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Abstract Rainfall is a natural process that is often characterized by significant variability and 

uncertainty. Stochastic models of rainfall typically involve the use of probability distributions to describe 
the likelihood of different outcomes occurring. This study aimed to model the annual maximum of daily 
rainfall in Makassar City, Indonesia for the period 1980–2022, specifically focusing on the rainy season 
(November to April) using probability distributions to estimate return periods. The study used the 
Generalized Extreme Value (GEVD) and Gumbel distributions. The Kolmogorov-Smirnov test was used 
to determine the suitability of each distribution, and the likelihood ratio test was employed to determine 
the best-fit model. The Mann-Kendall test was used to detect any trends in the data. The results 
indicated that the Gumbel distribution was the best-fit model for data in November, December, 
January, March, and April, while GEV was appropriate for February. No trends were observed in any of 
the months. The study then estimated the maximum rainfall for various return periods. January 
produced the highest maximum rainfall estimates for the 2, 3, and 5-year return periods, while 
February produced the highest maximum rainfall estimates for the 10 and 20-year return periods. 
Information about maximum rainfall can be valuable for the government and other stakeholders in 
developing flood prevention strategies and mitigating the effects of heavy rainfall, particularly during the 
peak months of the rainy season in Makassar City, which are December, January, and February. 
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Introduction 
 

Rainfall is a natural phenomenon that occurs randomly, making it a perfect example of a stochastic 
process. Stochastic processes are mathematical models that describe the behavior of random variables 
over time [1]. Indonesia is a tropical country with a diverse climate, and rainfall patterns vary significantly 
across the country. Indonesia experiences two separate seasons, which are the dry and rainy seasons. 
The rainy season typically begins in November and lasts until April, with the highest rainfall occurring 
between December and February. During this time, extreme rainfall and thunderstorms are common in 
many parts of the country, particularly in the western and central regions. Heavy precipitation 
occurrences can greatly affect both the environment and society. It can lead to flooding, landslides, and 
other hazards that can damage infrastructure, crops, and other property [2,3]. A stochastic model is a 
mathematical representation of a random process. The stochastic model is used to describe and simulate 
the behavior of extreme rainfall events, and it can be calibrated and validated using the available 
maximum rainfall data [4].Stochastic models of extreme rainfall typically involve the use of probability 
distributions to describe the likelihood of different outcomes occurring and to estimate the associated 
uncertainty [5,6].  

 

Several probability distributions have been suggested to represent the annual hydrological extremes in 
a particular area. Among the most frequent distributions utilized for extreme rainfall are Beta-K, Beta-P, 
Gamma, Generalized Extreme Value (GEVD), Generalized Pareto (GPA), Generalized Logistic (GLO), 
Pearson Type III, Lognormal, and Wakeby [7]. Different countries have their own national guidelines that 
suggest using various distributions. In countries like Austria, Australia, Germany, Italy, and Spain, the 
GEV distribution is the preferred option. Meanwhile, the GPA and GLO distributions are recommended 
in Belgium and the United Kingdom, respectively [8,9].  Several researchers in Indonesia have made an 
attempt to identify the most suitable probability distribution for representing the maximum rainfall data. 
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For instance, Sanusi et al. [10] evaluated different distributions, including GEVD, GPA, GLO, and 
Pearson Type III, to monitor maximum precipitation in Makassar City. Their findings revealed that among 
these distributions, the GEVD demonstrated superior performance. Another study conducted by Sanusi 
et al. [11] discovered that the annual maximum rainfall data in various South Sulawesi Province districts, 
such as Pinrang and Takalar, was best represented by the GEVD. Susanti et al. [12] concluded that the 
GEVD performed better than the GPA distribution for maximum rainfall data in Pekanbaru City, Riau. 

 

In stochastic modeling, the Generalized Extreme Value distribution (GEVD) can be used to model the 
distribution of extreme values for a variety of random variables, including rainfall, wind speeds, river 
flows, and earthquake magnitudes. The GEVD is particularly useful when the distribution of the data is 
unknown or cannot be well-modeled by other distributions, such as the normal distribution.The GEVD is 
commonly referred to as a family of distributions as it includes three extreme value distributions, namely 
Gumbel, Frechet, and Weibull [13]. It was first introduced to meteorology by Jenkinson in 1955 [14], and 
it has been widely used for extreme rainfall analysis [15]. The GEVD has been utilized by researchers 
from various parts of the globe, including Park et al. [16] and Nadarajah and Choi [17] for studies 
conducted in South Korea, Nashwan et al. [18] for studies conducted in Malaysia, Kumar et al. [19] and 
Babar and Ramesh [20] for studies conducted in India, and Abbas et al. [21] and Aurangzeb et al. [22] 
for studies conducted in Pakistan.  

 

The return period helps us understand how often we can anticipate a certain amount of rainfall occurring, 
on average, within a given timeframe. The return period of extreme rainfall refers to the average interval 
of time over which a particular level of rainfall intensity is expected to be equaled or exceeded. Return 
period is often associated with return level. Various studies have implemented the GEVD to estimate the 
maximum rainfall return level. As an example, Boudrissa et al. [23] employed the GEVD to simulate the 
annual maximum rainfall data in northern Algeria, and calculated the return levels of the event. Their 
outcomes revealed that the return levels of maximum rainfall in diverse locations in Algeria, such as 
Miliana, Algiers, and Oran, showed an increase as the return period increased. The same results were 
also obtained by Min and Halim [24] for the return levels of maximum rainfall in Malaysia. 

 

The aim of this study is to model the annual maximum of daily rainfall series in Makassar City, located 
in the central part of Indonesia, using probability distributions, and to estimate maximum rainfall for 
varous return periods. The Generalized Extreme Value distribution (GEVD) and its nested model, 
Gumbel, are considered for this purpose. To analyze daily rainfall series, it is common to first examine 
rainy and non-rainy months separately. This research exclusively focuses on the rainy season in 
Makassar City (November to April), as heavy rainfall during this period increases the likelihood of natural 
disasters such as floods and landslides. The study also predicts the probability of extreme events 
occurring in Makassar City, which can be used by stakeholders to develop effective mitigation measures 
and early warning systems for hydrometeorological disasters. 

 
Materials and Methods 

 

Data and Location 
This research was conducted in Makassar, the capital city of Indonesian province of South Sulawesi. It 
is the biggest city in Eastern Indonesia and the country’s fifth-largest metropolitan center. Makassar city 
is located at coordinates 5.133° S and 199.417° E. The city has a total area of 175.77 km2. The highest 
elevation in Makassar City is 25 meters above sea level. Makassar is a tropical area with a tropical 
monsoon climate type. This is shown by the contrast of the rainy and dry seasons. The rainy season in 
the city occurs from November to April, with the heaviest rainfall occurring from December to February. 
During this period, the city experiences high humidity levels and frequent thunderstorms. In contrast, the 
dry season in the city lasts from May to October. Although the city still receives some precipitation during 
this time, it is generally sporadic and in the form of brief showers. The months of August and September 
are typically the driest months [10,25].  

 
The daily rainfall data (mm/day) recorded at the Hasanuddin rain gauge station from 1980 to 2022 were 
used. The data is provided online by the Indonesian Meteorology, Climatology and Geophysics Agency 
(abbreviated as BMKG) through the following website: https://dataonline.bmkg.go.id/home. The 
Hasanuddin rain gauge station was chosen because of its data completeness and it had the longest 
period of data variability. The data was grouped by month, and then the maximum rainfall in each year 
of observation was determined, which we call the monthly annual maximum rainfall data. Because this 
study only focused on rainfall data in the rainy season, we only analyzed the maximum rainfall from 
November to April. Table 1 shows the data structure. 
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Table 1. Structure of monthly annual maximum rainfall data 

 

Year 
Maximum rainfall (mm/day) 

November December January February March April 

1980 37 128 163 70 49 36 

1981 76 85 79 87 63 50 

1982 30 74 84 95 78 44 

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 

2022 136.1 138.4 134.5 166.3 109.6 29.6 

 

Generalized Extreme Value Distribution 
The Generalized Extreme Value distribution (GEVD) is a continuous probability distribution used in 
statistics to model the extreme values in a dataset. It is a three-parameter distribution that generalizes 
the Gumbel, Frechet, and Weibull distributions. The GEVD is defined by the following cumulative 
distribution function (CDF) [26]: 
 

𝐹(𝑧; 𝜇, 𝜎, 𝜉) = 𝑒
−(1+𝜉(

𝑧− 𝜇
 𝜎 

))
−1/𝜉

 
         (1) 

 

defined on the set {𝑧: 1 + 𝜉 (
𝑧− 𝜇

 𝜎 
) > 0}. The location parameter, −∞ < 𝜇 < ∞, determines the location of 

the distribution center, the scale parameter, 𝜎 > 0, determines the spread or scale of the distribution, 

and the shape parameter, −∞ < 𝜉 < ∞, determines the type of extreme value distribution (EVD). The 

GEVD leads to the Frechet or type II EVD for 𝜉 > 0. If 𝜉 < 0, then it is the type III EVD or reversed 

Weibull. The Gumbel distribution is a special case of the GEVD, with a shape parameter of  𝜉 = 0. The 
Gumbel distribution is also known as the type I EVD with the CDF as in Eq. (2) below. 
 

𝐹(𝑧; 𝜇, 𝜎) = 𝑒−𝑒
(−
𝑧− 𝜇
 𝜎 

)

          (2) 

 
The probability density function (PDF) for the GEVD is obtained by taking the first derivative of the CDF 
with respect to 𝑧 as shown in Equation (3) for 𝜉 ≠ 0 and Equation (4) for 𝜉 = 0. 
 

𝑓(𝑧; 𝜇, 𝜎, 𝜉) =
1

𝜎
[1 + 𝜉 (

𝑧 −  𝜇

 𝜎 
)]
−(
1
𝜉
)−1

𝑒
−(1+𝜉(

𝑧− 𝜇
 𝜎 

))
−1/𝜉

          (3) 

  

𝑓(𝑧; 𝜇, 𝜎) =
1

𝜎
𝑒
(− 

𝑧− 𝜇
 𝜎 

)
𝑒−𝑒

(−
𝑧− 𝜇
 𝜎 

)

 

 
         (4) 

Parameter Estimation 
The Maximum Likelihood Estimation (MLE) method is one way to estimate unknown population 
parameters. This method is a classic and is most widely used because of its simplicity [27]. In the 
process, this method seeks to find estimator for parameters that can maximize the likelihood function. 
Suppose 𝑧1, 𝑧2, … , 𝑧𝑛 are GEV-distributed random samples. The likelihood function from the PDF of 

the GEVD as in Equation (5) for 𝜉 ≠ 0 and Equation (6) for 𝜉 = 0. 

𝐿(𝜇, 𝜎, 𝜉|𝑧1, … , 𝑧𝑛) = ∏ 𝑓(𝑧𝑖|𝜇, 𝜎, 𝜉)
𝑛
𝑖=1  = ∏ [

1

𝜎
[1 + 𝜉 (

𝑧𝑖− 𝜇

 𝜎 
)]
−(

1

𝜉
)−1

𝑒
−(1+𝜉(

𝑧𝑖− 𝜇

 𝜎 
))
−1/𝜉

]𝑛
𝑖=1           (5) 

𝐿(𝜇, 𝜎|𝑧1, … , 𝑧𝑛) =∏𝑓(𝑧𝑖|𝜇, 𝜎) =∏[
1

𝜎
𝑒
(− 

𝑧𝑖− 𝜇
 𝜎 

)
𝑒−𝑒

(−
𝑧𝑖− 𝜇

 𝜎 )]

𝑛

𝑖=1

𝑛

𝑖=1

          (6) 

When attempting to maximize the likelihood function in Equations (5) and (6), one can also 
aim to maximize the logarithm of the likelihood function. As a result, for 𝜉 ≠ 0, the ln likelihood 
function can be expressed as follows: 

 
ln 𝐿(𝜇, 𝜎, 𝜉|𝑥𝑖) = ln∏ 𝑓(𝑧𝑖|𝜇, 𝜎, 𝜉) = ∑ ln 𝑓(𝑧𝑖|𝜇, 𝜎, 𝜉)

𝑛
𝑖=1

𝑛
𝑖=1   

= ∑ ln [
1

𝜎
[1 + 𝜉 (

𝑧𝑖− 𝜇

 𝜎 
)]
−(

1

𝜉
)−1

𝑒
−(1+𝜉(

𝑧𝑖− 𝜇

 𝜎 
))
−1/𝜉

]𝑛
𝑖=1    

= −𝑛 ln(𝜎) + (−
1

𝜉
− 1)∑ ln (1 + 𝜉 (

𝑧𝑖− 𝜇

 𝜎 
)) − ∑ (1 + 𝜉 (

𝑧𝑖− 𝜇

 𝜎 
))

−1/𝜉
𝑛
𝑖=1

𝑛
𝑖=1   

        (7) 

 While the ln likelihood function for 𝜉 = 0 as in Equation (8) below. 
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ln 𝐿(𝜇, 𝜎|𝑧𝑖) = ln∏ 𝑓(𝑧𝑖|𝜇, 𝜎) = ∑ ln 𝑓(𝑧𝑖|𝜇, 𝜎)
𝑛
𝑖=1

𝑛
𝑖=1   

= ∑ ln [
1

𝜎
𝑒
(− 

𝑧𝑖− 𝜇

 𝜎 
)
𝑒−𝑒

(−
𝑧𝑖− 𝜇

 𝜎 
)

]𝑛
𝑖=1   

= −𝑛 ln(𝜎) − ∑ ( 
𝑧𝑖− 𝜇

 𝜎 
) − ∑ 𝑒

(−
𝑧𝑖− 𝜇

 𝜎 
)𝑛

𝑖=1
𝑛
𝑖=1   

         (8) 

Once the ln likelihood function is obtained, the next step is to determine the first-order partial 
derivative of the ln likelihood function for each parameter and set it equal to zero. If no analytical 
solution is possible, then parameter estimation is performed using numerical methods, one of which is 
the BFGS quasi-Newton [28]. 

 

Goodness of Fit Test 
Goodness of fit tests establish how well sample data fits what is expected of a population. The 
Kolmogorov-Smirnov (K-S) test is a one-sample test used to determine how well a given set of data fits 
a theoretical distribution [29]. Assume that 𝑋 is a random variable that comes from a population that 

follows a certain distribution. 𝐹𝑇(𝑥) represents the CDF of the reference distribution, and 𝐹𝑆(𝑥) is the 
empirical CDF of the sample. The hypotheses utilized in the K-S test are as follows: 
 
 𝐻0 : 𝐹𝑆(𝑥) = 𝐹𝑇(𝑥) 
𝐻1 : 𝐹𝑆(𝑥) ≠ 𝐹𝑇(𝑥) 
The statistical test is given by 

𝐷 = 𝑚𝑎𝑥|𝐹𝑆(𝑥) − 𝐹𝑇(𝑥)|          (9) 

Hypothesis null is rejected if 𝐷 > 𝐷𝛼 in the one sample Kolmogorov-Smirnov table with a significance 

level of 𝛼. Alternatively, the null hypothesis is rejected if the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼.  
 

Likelihood Ratio Test 
The likelihood ratio (LR) test is a statistical method used to compare the goodness of fit of two 
nested models, where one model is a simplified version of the other. It is commonly used in 
hypothesis testing to determine if a more complex model provides a better fit to the data than 

a simpler model. Assume 𝑀0 is the GEVD model with parameter of 𝜃0 = (𝜇, 𝜎, 𝜉) and 𝑀1 is its 

nested model, that is the Gumbel distribution with parameter of 𝜃1 = (𝜇, 𝜎). The hypotheses are as 
follows: 
 
𝐻0 : the simpler model (Gumbel) provides a good fit to the annual maximum rainfall data 

𝐻1 : the more complex model (GEVD) provides a better fit to the annual maximum rainfall data than the 
simpler model (Gumbel) 

 
The test statistic, which is the difference in log-likelihoods between the two models, can be expressed 
as follows [30]: 
 

𝐿𝑅𝑇 = 2[𝑙(𝜃0) − 𝑙(𝜃1)]         (10) 

 

where 𝑙(𝜃0) represents the log-likelihood for the GEVD model and 𝑙(𝜃1) represents the log-likelihood 

for the Gumbel model. The critical value of the LR test is calculated from the distribution of the test 
statistic, which is approximated by a chi-square distribution with degrees of freedom equal to 1 in this 
case at the significance level of 𝛼. If the calculated LR is greater than the critical value, then there is 
sufficient evidence to reject the null hypothesis and conclude that the GEVD model provides a better fit 
to the data. Alternatively, the null hypothesis is rejected if the 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 𝛼. 

 

Mann-Kendall Trend Test 
The Mann-Kendall (M-K) test is applied to the data to check for trends in order to satisfy the GEV 
distribution’s stationary assumption. One benefit of utilizing the M-K method is that it can identify patterns 
in temporal data, including both linear and nonlinear trends [31]. If the time series data is known with 

data length  𝑛 (𝑥1, 𝑥2,…,𝑥𝑛), then the test statistic is given by: 

 

𝑆 = ∑ ∑ 𝑎𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

         (11) 

where  
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𝑎𝑖𝑗 = 𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖) = 𝑠𝑖𝑔𝑛(𝑅𝑗 − 𝑅𝑖) = {

 1  𝑖𝑓 𝑥𝑗 − 𝑥𝑖   >   0

 0  if 𝑥𝑗 − 𝑥𝑖   =   0

−1  𝑖𝑓 𝑥𝑗 − 𝑥𝑖  <  0

         (12) 

 

For large sample sizes (𝑛 ≥ 8), the normal distribution approach can be used for the distribution of 𝑆 
with the mean and variance as follows. 

𝐸(𝑆) = 0         (13) 
 

𝑉(𝑆) =
𝑛(𝑛 − 1)(2𝑛 + 5)

18
 

        (14) 

 

Hypothesis testing using the 𝑍 test as in Equation (15) below. 

 

𝑍 =

{
 
 

 
 
𝑆 − 1

√𝑉(𝑆)
 𝑖𝑓 𝑆 > 0

0 𝑖𝑓 𝑆 = 0
𝑆 + 1

√𝑉(𝑆)
 𝑖𝑓 𝑆 < 0

         (15) 

 
The 𝑍 value is the standard normal distribution. The trend is considered significant if |𝑍| > 𝑍𝛼/2 where 𝛼 

denotes the significance level. 

 

Return Level 
A return level represents the expected value of a variable that is exceeded, on average, once in a 
specified number of years. The 𝑝-year return level is defined as the high quantile with a probability of 

1/𝑝 that the annual maximum exceeds this quantile. The 𝑝-year return level is associated with a return 

period of 𝑝 years. The return level is the same for all years under the assumption of stationary [32]. 

Using the GEV distribution, The 𝑝-year return level (for p > 1) is given by [33]: 
 

𝑧̂𝑝 = {
𝜇̂ +

𝜎̂

𝜉
[(−log(1 − 𝑝−1))

−𝜉̂
− 1] , 𝜉 ≠ 0

𝜇̂ − 𝜎̂log(−log(1 − 𝑝−1)), 𝜉 = 0

         (16) 

 
Results and Discussion 
 

Data Description 
A data description was conducted to determine the characteristics of annual maximum rainfall in 
Makassar City during the rainy months from 1980 to 2022. Figure 1 provides a summary of the data's 
statistics. The results indicate that the Hasanuddin rain gauge station reported the highest maximum 
rainfall of 385 mm/day in February, followed by 270 mm/day in January, and 243.3 mm/day in December. 
Rainfall intensity generally increased from December to February, which corresponds to Makassar City's 
peak rainy season. The average maximum rainfall was highest in January at 113 mm/day and lowest in 
April at 60.35 mm/day. The maximum rainfall in November had the smallest standard deviation, while 
February had the largest. This suggests that maximum rainfall in February varies greatly. Figure 2 shows 
the time series plot of the annual maximum rainfall in Makassar City during the rainy season. From the 
plot, the maximum rainfall series fluctuated around its average in each month of observation, and 
visually, there was no upward or downward trend in the series. 
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Figure 1. Summary statistics of annual maximum rainfall series during the rainy season from 1980–2022 in Makassar City. 
 

  

  

  
Figure 2. Time series plot of annual maximum rainfall in Makassar City over the period 1980–2022 in the rainy season 

 
Parameter Estimation and Model Diagnostics 
The annual maximum rainfall series was modeled with the GEVD. The results of the point parameter 
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estimates and 95% confidence intervals using the MLE method are presented in Table 2. The shape 
parameter determined the type of GEVD. The point estimate of the shape parameter for November was 
positive, meaning that the distribution of the maximum rainfall series in November leads to the GEVD 
type II (Frechet distribution). However, the 95% confidence interval for the shape parameter contained 
zero, indicating insufficient evidence to support this conclusion. Therefore, it may be appropriate to 
consider its nested model, that is Gumbel distribution (also known as GEVD type I) in the analysis. 

Although the maximum likelihood estimates for 𝜉 were negative in December and January, indicating a 
distribution with finite tails, the 95% confidence interval extended above zero. Hence, it was insufficient 
to conclude that the distribution's tails were finite. As a result, the Gumbel distribution could be a 
candidate. For February, the GEVD type was Frechet because the shape parameter was positive, which 
was supported by the fact that the lower and upper bounds of the 95% confidence intervals were both 
positive. In March and April, the GEVD type was Frechet, but the Gumbel distribution can also be 
considered since zero was within the 95% confidence interval. 
 

Table 2. Parameter estimates of the GEVD and Gumbel for annual maximum rainfall series using the MLE method 

 

Month Distribution model 
Location parameter Scale parameter Shape parameter 

𝜇̂ Confidence Interval 𝜎̂ Confidence Interval 𝜉 Confidence Interval 

November GEV 48.93 [41.29, 56.56] 22.55 [16.93, 28.18] 0.03 [-0.20, 0.27] 

 Gumbel 49.34 [42.17, 56.51] 22.81 [17.41, 28.20] - - 

December GEV 91.14 [77.62, 104.67] 38.36 [28.17, 48.55] -0.05 [-0.34, 0.24] 

 Gumbel 90.09 [78.24, 101.94] 37.59 [28.66, 46.52] - - 

January GEV 94.59 [82.17, 107.01] 38.30 [29.97, 46.62] -0.10 [-0.23, 0.04] 

 Gumbel 92.95 [80.86, 105.05] 38.28 [30.02, 46.52] - - 

February GEV 75.49 [63.72, 87.25] 34.07 [24.21, 43.92] 0.28 [0.003, 0.56] 

 Gumbel 81.04 [68.63, 93.44] 39.86 [29.89, 49.82] - - 

March GEV 64.17 [54.18, 74.15] 27.34 [19.16, 35.52] 0.21 [-0.13, 0.56] 

 Gumbel 67.52 [57.98, 77.06] 30.43 [22.95, 37.90] - - 

April GEV 45.92 [38.76, 53.08] 21.10 [15.70, 26.51] 0.10 [-0.14, 0.34] 

 Gumbel 47.05 [40.17, 53.93] 21.94 [16.67, 27.22] - - 

 

Table 3. Kolmogorov-Smirnov, likelihood ratio, and Mann-Kendall tests for annual maximum rainfall series in Makassar City 

 

Month 
Number of 

observations 
Distribution model P-value K-S test P-value LR test P-value M-K test 

November 43 
GEV 0.99 

0.78 0.15 
Gumbel 0.99 

December 43 
GEV 0.55 

0.75 0.28 
Gumbel 0.47 

January 43 
GEV 0.76 

0.21 0.74 
Gumbel 0.59 

February 43 
GEV 0.95 

0.01 0.58 
Gumbel 0.66 

March 43 
GEV 0.81 

0.17 0.72 
Gumbel 0.82 

April 43 
GEV 0.98 

0.40 0.27 
Gumbel 0.90 

 
The goodness of fit of the GEVD and its nested model, the Gumbel, was assessed using the K-S test 
with a significance level of 0.05. Table 3 indicates that both models were suitable for the annual 
maximum rainfall series in all rainy months since the p-values of the K-S test were greater than 0.05. 
Additionally, the M-K test results with a significance level of 0.05 showed that there was no upward or 
downward trend from year to year in all months of observation, indicating that the assumption of 
stationary was met. 

 

The LR test was performed to determine the best-fit model between GEVD and Gumbel. The model 
with fewer parameters (in this case, Gumbel) was selected if the p-value of the LR test was greater than 
the significance level of 0.05. Based on Table 3, the Gumbel distribution was the best-fit model for the 
annual maximum rainfall series in November, December, January, March, and April, while the GEVD 
was the most appropriate model for February. These findings are in agreement with the outcomes of a 
study conducted by Park et al. [16], which demonstrated that the stationary GEVD and its nested model 
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(Gumbel) were effective in describing the maximum rainfall behavior during the summer rainy season 
in South Korea. 

 

Figures 3 and 4 show diagnostic plots used to evaluate the accuracy of the model fit to the annual 
maximum rainfall series. The Q-Q plot and density plot reveal that each plotted observation point was 
approximately linear and that the empirical distribution curves follow the best-fit model distribution well, 
respectively. These findings suggest the validity of the best-fit model for each month. 

  

  

  
Figure 3. Q-Q plots of the best-fit model for the annual maximum rainfall series in the rainy season in Makassar City 
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Figure 4. Empirical density vs best-fit model distribution of annual maximum rainfall in the rainy season in Makassar City   

 
Return Levels and Probability of Exceedances 
The return level of maximum rainfall is a crucial parameter that plays a significant role in designing and 
evaluating infrastructure and facilities that are sensitive to extreme weather events, such as flood control 
systems, dams, and levees. In order to estimate the return levels of annual maximum rainfall (mm/day) 
in Makassar City during the raining season for different return periods of 2, 3, 5, 10, and 20 years, the 
GEVD and Gumbel models were employed. The maximum rainfall return level estimates based on the 
GEVD and Gumbel, as well as return level plots along with 95% confidence intervals for the best model 
in each month of observation are presented in Table 4 and Figure 5, respectively.  
 
Table 4 shows that the return levels in all months increased as the selected return period increased for 
both the GEVD and Gumbel models. Using the Gumbel distribution, the maximum rainfall in November 
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is expected to exceed the level of 57.70 mm/day once every 2 years (known as a 2-year event) with a 
probability of occurrence of 0.5. Then, once every 3 years, the maximum rainfall in November above 
69.93 mm/day is expected with a probability of 0.33. Finally, with a probability of 0.05, the maximum 
rainfall in November above 117.08 mm/day is expected once every 20 years. Based on the Gumbel 
distribution, the maximum rainfall is expected to exceed 103.87 mm/day in December and 106.98 
mm/day in January once every two years, with a probability of occurrence of 0.5. For longer return 
periods, the maximum rainfall is expected to exceed 174.69 mm/day in December and 179.09 mm/day 
in January once every 10 years with a probability of exceedance of 0.1. 
 
The maximum rainfall in February is expected to exceed 88.65 mm/day once every two years, with a 
probability of occurrence of 0.5 using the GEV distribution. Then, once every 5 years, the maximum 
rainfall in February is expected to exceed 139.22 mm/day with a probability of 0.2. Using the Gumbel 
distribution, the maximum rainfall is expected to exceed 94.99 mm/day in March and 66.86 mm/day in 
April once every 3 years. For longer return periods, the maximum rainfall will exceed 157.91 mm/day in 
March and 112.23 mm/day in April once every 20 years with a probability of exceedance of 0.05. 

 

Table 4. Return levels of maximum rainfall (mm/day) in the rainy season by the probability distributions in Makassar City 

 

Month Distribution model 
Return period  

2-year 3-year 5-year 10-year 20-year 

November GEV 57.25 69.60 83.61 101.62 119.32 

 Gumbel 57.70 69.93 83.55 100.66 117.08 

December GEV 105.08 124.99 146.57 172.76 196.98 

 Gumbel 103.87 124.03 146.48 174.69 201.74 

January GEV 108.38 127.66 147.97 171.84 193.13 

 Gumbel 106.98 127.50 150.36 179.09 206.64 

February GEV 88.65 110.55 139.22 182.90 234.53 

 Gumbel 95.64 117.02 140.82 170.73 199.42 

March GEV 74.59 91.39 112.50 143.15 177.54 

 Gumbel 78.67 94.99 113.17 136.00 157.91 

April GEV 53.80 65.84 80.02 99.04 118.65 

 Gumbel 55.10 66.86 79.97 96.43 112.23 

 
According to Table 4, January showed the highest return levels for the 2, 3, and 5-year return periods 
compared to other months. While for the 10-year and 20-year return periods, February showed the 
highest return levels. The high estimate of maximum rainfall in January and February is due to the peak 
of the rainy season occurring in these months. As a result, floods are frequent during this period. It was 
recorded that in January 2019, a flood disaster hit the city of Makassar and inundated 1658 houses, 
affecting 9328 residents [34]. Heavy rains with an intensity of 166.8 mm/day that occurred on February 
13, 2023, caused flooding in most parts of Makassar [35]. The results of the 20-year return level 
predicted higher rainfall intensity in all rainy months, but with a low probability of occurrence. In contrast, 
the predicted rainfall intensity was lower but the probability of occurrence was higher for the 2-year return 
period results. This is consistent with the research findings of Alam et al [36].  
 
The annual maximum rainfall series during all rainy months exhibited stationarity, indicating the absence 
of discernible long-term trends or patterns in the data. As a result, its statistical properties can be 
considered consistent over time. Consequently, the best-fit model can be utilized to predict the 
maximum rainfall for the upcoming year. As shown in Figure 6, the maximum rainfall in 2023 is predicted 
to exceed 57.70 mm/day in November, 103.87 mm/day in December, 106.98 mm/day in January, 88.65 
mm/day in February, 78.67 mm/day in March, and 55.10 mm/day in April, with an occurrence probability 
of 0.5. The phenomenon of rainfall that occurs in the tropics is quite dynamic, with different places 
tending to have different rainfall intensities. This study used rainfall data from a single location, namely 
the Hasananuddin rain gauge station. According to Sunusi and Giarno [37], the maximum rainfall event 
at one location in Makassar City may not necessarily occur at other locations. As a result, the use of 
rainfall data from multiple rain gauge stations must be considered in order to improve the accuracy of 
maximum rainfall estimates. 
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Figure 5. Return levels of annual maximum rainfall in Makassar City with a 95% confidence interval using the best-fit model 
 

 
Figure 6. Predicted maximum rainfall in Makassar City in the next year (2023, 2024, and so on) with their probability of exceedances 
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Conclusions 
 
This study used stochastic models based on probability distributions to analyze the patterns of annual 
maximum rainfall in Makassar City from 1980 to 2022 during the rainy season (November to April). The 
GEVD and its nested model (Gumbel) were considered, and the parameters of the GEVD and Gumbel 
were estimated using the MLE method. To validate the model, the K-S and LR tests were employed. 
The GEVD and Gumbel were found to be suitable for the data in all rainy months. According to the LR 
test results, the Gumbel distribution was the best-fit model for the distribution of the annual maximum 
rainfall series in November, December, January, March, and April, while the GEV distribution was 
appropriate for February. The authors also explored possible trends in the data using the Mann-Kendall 
test but found no evidence of trends, either upward or downward, in all months of observation. 
 
Furthermore, the return levels of maximum rainfall for return periods of 2, 3, 5, 10, and 20 years in each 
month were estimated using quantiles from the best-fit distribution. January showed the highest return 
levels for the 2, 3, and 5-year return periods when compared to the other months, while February 
produced the highest return level estimates for the 10-year and 20-year return periods. Finally, the 
authors discovered that the longer the return period, the higher the estimated maximum rainfall return 
level, but with a low probability of that event occurring, and vice versa. Stochastic models of maximum 
rainfall using the GEVD and Gumbel distributions are useful tools for predicting the likelihood of 
maximum rainfall and can help inform decision-making in fields such as flood management. Further work 
needs to include non-rainy months to get a better insight into the maximum rainfall in each month in 
Makassar City. Moreover, the use of rainfall data from multiple rain gauge stations must be considered 
in order to improve the accuracy of maximum rainfall estimates. 
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