081 9.98 24.52 10.59 

Cheras 
1, 1, 1 0.9855 11.42 20.98 15.39 

1, 0.278, 1 0.8081 11.85 25.51 13.99 

Putrajaya 
2, 0, 2 0.9510 43.16 36.36 72.45 

2, 0.212, 1 0.8927 43.09 36.12 72.48 

Labuan 
1, 0, 1 0.6967 23.42 141.56 24.31 

2, 0.041, 1 0.8320 26.11 155.38 26.72 

p-value < 0.05 means rejecting the null hypothesis of uncorrelated residual. 

 
The forecasts result indicates that the ARFIMA model performed better than ARIMA model in 42 of the 
65 modelled stations by producing least RMSE. 

 
Conclusions 
 
We analyzed concentration of PM10 air pollutant due to its adverse impact on human health, environment 
and ambient air quality using the dataset from monitoring stations across Malaysia for the year 2018. 
Boxplot graphical representation of the dataset were given in Figure 2 to visualize the statistical behavior 
of the dataset. Some descriptive statistics for each of the sixty-five monitoring stations were derived to 
display total number of observations used in each station, average concentration, minimum and 
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maximum daily recorded emissions, and the standard deviation as contained in Table 2. The daily 
emission of the pollutant in most monitoring stations for some days were observed to have gone beyond 

the WHO standard of 50𝜇𝑔/𝑚3.  
 
The PM10 concentration for the reviewed period exhibited both LRD and SRD characteristics with 
dominating evidence of LRD over the SRD in most of the monitoring stations. The degree of persistence 
with orders of integration (0,1) was significant in sixty-four of the sixty-five monitoring stations, this implies 
that shocks in the level of pollutant is not permanent but transitory. The fluctuation in the level of 
contaminant in daily scale is not statistically significant in twenty-four monitoring stations but significantly 
increasing and decreasing at seventeen and remaining twenty-four monitoring stations respectively as 
reported and confirmed by Mann-Kendall trend test at 5% level of significance. Each station was 
analyzed and forecasted using both ARIMA and ARFIMA models. The results revealed that ARFIMA 
model performed better in forty-two of the sixty-five stations.  The result of the Ljung-Box test of 
uncorrelated residuals confirms the adequacy of each of the ARIMA and ARFIMA models used in this 
study at 5% level of significance. In addition, models’ performances were observed to be independent of 
category, and location of the given monitoring stations. This conclude to mean that none of the models 
used for this research can be regarded as universal in forecasting and analyzing PM10 concentration in 
Malaysia. 
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