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ABSTRACT 
 
Consider a single server retrial queueing system with negative arrival under non-pre-emptive priority service in which three types of customers arrive in 
a poisson process with arrival rate λ1 for low priority customers and λ2 for high priority customers and λ3 for negative arrival. Low and high priority 
customers are identified as primary calls. The service times follow an exponential distribution with parameters µ1 and µ2 for low and high priority 
customers. The retrial and negative arrivals are introduced for low priority customers only. Gelenbe (1991) has introduced a new class of queueing 
processes in which customers are either positive or negative. Positive means a regular customer who is treated in the usual way by a server. Negative 
customers have the effect of deleting some customer in the queue. In the simplest version, a negative arrival removes an ordinary positive customer or a 
random batch of positive customers according to some strategy. It is noted that the existence of a flow of negative arrivals provides a control mechanism 
to control excessive congestion at the retrial group and also assume that the negative customers only act when the server is busy. Let K be the maximum 
number of waiting spaces for high priority customers in front of the service station. The high priorities customers will be governed by the Non-pre-
emptive priority service. The access from the orbit to the service facility is governed by the classical retrial policy. This model is solved by using Matrix 
geometric Technique. Numerical  study  have been done for Analysis of Mean number of low priority customers in the orbit (MNCO), Mean number of 
high priority customers in the queue(MPQL),Truncation level (OCUT),Probability of server free and Probabilities  of server busy with low and high 
priority customers for various values of λ1 , λ2 , λ3 , µ1 , µ2 ,σ and k  in elaborate manner and also various particular cases of  this model have been 
discussed. 
 
| Queues| Repeated attempts| Negative arrival | Priority service | Matrix Geometric Method | 
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1. INTRODUCTION 

 
Queueing systems in which arriving customers who find all servers and waiting positions (if any) occupied may retry 

for service after a period of time are called retrial queues ([3],[4],[7],[16],[18],[19],[25],[26],[30],[31]). Because of the 
complexity of the retrial queueing models, analytic results are generally difficult to obtain. There are a great number of 
numerical and approximations methods are available, in this paper solution by Matrix geometric method is emphasised ([9], 
[10], [14], [20], [24], [29]).  
 
 
2. DESCRIPTION OF THE QUEUEING SYSTEM 
 

Consider a single server retrial queueing system with negative arrival under non-pre-emptive priority service in which 
three types of customers arrive in a Poisson process with arrival rate λ1 for low priority customers and λ2 for high priority 
customers and λ3 for negative arrival ([2], [5], [6], [8], [32], [33]) . Low and high priority customers are identified as 
primary calls. Further assume that the service times follow an exponential distribution with parameters µ1 and µ2 for both 
types of customers. The retrial and negative arrivals are introduced for low priority customers only. Let K be the 
maximum number of waiting spaces for high priority customers in front of the service station. 
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2.1 Description of Negative Arrival 
 

Gelenbe (1991) has introduced a new class of queueing processes in which customers are either Positive or Negative. 
Positive means a regular customer who is treated in the usual way by a server. Negative customers have the effect of 
deleting some customer in the queue. In the simplest version, a negative arrival removes an ordinary positive customer or a 
batch of positive customers according to some strategy. It is noted that the existence of a flow of negative arrivals provides 
a control mechanism to control excessive congestion at the retrial group in tele communication and computer networks. If 
the primary customer (low priority) finding the server is busy then leaves the service area and re-apply for service after 
some random time from the orbit. The control mechanism is such that whenever server is busy, an exponential timer is 
activated. If the timer expires and the server is busy then at random one of the low priority customers which are stored at the 
retrial pool is automatically removed.  A negative arrival has the effect of removing a random customer from the retrial 
group. The negative customers only act when the server is busy.  

If the server is free at the time of a primary call (low/high) arrival, the arriving call begins to be served immediately by 
the server and customer leaves the system after service completion. Otherwise, if the server is busy then the low priority 
arriving customer goes to orbit and becomes a source of repeated calls. The pool of sources of repeated calls may be viewed 
as a sort of queue. Every such source produces a Poisson process of repeated calls with intensity σ. If an incoming repeated 
call (low) finds the server free, it is served and leaves the system after service, while the source which produced this 
repeated call disappears. If the server is busy and there are some waiting spaces then the high priority customer can enter 
into the service station and waits for his service. If there are no waiting spaces then the high priority customers can not enter 
into the service station and will be lost for the system. Otherwise, the system state does not change.  
If the server is engaging with low priority customer and at that time the higher priority customer comes then the high 
priority customer will get service only after completion of the service of low priority customer who is in service. This type 
of priority service is called the Non-pre-emptive priority service ([10],[11],[12],[13],[17],[21],[22],[27]). This kind of 
priority service is followed in this paper. 

 
 

2.2 Retrial Policy 
 
 Most of the queueing system with repeated attempts assume that each customer in the retrial group seeks service 
independently of each other after a random time exponentially distributed with rate σ so that the probability of repeated 
attempt during the interval (t, t + ∆t)  given that  there were n customers in orbit at time t  is nσ∆t + O(∆t). This discipline 
for access for the server from the retrial group is called classical retrial rate policy. The input flow of primary calls (low 
and high), negative arrivals, interval between repetitions and service times are mutually independent.  
 
 
3 MATRIX GEOMETRIC METHODS     

 
Let  N(t) be  the random variable which represents the number of low priority customers in the orbit  at time  t  and  

P(t) be the random variable which represents the number of high priority customers in the  queue (in front of the service 
station) at time t and S(t) represents the server state at time t. The random process is described as    {< N(t), P(t), S(t) > / 
N(t) = 0, 1, 2,… ;  P(t) = 0, 1, 2,…, k;  S(t) = 0, 1, 2} . 

S(t) = 0 if server is idle at time t, 
S(t) = 1 if server busy with low priority customer at time t, 
S(t) = 2 if server busy with high priority customer at time t. 
The possible state spaces are {(u , v , w) / u = 0, 1, 2, …  ;  v = 0;  w = 0, 1, 2 } ∪ {(u , v , w  )/  u = 0, 1, 2, 3, … ;  v = 

1, 2, 3,…,k ; w = 1, 2}. The infinitesimal generator matrix Q is given below: 
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     Q =   
 
 
 
 
 
 

                            
    
 
 
The matrices A0,0 , An,n-1 , An,n , An,n+1 are square matrices of order 2k + 3. 
 
 
Notations: 
 
     T1 :  -(λ1 + λ2 )   T2   : -(λ1 + λ2 + λ3 + µ1)   T3 : -(λ1 +λ2 + λ3 + µ2)   T4 : -(λ1 + λ3 + µ1)   T5 : -(λ1 + λ3+ µ2),  
     T6 :   -(nσ + λ1 + λ2)   T7 : -(Mσ + λ1 + λ2 + λ3)   T8 :   -(λ2 + λ3 + µ1)  T9 :  -(λ2 + λ3 + µ2)   S1 :  -(λ3 + µ1) ,  
     S2 :   -(λ3 + µ2)     S3 : -(λ1 + λ2 + µ1)   S4 : -(λ1 + λ2 + µ2)   S5 : -(λ1 + µ1)   S6 : -(λ1 + µ2). 
 
 
 

 

         
 
 
 
       A0,0 =        
    
  
 
 
 
 
 
 
 
 An, n-1 = (aij) where  a11 = 0, a12 = nσ,  aii = λ3,  for  i = 2, 3, 4,…,2k + 3, 
            = 0, otherwise. 
 
 
 
 

   

T1 λ1 λ2 0 0 0 0 … 0 0 0 0 0 
µ1 S3 0 λ2 0 0 0 … 0 0 0 0 0 
µ2 0 S4 0 λ2 0 0 … 0 0 0 0 0 
0 0 µ1 S3 0 λ2 0 … 0 0 0 0 0 
0 0 µ2 0 S4 0 λ2 … 0 0 0 0 0 
0 0 0 0 µ1 S3 0 … 0 0 0 0 0 
0 0 0 0 0 0 S4 … 0 0 0 0 0 
… … … … … … … … … … … … .. 
0 0 0 0 0 0 0 … 0 S3 0 λ2 0 
0 0 0 0 0 0 0 … 0 0 S4 0 λ2 
0 0 0 0 0 0 0 … 0 0 µ1 S5 0 
0 0 0 0 0 0 0 … 0 0 µ2 0 S6 

 
A0,0 A0 

 
0 0 

 
0 

 
0 

 
… 

 
0 

 
0 

 
…

 
A1,0 A1,1 

 
A0 0 

 
0  

 
… 

 
0 

 
0 

 
…

 
0 A2,1 

 
A2,2 A0 

 
0 

 
0 

 
… 

 
0 

 
0 

 
…

. . . . . . … . . …

. . . . . . … . . …
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          An,n =       
 
 
 
 
                     
 
        
 
An,n+1 = A0 = (aij) where  a11 = 0, aii = λ1  for i = 2, 3, 4, …,2k + 3, 
          = 0, otherwise. 
 
 

If the capacity of the orbit is finite say M, then 
  

     

         
 
 
 
        AM,M =          
 

 
 
 
 
 
 
 

Let x be a steady-state probability vector of Q and partitioned as  x = (x(0), x(1), x(2), … ) and  x satisfies 
                        xQ =  0 , xe = 1             (1)  
 where   x(i) = (Pi00, Pi01, Pi02, Pi11, Pi12, Pi21, Pi22, … , Pik1, Pik2 )    i = 0,1,2,… .   
 
 
4. DIRECT TRUNCATION METHOD  
 

In this method one can truncate the system of equations in (1) for sufficiently large value of the number of customers in 
the orbit, say M. That is, the orbit size is restricted to M such that any arriving customer finding the orbit full is considered 
lost. The value of M can be chosen so that the loss probability is small. Due to the intrinsic nature of the system in (1), the 
only choice available for studying M is through algorithmic methods. While a number of approaches is available for  
determining the cut-off point , M , The one that seems to perform well (with respect to approximating the system 
performance measures) is to increase M until the largest individual change in the elements of x for successive values is less 
than Є a predetermined infinitesimal value. 

T6 λ1 λ2 0 0 0 0 … 0 0 0 0 0 
µ1 T2 0 λ2 0 0 0 … 0 0 0 0 0 
µ2 0 T3 0 λ2 0 0 … 0 0 0 0 0 
0 0 µ1 T2 0 λ2 0 … 0 0 0 0 0 
0 0 µ2 0 T3 0 λ2 … 0 0 0 0 0 
0 0 0 0 µ1 T2 0 … 0 0 0 0 0 
0 0 0 0 0 0 T3 … 0 0 0 0 0 
… … … … … … … … … … … … .. 
0 0 0 0 0 0 0 … 0 T2 0 λ2 0 
0 0 0 0 0 0 0 … 0 0 T3 0 λ2 
0 0 0 0 0 0 0 … 0 0 µ1 T4 0 
0 0 0 0 0 0 0 … 0 0 µ2 0 T5 

T7 λ1 λ2 0 0 0 0 … 0 0 0 0 0 
µ1 T8 0 λ2 0 0 0 … 0 0 0 0 0 
µ2 0 T9 0 λ2 0 0 … 0 0 0 0 0 
0 0 µ1 T8 0 λ2 0 … 0 0 0 0 0 
0 0 µ2 0 T9 0 λ2 … 0 0 0 0 0 
0 0 0 0 µ1 T8 0 … 0 0 0 0 0 
0 0 0 0 0 0 T9 … 0 0 0 0 0 
… … … … … … … … … … … … .. 
0 0 0 0 0 0 0 … 0 T8 0 λ2 0 
0 0 0 0 0 0 0 … 0 0 T9 0 λ2 
0 0 0 0 0 0 0 … 0 0 µ1 S1 0 
0 0 0 0 0 0 0 … 0 0 µ2 0 S2
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5. STABILITY CONDITION 
 
Theorem:  

The inequality  ⎥
⎦

⎤
⎢
⎣

⎡
−

1

3

1

1

µ
λ

µ
λF < 1 where 

122 )1)(1(
)1(

++−−
−

=
kk

k

xx
tF

ππ
 ,  x  =  λ2/µ2 ,  y  =  µ1/µ2  and   t = x/(x+y)  is 

the necessary and sufficient condition  for the system to be stable ([1], [15], [23], [28]). As k →∞ the above stability 

condition becomes  31 2

1 2 1

1.λλ λ
µ µ µ
⎡ ⎤

+ − <⎢ ⎥
⎣ ⎦  

 
Proof: 
Let Q be an infinitesimal generator matrix for the queueing system (without retrial). 
The stationary probability vector X satisfies   
                                     XQ = 0   and   Xe=1.                       (2) 
Let R be the rate matrix satisfying the equation                                 
                                    A0+RA1+ R2A2 =0.           (3) 
The matrices A0 , A1 , A2 are square matrices of order 2k + 2.  The system is stable if sp(R)<1.   
The matrix R satisfies sp(R) <1 if and only if                               
                                   ΠA0e < ΠA2e                                                    (4) 
and Π = (π0, π1, π2, . . ., π2k, π2k+1 )  satisfies 
                                   ΠA = 0,           (5) 
                                   Πe = 1,                                                                          (6) 
 where 
                                  A = A0 + A1 + A2 ,                                                                                                                 (7) 
A0 = λ1I, where I is an identity matrix, 
 
 
 
 
 
 
 
                  A1 =       
 
 
 
 
 
 
A2 = (aij) where   a11= µ1+ λ3 , a21= µ2 , aii =λ3  for i = 2, 3, 4, …, 2k + 2. 
 
By substituting  A0 ,  A1 ,  A2  in  equations  (5) , (6) and  (7) , 
                                 π1 = xπ0, 

      π2 = tπ0, 

        π3 = x(π1 + π2), 
                                                  π4 = t2π0, 

        π5 = x(π3 + π4), 
                                π6 = t 3π0, 

       π7 = x(π5 + π6), 
                                π8 = t 4 π0, 
                                                 π9 = x(π7 + π8), 
                                  …     …   … 
                                π2k- 1 = x(π2k-3 + π2k-2), 

   
T2 0 λ2 0 0 0 … 0 0 0 0 0
0 T3 0 λ2 0 0 … 0 0 0 0 0
0 µ1 T2 0 λ2 0 … 0 0 0 0 0
0 µ2 0 T3 0 λ2 … 0 0 0 0 0
0 0 0 µ1 T2 0 … 0 0 0 0 0
0 0 0 µ2 0 T3 … 0 0 0 0 0
… … … … … … …. … … …. …. ….
0 0 0 0 0 0 … µ1 T2 0 λ2 0
0 0 0 0 0 0 … µ2 0 T3 0 λ2
0 0 0 0 0 0 … 0 0 µ1 T4 0
0 0 0 0 0 0 … 0 0 µ2 0 T5
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                                π2k    =  (x/y) tk-1 π0, 
                                π2k+1 = xπ2k-1. 
From (6), π0 + π1 + π2 + π3 + π4 + π5 +  . . . + π2k-1 + π2k + π2k+1 = 1. 
 
By substituting the values of  πi in the above equation,                   

     
2 2 1

0
(1 )[(1 )(1 ) ] .

(1 )
k k

k

t x x
t
π ππ +− − − +

=
−

 

 
From (4), 

             31
0

1 1

1 .x
y

λλ π
µ µ

⎛ ⎞
< + +⎜ ⎟

⎝ ⎠
 

   
By substituting π0, 
 

   ⎥
⎦

⎤
⎢
⎣

⎡
−

1

3

1

1

µ
λ

µ
λ

F < 1.                                                                                                                                                (8) 

 
The inequality (8) is also a sufficient condition for the retrial queueing system to be stable.  Let Qn be the number of 

customers in the orbit after departure nth customer from the service station. The embedded Markov chain {Qn, n ≥ 0} is 
ergodic if (8) satisfied. It is readily to see that {Qn, n ≥ 0} is irreducible and aperiodic. It remains to be proved that {Qn, n ≥ 
0} is positive recurrent. The irreducible and aperiodic Markov chain {Qn, n≥0} is positive recurrent if | ψi| < ∞ for all i and 
lim i →∞ sup   ψi < 0 where  
 
                      ψi   =  E(  Qn+1  -  Qn / Qn = i ),         ( i = 0,1,2,3, . . . ), 
 

                      ψi   = 
σλλ

σ
µ
λ

µ
λ

i
iF

++
−⎥

⎦

⎤
⎢
⎣

⎡
−

211

3

1

1  . 

If (8) satisfied, then | ψi| <∞ for all i and lim i →∞ sup ψi   < 0. Therefore the embedded Markov chain  {Qn, n≥ 0} is 

erogdic. If K→∞   then π2k→0 and π2k+1→0 and tk→0. So the above stability condition becomes   1
1

3

2

2

1

1 <⎥
⎦

⎤
⎢
⎣

⎡
−+
µ
λ

µ
λ

µ
λ

. 

 
6. ANALYSIS OF STEADY STATE PROBABILITIES 

 
The Direct Truncation Method is used for finding the steady state probability vector x. Let M denote the cut-off point or 
truncation level. The steady state probability vector   x(M)  is now partitioned   as  x(M) = (x(0), x(1), x(2),…, x(M)) and x(M)  

satiesfies  x(M)  Q =  0 , x(M)  e =1, where    x(i) = (Pi00,  Pi01, Pi02, Pi11,  Pi12, Pi21,  Pi22,…, Pik1,  Pik2); i = 0, 1, 2, 3, . . ., M.  
The above system of equations is solved exploiting the special structure of the co-efficient matrix. It is solved by 

Numerical method such as GAUSS-JORDAN elementary transformation method. Since there is no clear cut choice for M, 
start the iterative process by taking, say M = 1 and increase it until the individual elements of x do not change significantly. 
That is, if M* denotes the truncation point then || xM*(i) - xM*-1(i)||∞ < ε    where ε  is an infinitesimal quantity. 
 
 
7. SPECIAL CASES 

 
 1.   This model becomes single server retrial queueing with non-pre-emptive priority service if λ3 → 0.  

        2.   This model becomes Single Server Retrial queueing system and coincides with analytic solutions given  
               by Falin and Templeton for various values of  λ1, ( λ2 →0 ), ( λ3→0 ), µ1, (µ2 →∞), σ and K large.  
        3. This model becomes Single Server Standard Queueing System and coincides with standard results if   
               (λ2 →0), (µ2 →∞), (λ3→0) and(σ→∞).  
        4. This model becomes Single Server Standard queueing system with finite capacity if (λ1 →0), (µ1→∞), 
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               λ2, µ2 and K. 
 
8. SYSTEMS PERFORMANCE MEASURES (FOR CLASSICAL RETRIAL POLICY) 

 
The following system measures can be study with the probabilities obtained by using direct truncation method for various 
values of λ1, λ2, λ3, µ1, µ2, σ and K. 

 
a) The probability mass function of  server state 

 
Let S(t) be the random variable which represents the server state at time t.  

 
              S:                   0idle                       1low                           2high                 

               P:                
0

( ,0,0)
i

p i
∞

=
∑          

0 0
( , ,1)

k

i j
p i j

∞

= =
∑∑      

0 0
( , , 2)

k

i j
p i j

∞

= =
∑∑     

 
b) The probability mass function of  number of customers(low) in the orbit 

 
Let X(t) be the random variable which represents the number of low priority customers in the orbit. In  this model 
the capacity of the orbit is infinite so X(t) takes the values 0, 1, 2, 3, 4, 5,… . 
 
   Number of low priority customers (orbit)                     Probability             

                i              
2

0 1
( , , )

k

j l
p i j l

= =
∑∑ + p(i,0,0)   (i=0,1, 2,…). 

 
c) The Probability mass function of number of high priority customers(queue) 

 
Let P(t) be number of high priority customers in the queue at time t. In this model, the capacity of high priority 
customers in the queue is finite and P(t) takes the values 0, 1, 2, 3…K.  
 

   Number of high priority customers (queue)            Probability   
 

                     0                                                           
2

0 0

( ,0, )
i l

p i l
∞

= =
∑∑ , 

                     j                                      
2

0 1
( , , )

i l
p i j l

∞

= =
∑∑  ( j = 1,2…,k ). 

  
d) The Mean number of high priority customers in the queue 

MNHP = 
2

1 0 1
* ( ( , , ))

k

j i l
j p i j l

∞

= = =
∑ ∑∑ . 

 
e) The Mean number of  low priority customers in the orbit 

        MNCO = 
2

0 0 1
* ( ( , , )

k

i j l
i p i j l

∞

= = =
∑ ∑∑

 
+ p(i,0,0))). 

 
f) The probability that the orbiting customer (low) is blocked  

               Blocking Probability = 
2

1 0 1
( , , )

k

i j l
p i j l

∞

= = =
∑∑∑

 
g) The probability that an arriving customer(low/high) enter into service  station immediately  



 
A.M.G. Subramanian et al. / Journal of Fundamental Sciences Vol  5, No 2 (2009) 129-145. 

  

 
| 136 | 

 

               PSI = 
0

( ,0,0)
i

p i
∞

=
∑

 
9. NUMERICAL STUDY 

 
MNCO : Mean Number of customers in the orbit, 
MPQL : Mean Number of high priority customers in front of the service station, 
P0 : Probability that the server is idle, 
P1 : Probability that the server is busy with low priority customers, 
P2 : Probability that the server is busy with high priority customers, 
σ       : Retrial rate from the orbit to the service station . 
 

The values of λ1, λ2, λ3, µ1, µ2 are subjected to the stability condition discussed in Section 5. 
  

From the following tables, 
• Mean number of low priority customers in the orbit decreases as σ increases. 
• Probabilities P0 and P1 depend on σ. 
• As σ increases, P0 decreases and P1 increases. 
• As K increases, p2 tends to λ2/µ2. 

 
 
Table 1: Mean number of customers in the orbit and mean queue length of high priority queue  
for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 2 and various values of σ. 
 

σ P0 P1 P2 MNCO MPQL 
10 0.4083 0.3965 0.1952 1.4381 0.1536 
20 0.3978 0.4072 0.1951 1.0529 0.1565 
30 0.3930 0.4120 0.1950 0.9128 0.1578 
40 0.3902 0.4148 0.1950 0.8397 0.1586 
50 0.3885 0.4166 0.1950 0.7947 0.1591 
60 0.3872 0.4178 0.1950 0.7642 0.1594 
70 0.3863 0.4187 0.1950 0.7421 0.1597 
80 0.3856 0.4195 0.1950 0.7253 0.1598 
90 0.3850 0.4200 0.1949 0.7122 0.1600 

100 0.3846 0.4205 0.1949 0.7017 0.1601 
200 0.3824 0.4226 0.1949 0.6534 0.1607 
300 0.3817 0.4234 0.1949 0.6370 0.1609 
400 0.3813 0.4238 0.1949 0.6288 0.1610 
500 0.3811 0.4240 0.1949 0.6238 0.1611 
600 0.3809 0.4241 0.1949 0.6205 0.1611 
700 0.3808 0.4243 0.1949 0.6182 0.1612 
800 0.3808 0.4243 0.1949 0.6164 0.1612 
900 0.3807 0.4244 0.1949 0.6150 0.1612 
1000 0.3806 0.4245 0.1949 0.6139 0.1612 
2000 0.3804 0.4247 0.1949 0.6089 0.1613 
3000 0.3803 0.4248 0.1949 0.6072 0.1613 
4000 0.3803 0.4248 0.1949 0.6064 0.1613 
5000 0.3803 0.4248 0.1949 0.6059 0.1613 
6000 0.3803 0.4248 0.1949 0.6056 0.1613 
7000 0.3802 0.4249 0.1949 0.6053 0.1613 
8000 0.3802 0.4249 0.1949 0.6051 0.1613 
9000 0.3802 0.4249 0.1949 0.6050 0.1613 
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Table 2: Mean number of customers in the orbit and mean queue length of high priority queue  
for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 3 and various values of σ.   
 

Sigma   P0 P1 P2 MNCO MPQL 
10 0.4055 0.3955 0.1989 1.4633 0.1678 
20 0.3949 0.4062 0.1989 1.0750 0.1710 
30 0.3901 0.4110 0.1989 0.9341 0.1725 
40 0.3874 0.4137 0.1989 0.8605 0.1733 
50 0.3856 0.4155 0.1989 0.8151 0.1738 
60 0.3844 0.4168 0.1989 0.7844 0.1742 
70 0.3834 0.4177 0.1989 0.7621 0.1745 
80 0.3827 0.4184 0.1989 0.7453 0.1747 
90 0.3822 0.4190 0.1989 0.7321 0.1749 
100 0.3817 0.4194 0.1989 0.7215 0.1750 
200 0.3796 0.4215 0.1989 0.6730 0.1756 
300 0.3788 0.4223 0.1989 0.6565 0.1759 
400 0.3784 0.4227 0.1989 0.6482 0.1760 
500 0.3782 0.4229 0.1989 0.6433 0.1761 
600 0.3781 0.4231 0.1989 0.6399 0.1761 
700 0.3780 0.4232 0.1989 0.6375 0.1761 
800 0.3779 0.4232 0.1989 0.6358 0.1762 
900 0.3778 0.4233 0.1989 0.6344 0.1762 

1000 0.3778 0.4234 0.1989 0.6332 0.1762 
2000 0.3775 0.4236 0.1989 0.6282 0.1763 
3000 0.3774 0.4237 0.1989 0.6265 0.1763 
4000 0.3774 0.4237 0.1989 0.6257 0.1763 
5000 0.3774 0.4237 0.1989 0.6252 0.1763 
6000 0.3774 0.4238 0.1989 0.6249 0.1763 
7000 0.3774 0.4238 0.1989 0.6246 0.1763 
8000 0.3773 0.4238 0.1989 0.6244 0.1763 
9000 0.3773 0.4238 0.1989 0.6243 0.1763 
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Table 3:   Mean number of customers in the orbit and mean queue length of high priority queue  
for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 4 and various values of σ.  
 

Sigma P0 P1 P2 MNCO MPQL 
10 0.4049 0.3953 0.1998 1.4697 0.1720 
20 0.3943 0.4059 0.1998 1.0809 0.1753 
30 0.3895 0.4107 0.1998 0.9396 0.1768 
40 0.3867 0.4135 0.1998 0.8659 0.1776 
50 0.3850 0.4153 0.1998 0.8206 0.1782 
60 0.3837 0.4165 0.1998 0.7898 0.1785 
70 0.3828 0.4174 0.1998 0.7675 0.1788 
80 0.3821 0.4181 0.1998 0.7506 0.1790 
90 0.3815 0.4187 0.1998 0.7374 0.1792 
100 0.3811 0.4192 0.1998 0.7268 0.1794 
200 0.3789 0.4213 0.1998 0.6782 0.1800 
300 0.3782 0.4220 0.1998 0.6617 0.1802 
400 0.3778 0.4224 0.1998 0.6535 0.1804 
500 0.3776 0.4227 0.1998 0.6485 0.1804 
600 0.3774 0.4228 0.1998 0.6451 0.1805 
700 0.3773 0.4229 0.1998 0.6427 0.1805 
800 0.3772 0.4230 0.1998 0.6409 0.1805 
900 0.3772 0.4231 0.1998 0.6396 0.1806 

1000 0.3771 0.4231 0.1998 0.6384 0.1806 
2000 0.3769 0.4233 0.1998 0.6334 0.1807 
3000 0.3768 0.4234 0.1998 0.6317 0.1807 
4000 0.3768 0.4235 0.1998 0.6309 0.1807 
5000 0.3768 0.4235 0.1998 0.6304 0.1807 
6000 0.3767 0.4235 0.1998 0.6300 0.1807 
7000 0.3767 0.4235 0.1998 0.6298 0.1807 
8000 0.3767 0.4235 0.1998 0.6296 0.1807 
9000 0.3767 0.4235 0.1998 0.6295 0.1807 
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Table 4: Mean number of customers in the orbit and mean queue length of high priority queue  
for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 5 and various values of σ.  
 

Sigma P0 P1 P2 MNCO MPQL 
10 0.4048 0.3953 0.1999 1.4713 0.1731 
20 0.3942 0.4059 0.1999 1.0823 0.1764 
30 0.3894 0.4107 0.1999 0.9410 0.1779 
40 0.3866 0.4134 0.1999 0.8673 0.1788 
50 0.3848 0.4152 0.1999 0.8219 0.1793 
60 0.3836 0.4165 0.1999 0.7912 0.1797 
70 0.3827 0.4174 0.1999 0.7689 0.1800 
80 0.3820 0.4181 0.1999 0.7520 0.1802 
90 0.3814 0.4187 0.1999 0.7387 0.1804 
100 0.3809 0.4191 0.1999 0.7281 0.1806 
200 0.3788 0.4212 0.1999 0.6795 0.1812 
300 0.3781 0.4220 0.1999 0.6631 0.1814 
400 0.3777 0.4224 0.1999 0.6548 0.1816 
500 0.3775 0.4226 0.1999 0.6498 0.1816 
600 0.3773 0.4227 0.1999 0.6465 0.1817 
700 0.3772 0.4229 0.1999 0.6441 0.1817 
800 0.3771 0.4229 0.1999 0.6423 0.1817 
900 0.3770 0.4230 0.1999 0.6409 0.1818 

1000 0.3770 0.4231 0.1999 0.6398 0.1818 
2000 0.3768 0.4233 0.1999 0.6347 0.1819 
3000 0.3767 0.4234 0.1999 0.6331 0.1819 
4000 0.3766 0.4234 0.1999 0.6322 0.1819 
5000 0.3766 0.4234 0.1999 0.6317 0.1819 
6000 0.3766 0.4234 0.1999 0.6314 0.1819 
7000 0.3766 0.4235 0.1999 0.6311 0.1819 
8000 0.3766 0.4235 0.1999 0.6310 0.1819 
9000 0.3766 0.4235 0.1999 0.6308 0.1819 
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Table 5: Mean number of customers in the orbit and mean queue length of high queue  
for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 6 and various values of σ.  
 

Sigma P0 P1 P2 MNCO MPQL 
10 0.4047 0.3953 0.2000 1.4717 0.1734 
20 0.3941 0.4059 0.2000 1.0827 0.1767 
30 0.3893 0.4107 0.2000 0.9414 0.1782 
40 0.3866 0.4134 0.2000 0.8677 0.1791 
50 0.3848 0.4152 0.2000 0.8223 0.1796 
60 0.3836 0.4164 0.2000 0.7915 0.1800 
70 0.3826 0.4174 0.2000 0.7692 0.1803 
80 0.3819 0.4181 0.2000 0.7524 0.1805 
90 0.3814 0.4186 0.2000 0.7391 0.1807 

100 0.3809 0.4191 0.2000 0.7285 0.1809 
200 0.3788 0.4212 0.2000 0.6799 0.1815 
300 0.3780 0.4220 0.2000 0.6634 0.1818 
400 0.3777 0.4224 0.2000 0.6551 0.1819 
500 0.3774 0.4226 0.2000 0.6501 0.1820 
600 0.3773 0.4227 0.2000 0.6468 0.1820 
700 0.3772 0.4228 0.2000 0.6444 0.1820 
800 0.3771 0.4229 0.2000 0.6426 0.1821 
900 0.3770 0.4230 0.2000 0.6412 0.1821 
1000 0.3770 0.4230 0.2000 0.6401 0.1821 
2000 0.3767 0.4233 0.2000 0.6351 0.1822 
3000 0.3767 0.4234 0.2000 0.6334 0.1822 
4000 0.3766 0.4234 0.2000 0.6325 0.1822 
5000 0.3766 0.4234 0.2000 0.6320 0.1822 
6000 0.3766 0.4234 0.2000 0.6317 0.1822 
7000 0.3766 0.4234 0.2000 0.6315 0.1822 
8000 0.3766 0.4235 0.2000 0.6313 0.1822 
9000 0.3766 0.4235 0.2000 0.6311 0.1822 
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Table 6: Mean number of customers in the orbit and mean queue length of high priority queue  
for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 7 and various values of σ. 
 

Sigma   P0 P1 P2 MNCO MPQL 
10 0.4047 0.3953 0.2000 1.4717 0.1735 
20 0.3941 0.4059 0.2000 1.0828 0.1768 
30 0.3893 0.4107 0.2000 0.9415 0.1783 
40 0.3866 0.4134 0.2000 0.8678 0.1792 
50 0.3848 0.4152 0.2000 0.8224 0.1797 
60 0.3836 0.4164 0.2000 0.7916 0.1801 
70 0.3826 0.4174 0.2000 0.7693 0.1804 
80 0.3819 0.4181 0.2000 0.7524 0.1806 
90 0.3814 0.4186 0.2000 0.7392 0.1808 
100 0.3809 0.4191 0.2000 0.7285 0.1809 
200 0.3788 0.4212 0.2000 0.6800 0.1816 
300 0.3780 0.4220 0.2000 0.6635 0.1818 
400 0.3777 0.4224 0.2000 0.6552 0.1820 
500 0.3774 0.4226 0.2000 0.6502 0.1820 
600 0.3773 0.4227 0.2000 0.6469 0.1821 
700 0.3772 0.4228 0.2000 0.6445 0.1821 
800 0.3771 0.4229 0.2000 0.6427 0.1821 
900 0.3770 0.4230 0.2000 0.6413 0.1822 

1000 0.3770 0.4230 0.2000 0.6402 0.1822 
2000 0.3767 0.4233 0.2000 0.6351 0.1822 
3000 0.3766 0.4234 0.2000 0.6335 0.1823 
4000 0.3766 0.4234 0.2000 0.6326 0.1823 
5000 0.3766 0.4234 0.2000 0.6321 0.1823 
6000 0.3766 0.4234 0.2000 0.6318 0.1823 
7000 0.3766 0.4234 0.2000 0.6315 0.1823 
8000 0.3766 0.4235 0.2000 0.6314 0.1823 
9000 0.3765 0.4235 0.2000 0.6312 0.1823 
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10. GRAPHICAL STUDY 
 
From the following figures, 
 

1. Mean number of low priority customers in the orbit decreases as σ increases. 
2. As σ increases, the mean number of customers in the orbit becomes constant, it shows that the retrial queueing 

model becomes standard queueing model. 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
Figure 1: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K=2 and σ varies from 10 to 90.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 2 and σ varies from 100 to 
900.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
A.M.G. Subramanian et al. / Journal of Fundamental Sciences Vol  5, No 2 (2009) 129-145. 

  

 
| 143 | 

 

 
Figure 3: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K=2 and σ varies from 1000 to 
9000.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K=4 and σ varies from 10 to 90.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K=4 and σ varies from 100 to 
900.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6:  Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K=4 and σ varies from 1000 to 
9000.  
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Figure 7: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 6 and σ varies from 10 to 90.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 6 and σ varies from 100 to 
900.    
 
 
  
 

 
 
 
 
 

 
Figure 9: Mean number of low priority customers in the orbit for λ1 = 10, λ2 = 5, λ3 = 5, µ1 = 20, µ2 = 25, K = 6 and σ varies from 1000 to 
9000.    
 
 
11.   CONCLUSIONS 
 
It is observed from Sections 9 and 10 that mean number of low priority customers in the orbit decreases as the retrial rate 
increases, the probabilities for the server being idle, busy with low priority customers depend on retrial rate. The various 
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special cases which have been discussed in Section 7 are particular cases of this research work. This research work can 
further be extended by introducing various vacation policies.  
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