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Abstract IBIS, ALIS, EVOFINDER, and CONDOR are the massive ballistics computerised 

technological machines that have typically been utilised in forensic laboratories to automatically 

locate similarities between images of cartridge cases and bullets. However, it imposed a long 

execution time and requires physical interpretation to consolidate the analysis results when 

employing these market-available technologies to accomplish ballistics matching tasks. Therefore, 

the principal objective of this study is to propose an improvised automated probabilistic machine 

learning identification algorithm by extracting the two-dimensional (2D) statistical moment 

invariants from the segmented region of interest (ROI) corresponding to the cartridge case and 

bullets images. To pursue this principal objective, several 2D statistical moment invariants have 

been compared and tested to determine the most suitable feature set applied in the proposed 

identification algorithm. The 2D statistical moment invariants employed include Orthogonal 

Legendre moments (OLM), Hu moments (HM), Tsirikolias-Mertzois moments (TMM), Pan-Keane 

moments (PKM), and Central Geometric moments (CGM). Moreover, the proposed identification 

algorithm is also tested in different scenarios, including based on the classification of strength 

association measurements between the extracted feature sets. The empirical results in this article 

revealed that the proposed identification algorithm applied with the CGM comprising the weak 

association classification yielded the best identification accuracy rates, which are >96.5% across 

all the sample sizes of the training set. These empirical results also conveyed that the superior 

proposed identification algorithm in this research could be developed as a mobile application for 

ballistics identification that can significantly reduce the time taken and conveniently perform the 

ballistics identification tasks. 

Keywords: Ballistics identification, automated, machine learning identification algorithm, statistical 

moment invariants.  
 

 

Introduction 
 

Figure 1 depicts the surface of a fired cartridge case has several distinctive key impressions, including 
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the ejector, breech face, and firing pin impressions. These impressions are created during the cartridge 
case's loading, firing, and disposal processes [1-6]. These impressions are of paramount vital in a 
criminal investigation since they allow judicatory ballistics experts to identify the type and model of a 
firearm employed by the criminals. The traditional ballistics identification method employed in forensic 
laboratories is performed by comparing the characteristic impressions of the cartridge case found at the 
crime scene with test specimens based on a low-powered optical comparison microscope [7]. However, 
the traditional identification method has inherent difficulties because it is heavily dependent on the 
expertise and experience of judicatory ballistics experts. Moreover, the traditional identification method 
is time-consuming, imposing several weeks for a single analysis [8]. 

 

           
 

Figure 1. Characteristic of key impressions left on the fired cartridge case 

 

 

Since the 1990s, several market-available ballistics identification systems have been developed and 
widely employed in forensic laboratories, such as IBIS, ALIS, EVOFINDER, and CONDOR systems. 
Although the execution time for a single analysis can be significantly reduced from several weeks to 
several hours by utilising these market-available ballistics identification systems, analysing the 
specimens remains dependent on physical interpretation in order to authenticate the analytical results. 
In the past few decades, several semi-automated and automated feature-based probabilistic machine 
learning identification algorithms have been proposed to address this limitation [1-5, 8-15]. Comparing 
these semi-automated and automated probabilistic machine learning identification algorithms to the 
market-available ballistics identification systems, the principal benefits of these probabilistic machine 
learning identification algorithms do not depend on physical interpretation and imposed a short execution 
time ranging from seconds to minutes. The general schematic architecture of the semi-automated and 
automated feature-based probabilistic machine learning identification algorithms in practice is depicted 
in Figure 2. 

 

 
 
 
 
 
 
 
 

 

 

 

Figure 2. The general architecture in formulating a semi-automated and automated feature-based 
probabilistic machine learning identification algorithm based on data science methodology 
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In particular, there are four principal stages in architecting the feature-based probabilistic machine 
learning identification algorithm, namely image digitisation (data understanding1), image pre-processing 
(data preparation1), feature extraction and selection (data preparation1), and ballistics identification 
(modelling and evaluation1). For the primary stage of image digitisation, the digital images of fired bullets 
and cartridge cases are frequently captured utilising the market-available ballistics identification system. 
Meanwhile, for the image pre-processing stage, the input digital images acquired utilising the market-
available ballistics identification system are subjected to several appropriate image processing 
operators, including image enhancement, noise reduction, and segmentation. Image pre-processing is 
essential in most pattern recognition algorithms since blurring and noise may be introduced into the 
images during the digitising process. The superior operation for image pre-processing tasks such as 
image enhancement and segmentation is required to select utilising a trial and error approach because 
there is no general theory to guide this decision [6, 12, 16]. In this research, the position of unique 
impressions on fired cartridge cases is also required to determine before segmentation. The segmented 
image or region of interest (ROI) is subsequently represented and aggregated in quantitative 
measurement during the feature’s extraction stage so that it might be utilised more easily during the 
ballistics identification stage. On the other hand, not all features extracted from the key impressions are 
useful in the ballistics identification stage. Hence, the selection of a set of relevant and informative 
features is indeed much needed. The selected features required have two properties, namely the 
selected features required to have a minimum variation within pattern classes and vice versa for the 
between pattern classes. Furthermore, the selected features should comprise the invariant properties 
corresponding to translation, rotation, and scaling (TRS) [16, 17]. By inputting the selected informative 
features into the trained superior probabilistic machine learning identification algorithm, the unknown 
classes of the ballistics can be identified. 

 

In order to segment the ROI from the images, determining the position of crucial distinctive key 
impressions on fired cartridge case images is indeed much needed. In literature [1, 9, 14], the circle 
Hough Transform (CHT) is the method utilised to determine the position of crucial distinctive key 
impressions on fired cartridge case images in the previously proposed probabilistic machine learning 
identification algorithms. However, CHT required a lot of time and effort due to its mathematical 
complexity rather than the least square-fitting circle that was employed in this study [18]. Therefore, the 
first principal objective of this article is to develop an improvised automated machine learning 
identification algorithm for ballistics that utilises the unweighted least square-fitting circle to detect the 
position (anchor point, A) of the centre-firing pin impression circular boundary with radius r. In this 
research, the firing pin impression is the principal focus key impression in developing the improvised 
machine learning identification algorithm for ballistics. This is because the previous empirical studies 
conveyed the invariant properties of this impression in ballistics identification rather than others’ key 
impressions on the fired cartridge cases [2-6,11-15]. 

 

Moreover, the principal limitation of the existing market-available ballistics identification systems is the 
lack of good separability feature extraction techniques and related intelligent methods [10]. In other 
words, feature extraction remains an unresolved issue from a practical perspective as detailed in Section 
2. Therefore, the second principal objective of this article is to identify the superior two-dimensional (2D) 
statistical moment invariants extracted from the segmented ROI corresponding to the firing pin 
impression images. The 2D statistical moment invariants taken into account in this article are including 
Orthogonal Legendre moments (OLM), Hu moments (HM), Tsirikolias-Mertzois moments (TMM), Pan-
Keane moments (PKM), and Central Geometrics moments (CGM), which were tested utilising different 
scenarios in term of classification of strength association measurements and the sample sizes of training 
sets. Meanwhile, the principal reason the 2D statistical moment invariants is preferable is that it provides 
sufficient discrimination power to identify the ballistics belonging to different types and models [19]. 

 

In order to pursue the aforementioned principal objectives, the rest of this article is organised as followed. 
In Section 2, an overview of related works in formulating the semi-automated and automated machine 
learning identification algorithms for ballistics based on previous studies is presented, while Section 3 
provided an overview of the theoretical background for the 2D statistical moment invariants are taken 
into account in this study. Meanwhile, the schematic architecture of the proposed improvised automated 
machine learning identification algorithm for ballistics in this study is detailed in Section 4. Moreover, the 
empirical results and discussion of this research are detailed in Section 5. Finally, the concluding remarks 
and future work in this study are provided in Section 6.  

 

 

 

 
1 Characterisation of the activity in the stage for the data science methodology. 



 

10.11113/mjfas.v19n4.2917 528 

Chuan et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 525-538 

Related Works 
 

In the early 2000s, Xin et al. [1] proposed an automated machine learning identification algorithm for 
ballistics by extracting and selecting several good separability features from the key impressions, such 
as the firing pin, bullet bottom, and ejector impressions on the fired cartridge cases. In particular, the 
firing pin impression yields features such as position, radius, depth, shape, tongue impression, and tiny 
impression, whereas the bullet bottom impression yields texture features. Moreover, shape, position, 
and direction are among the features extracted from the ejector impression. In this study, they employed 
CHT to detect the position of the bullet bottom and firing pin impressions. The empirical results of this 
study revealed that the proposed automated machine learning identification algorithm for ballistics is 
competent to yield an identification accuracy rate of >85% for the top 5%, 10%, and 20%, respectively. 
Zhou et al. [9] also proposed an automated machine learning identification algorithm for ballistics. In this 
research, they proposed to extract the position of the firing pin impression, the shape description of the 
firing pin impression employing an active contour model, and the texture pattern of the breech face 
impression as the features, which the position of the bullet bottom and firing pin impressions are detected 
utilising CHT. Based on their empirical results, they have concluded that the proposed automated 
machine learning identification algorithm for ballistics employing a support vector machine (SVM) is 
performed superior rather than the existing identification algorithms. 
 

On the other hand, Leng and Huang [10] proposed another automated machine learning identification 
algorithm for ballistics by extracting the statistical moment invariants from the centre-firing and rim-firing 
mechanism of fired cartridge case images. In particular, they proposed to extract circle moment 
invariants (CMIs) from the circle-centralised images as features set after applying a variety of image pre-
processing operators such as power-law transformation, Sobel sharpening spatial filter, and Otsu’s 
threshold selection method. The empirical results of identification based on the three-layer 
backpropagation neural network (BPNN) revealed that the CMIs are efficient and effective to be utilised 
as the features set for an automated ballistics identification algorithm. However, Chuan et al. [12] 
authenticated that extracting the features set from the square-window segmented ROI from the firing-pin 
impression images is superior rather than the circle-window segmented ROI in terms of the identification 
accuracy rate and the imposed execution time. As a consequence, CMIs do not take into account in this 
article.  
 

In Malaysia, Ghani et al. [2, 3, 4, 15] proposed a series of semi-automated machine learning identification 
algorithms for ballistics principally focusing on feature extraction and selection. Ghani et al. [2] have 
proposed their first machine learning identification algorithm for ballistics by extracting several numerical 
descriptive statistics measurements such as the first four statistical moments and the measures of 
position from three distinctive segmented centre-firing pin impression images. These include the 
segmented centre-firing pin with a half radius of the whole centre-firing pin impression, the segmented 
ring firing pin, and the segmented whole firing pin impressions. In the late 2000s and early 2010s, Ghani 
et al. [3,4] proposed another machine learning identification algorithm for ballistics by extracting the 
geometric moments as the features set. In these articles, they also proposed to extract the features from 
three distinctive segmented centre-firing pin impression images.  
 

Meanwhile, Liong et al. [20] proposed another semi-automated machine learning identification algorithm 
for ballistics, which extended the research works from Ghani et al. [2, 3, 4]. In particular, they proposed 
to extract both numerical descriptive statistics measurements and geometric moments from the three 
distinctive segmented centre-firing pin impression images. Owing to their study involved the high-
dimensional features which comprise 68 statistical numerical features, therefore they have proposed to 
reduce the feature-dimensionality utilising the principal component analysis (PCA). Among this series of 
semi-automated machine learning identification algorithms for ballistics, Ghani et al. [2, 3, 4] and Liong 
et al. [20] proposed to utilise the powerful machine learning identification algorithm, namely Fisher’s 
Linear Discriminant Analysis (LDA) algorithm [21] in performing the ballistics identification tasks. 

 

In contrast, Kamarrudin et al. [11] proposed another semi-automated machine learning identification 
algorithm with the principal objective to improve the classifier applied in previously proposed identification 
algorithms in Malaysia. In specific, their research proposed to employ the two-layer feed-forward 
backpropagation neural network (FBPNN) utilising the tansig-tansig activation function rather than the 
LDA classifier, while the extracted feature set from the segmented ring firing pin images. A few years 
later, Ghani et al. [15] extended their research from Ghani et al. [4] by replacing the two-layer FBPNN 
utilising the tansig-purelin activation function, while the similar selected geometric features set from the 
segmented firing pin impressions also applied in their proposed improvised semi-automated machine 
learning identification algorithm. However, the limitation of this series of proposed probabilistic machine 
learning identification algorithms is these algorithms are remaining required a physical interpretation, 
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which is to detect the position of the centre-firing pin impressions utilising the naked eye. Furthermore, 
the extracted numerical features set also does not have invariant properties corresponding to TRS. 

 

Due to the limitation of the machine learning identification algorithm for the ballistics in the previous 
studies, Chuan et al. [5, 12, 13] have proposed an improvised automated machine learning identification 
algorithm for the ballistics from the series of research works of Ghani et al. [2, 3, 4] and Liong et al. [20]. 
In this article, they proposed to extract the selected OLM as a feature set applied in their proposed 
identification algorithm, in which OLM comprises the translation and scale invariant properties. In their 
article, they highlighted that the Zernike moment invariants are inappropriate to be employed as these 
moment invariants imposed high complexity computational costs and were merely applicable for a unit 
disk, while this research principally focuses on the square-window segmented ROI. In order to 
authenticate the invariant properties corresponding to the noisy images, Chuan et al. [6] have further 
tested the proposed automated machine learning identification algorithm based on the simulated noisy 
images contaminated with random-valued impulse noise with noisy levels as high as 70%. Their 
empirical analysis results indicated that their proposed automated machine learning identification 
algorithm is efficient to yield identification accuracy rates of >90% regardless of the investigated noise 
levels after applying the adequate window size of the median smoothing spatial filter. 

 

Moreover, Razak et al. [14] also proposed another effective automated machine learning identification 
algorithm for ballistics with an achieved identification accuracy rate is 93%. In this study, they proposed 
to employ the Canny edge detection operator and CHT as the sharpening spatial filter and centre-firing 
pin impression position detection technique, respectively. In addition, they proposed to extract selected 
geometric moments as the feature set for ballistics identification from the segmented firing pin 
impression. However, the comparative empirical results of the sharpening spatial filter carried out by 
Chuan [22] conveyed the Laplacian edge detection operator is superior rather than Sobel, Canny [23], 
and Marr-Hildreth’s [24] sharpening spatial filter. 

 

Recently, Liong et al. [25] carried out another research on developing a mobile application for a ballistics 
identification algorithm. In this study, they have carried out a comparison of the effectiveness of the 
selected geometric moments feature set, which was also extracted from three distinctive segmented 
centre-firing pin impression images as the research works of Ghani et al. [2, 3, 4, 15]. Despite the 
analysis results based on the two-layer FBPNN utilising sigmoid-linear activation function revealed the 
identification accuracy achieved 98% when extracted the feature set from the segmented centre-firing 
pin impression. However, the segmentation of the centre-firing pin impression in this article remains 
required physical interpretation, and the extracted features also do not comprise invariant properties 
such as TRS. In summary, feature extraction from the key impressions on the fired cartridge case images 
remains an unresolved issue from the practical perspective. This can be authenticated that distinctive 
feature sets have been employed in the proposed semi-automated and automated ballistics identification 
algorithms in the previous studies, and it remains in research for the recent study.   

 
Theoretical Backgrounds 
 

This section provides an overview of the theoretical background for the statistical moments of 
polynomials for images. In literature, statistical moment invariants extracted as an insightful feature for 
recognition have been successfully utilised in a variety of pattern recognition applications. These include 
ship and aircraft identification [26, 27], optical character recognition (OCR) [17, 28], passenger position 
recognition [29], and ballistics identification [2-5, 10, 12, 13, 14, 20, 25]. Consider 𝐑 =
[𝑓(𝑥4, 𝑦4)]𝑟 4⁄ ×𝑟 4⁄

;  𝑥4, (𝑦4) = 0, 1, … ,
𝑟
4⁄ − 1, (𝑟 4⁄ − 1) represents the ROI segmented from the centre-

firing pin impression circular boundary image, 𝐏 = [𝑓(𝑥3, 𝑦3)]𝑟×𝑟; 𝑥3, (𝑦3) = 0, 1, … , 𝑟 − 1, (𝑟 − 1), which 

the size of 𝐑 is 𝑟 4⁄ × 𝑟 4⁄  with an intensity value of each pixel, 𝑓ϵ{𝑖 255⁄ ; 𝑖 = 0,1, … , 𝐿 = 255} located at 

the coordinate point (𝑥4, 𝑦4). Therefore, 𝐑 can be aggregated in quantitative measurement by using 
several statistical moments of polynomials for images that comprise invariant properties corresponding 
to TRS.  

 

In specific, the statistical moments of polynomials for the images detailed in this article include OLM, 
HM, TMM, PKM, and CGM. In addition, this article merely considered the order of the extracted statistical 
moment invariants from 𝐑 up to the sixth order except for HM (up to the third order). This is because the 
higher order of statistical moment invariants typically imposed high complexity and is not robust to the 
noise. Moreover, the best feature set employed in this article is selected based on the classification of 
the strength’s association measurements between extracted features, the stepwise selection technique, 
and the multicollinearity effects, and tested by employing a variety of sample sizes of the training sets. 
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Orthogonal Legendre Moment Invariants 
There are several well-known orthogonal moments of polynomials for images such as the OLM [30] and 
Tchebichef moments (TM) [31], which are competent to provide an efficient orthogonal representation 
and appropriate to extract as a feature set for recognition. This is because the orthogonal moments are 
more efficient in minimising attribute redundancy, robustness to noise, and comprise the invariant 
properties corresponding to TRS [30]. However, the preliminary empirical analysis results of this 
research revealed that OLM is superior rather than TM after the proposed automated machine learning 
identification algorithm is extracted from both selected OLM and TM provided as features for ballistics 
identification. In particular, the high identification accuracy rate (> 90%) has resulted when the selected 

OLM is extracted as a feature set and vice versa for TM (< 90%). As a consequence, TM does not take 

this into account in this article. In mathematics, the discrete form of OLM of order (𝑝 + 𝑞), 𝜆𝑝𝑞;  𝑝, (𝑞) =

0, 1,… ,3, (3) in the expression of order (𝑎 + 𝑏) geometric moments, 𝑚𝑎𝑏 can be defined as follows. 
 

𝜆𝑝𝑞 =
(2𝑝 + 1)(2𝑞 + 1)

4
∑∑𝑐𝑝𝑎𝑐𝑞𝑏𝑚𝑎𝑏

𝑞

𝑏=0

𝑝

𝑎=0

 (1) 

 

where 𝑚𝑎𝑏 = ∑ ∑ (
8𝑥4

𝑟
− 1)

𝑎
(
8𝑦4

𝑟
− 1)

𝑏𝑟
4⁄ −1

𝑦4=0

𝑟
4⁄ −1

𝑥4=0
𝑓(𝑥4, 𝑦4), and the coefficients for the Legendre 

polynomial generating functions, 𝑐𝑝𝑎 and  𝑐𝑞𝑏 respectively given as 

 

𝑐𝑝𝑎 =

{
 

 (−1)
(𝑝−𝑎)

2⁄ (𝑝 + 𝑎)!

2𝑝 (
𝑝 − 𝑎
2

) ! (
𝑝 + 𝑎
2

) ! 𝑎!
; (𝑝 − 𝑎) 𝑒𝑣𝑒𝑛

0                                           ; (𝑝 − 𝑎) 𝑜𝑑𝑑 

 (2) 

c𝑞𝑏 =

{
 

 (−1)
(𝑞−𝑏)

2⁄ (𝑞 + 𝑏)!

2𝑞 (
𝑞 − 𝑏
2

) ! (
𝑞 + 𝑏
2

) ! 𝑏!
; (𝑞 − 𝑏) 𝑒𝑣𝑒𝑛

0                                           ;  (𝑞 − 𝑏) 𝑜𝑑𝑑  

 (3) 

 

Hu Moment Invariants 
The moment’s theory has been established after Hu [32] initially proposed seven moments invariants 
comprise invariant properties corresponding to TRS utilising ordinary geometric moments, which is well-
known as HM. Since the crucial region is randomly distributed on segmented 𝐑 and this leads to the 
orientation of the crucial region varying with every acquired centre-firing pin image in this research. 
Therefore, HM which comprises orientation invariant is also employed to deal with the varying 
orientation. This article highlighted that there are other three-moment invariants expended from HM (Eqs. 
(6), (9) and (13)) also taken into account in this study other than the seven origins HM. In particular, HM 
up to the third order in terms of 𝑀𝑎𝑏

∗  is mathematically defined as follows. 
 

𝑅1 = 𝑀20
∗ +𝑀02

∗  (4) 

𝑅2 = (𝑀20
∗ −𝑀02

∗ )2 + 4(𝑀11
∗ )2 (5) 

𝑅3 = 𝑀20
∗ 𝑀02

∗ − (𝑀11
∗ )2 (6) 

𝑅4 = (𝑀30
∗ − 3𝑀12

∗ )2 + (3𝑀21
∗ −𝑀03

∗ )2 (7) 

𝑅5 = (𝑀30
∗ +𝑀12

∗ )2 + (𝑀21
∗ +𝑀03

∗ )2 (8) 

𝑅6 = (𝑀30
∗ 𝑀03

∗ )2 − 6(𝑀30
∗ 𝑀21

∗ 𝑀12
∗ 𝑀03

∗ ) + 4𝑀30
∗ (𝑀12

∗ )3 + 4𝑀03
∗ (𝑀21

∗ )3 − 3(𝑀21
∗ 𝑀12

∗ )2 (9) 

𝑅7 = (𝑀20
∗ −𝑀02

∗ )((𝑀30
∗ +𝑀12

∗ )2 − (𝑀21
∗ +𝑀03

∗ )2) + 4𝑀11
∗ (𝑀30

∗ +𝑀12
∗ )(𝑀21

∗ +𝑀03
∗ )  (10) 

𝑅8 = (𝑀30
∗ − 3𝑀12

∗ )(𝑀30
∗ +𝑀12

∗ )((𝑀30
∗ +𝑀12

∗ )2 − 3(𝑀21
∗ +𝑀03

∗ )2) 
+(𝑀03

∗ − 3𝑀21
∗ )(𝑀03

∗ +𝑀21
∗ )((𝑀03

∗ +𝑀21
∗ )2 − 3(𝑀12

∗ +𝑀30
∗ )2) 

 (11) 

𝑅9 = (𝑀03
∗ − 3𝑀21

∗ )(𝑀30
∗ +𝑀12

∗ )(3(𝑀21
∗ +𝑀03

∗ )2−(𝑀30
∗ +𝑀12

∗ )2) 
            −(𝑀30

∗ − 3𝑀12
∗ )(𝑀03

∗ +𝑀21
∗ )((𝑀03

∗ +𝑀21
∗ )2 − 3(𝑀12

∗ +𝑀30
∗ )2) 

(12) 

𝑅10 = (𝑀30
∗ 𝑀03

∗ −𝑀21
∗ 𝑀12

∗ )2 − 4(𝑀03
∗ 𝑀12

∗ − (𝑀21
∗ )2)(𝑀30

∗ 𝑀21
∗ − (𝑀12

∗ )2) (13) 

 

where the ordinary geometric moments of order (𝑎 + 𝑏), 𝑀𝑎𝑏
∗  is given as  

 

𝑀𝑎𝑏
∗ = ∑ ∑ 𝑥4

𝑎𝑦4
𝑏

𝑟
4⁄ −1

𝑦4=0

𝑟
4⁄ −1

𝑥4=0

𝑓(𝑥4, 𝑦4) (14) 
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Tsirikolias-Mertzois Moment Invariants 
In general, TMM is a two-dimensional orthogonal moment, which is a modified form of the one-
dimensional standardised moments that normalises corresponding to the standard deviation. Likewise, 
HM, TMM proposed by Tsirikolias and Mertazios [17] is another two-dimensional statistical orthogonal 
moment that comprises invariant properties corresponding to TRS. Moreover, TMM is also less sensitive 
to noise. Consequently, a better ballistics identification performance could have resulted. In statistical 
theory, the general form of TMM of order (𝑝 + 𝑞) can be expressed in a mathematical equation, such 
that: 
 

𝛾𝑝𝑞 =
16

𝑟2
∑ ∑ (

𝑥4 − 𝜇𝑥4
𝜎𝑥4

)

𝑝

(
𝑦4 − 𝜇𝑦4
𝜎𝑦4

)

𝑞
𝑟
4⁄ −1

𝑦4=0

𝑟
4⁄ −1

𝑥4=0

𝑓(𝑥4, 𝑦4) (15) 

 

where 𝜇𝑥4 =
𝑀10
∗

𝑀00
∗  and 𝜇𝑦4 =

𝑀01
∗

𝑀00
∗   represent the coordinates of the image’s centroid of the segmented 

𝐑 respectively corresponding to coordinates 𝑥4 and 𝑦4. Meanwhile, the standard deviations of 
the segmented 𝐑 respectively correspond to coordinates 𝑥4 and 𝑦4. 
 

𝜎𝑥4 =
√
16

𝑟2
∑ ∑ (𝑥4 − 𝜇𝑥4)

2
𝑓(𝑥4, 𝑦4)

𝑟
4⁄ −1

𝑦4=0

𝑟
4⁄ −1

𝑥4=0

 (16) 

𝜎𝑦4 =
√
16

𝑟2
∑ ∑ (𝑦4 − 𝜇𝑦4)

2
𝑓(𝑥4, 𝑦4)

𝑟
4⁄ −1

𝑦4=0

𝑟
4⁄ −1

𝑥4=0

 (17) 

 

Pan-Keane Moment Invariants 
In statistical theory, PKMs are orthogonal moments which are invariant corresponding to scale or size. 
These moments are proposed by Pan and Keane [33] initially for optical character recognition (OCR). 
However, the principal reason of PKMs employed in this study is the comparative effectiveness with 
other orthogonal moment invariants due to the size of the segmented 𝐑 and the crucial region is both 
not the same for each image. Therefore, PKMs are advantageous in this condition. In mathematics, 
PKMs of order (𝑝 + 𝑞) in terms of 𝑇𝑝𝑞 (Eq. (19)) can be expressed as Eq. (18). 
 

𝑆𝑝𝑞 =
𝑇00

(𝑝+𝑞+2)
2⁄

𝑇20

(𝑝+1)
2⁄ 𝑇02

(𝑞+1)
2⁄
𝑇𝑝𝑞 (18) 

 

Central Geometric Moment Invariants 
The limitation of the extraction of geometric moments as the feature set in the previously proposed 
machine learning identification algorithms for ballistics [2, 4, 11, 14, 15, 20, 25] is non-orthogonal 
moments so that the extracted moments do not comprise the invariant properties corresponding to TRS. 
To overcome this limitation, this study proposed to employ central moments, also known as central 
geometric moments (CGM) as the comparison. From a statistics perspective, CGMs are the statistical 
moments that comprise invariant properties corresponding to translation or position. In this research, the 
position of the crucial region on 𝐑 varies with every acquired centre-firing pin image despite that the 
cartridge cases are fired by utilising the same firearm. Therefore, CGM is very useful in shifting the crucial 
region such that its centroid coincides with the origin of the coordinate system. Mathematically, the CGM 

of order (𝑝 + 𝑞), 𝑇𝑝𝑞 can be expressed as follows. 
 

𝑇𝑝𝑞 = ∑ ∑ (𝑥4 − 𝜇𝑥4)
𝑝
(𝑦4 − 𝜇𝑦4)

𝑞𝑟
4⁄ −1

𝑦4=0

𝑟
4⁄ −1

𝑥4=0
𝑓(𝑥4, 𝑦4)  (19) 

 

where 𝜇𝑥4 and 𝜇𝑦4 represent the coordinates of the image’s centroid of the segmented 𝐑 respectively 

corresponding to coordinates 𝑥4 and 𝑦4, which 𝑀𝑎𝑏
∗  is defined in Eq. (14). 

 
The Architecture of the Proposed Automated Probabi- 
listics Machine Learning Identification Algorithm 
 
This section provided the schematic procedures to implement the proposed automated probabilistic 
machine learning identification algorithms for ballistics. The following are the procedures for architecting 
the proposed identification algorithm tailored based on Figure 2. 
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STEP 1: Input 125 centre-firing pin impression circular boundary images (training set) (Figure 1- 
Right) with an equal sample size for each class of pistol taken into account in this study. 
Mathematically, the input image can be expressed in array form as in Eq. (20).  

   

𝐏𝟎 = [𝑓(𝑥0, 𝑦0)]𝑀×𝑁;  𝑥0, (𝑦0) = 0, 1,… ,𝑀, (𝑁) (20) 

 

of size 𝑀 ×𝑁 with intensity value of each pixel, 𝑓ϵ{𝑖 255⁄ ; 𝑖 = 0,1,… , 𝐿 = 255}, located at 

the coordinate point (𝑥0, 𝑦0). 
STEP 2: Enhance the edge of image 𝐏 using a Laplacian sharpening spatial filter. The Laplacian

 sharpening spatial filter is selected in this research since this operator presented the best
 empirical result after comparing it with other operators such as Sobel, Canny, and Marr
 Hildreth sharpening spatial filters. Specifically, the empirical result is evaluated based on
 the ballistics identification accuracy rates and the execution time. Consider 𝐌𝐋 represents

 the kernel of the Laplacian sharpening spatial filter, and 𝐒𝐩 represents the sub-image for

 the image 𝐏, which 𝐌𝐋 and 𝐒𝐏 can be defined in the following array, respectively.  

 

𝐌𝐋 = [
0 +1 0
+1 −4 +1
0 +1 0

] (21) 

𝐒𝐏 = [

𝑓(𝑥 − 1, 𝑦 + 1) 𝑓(𝑥 + 0, 𝑦 + 1) 𝑓(𝑥 + 1, 𝑦 + 1)

𝑓(𝑥 − 1, 𝑦 + 0) 𝑓(𝑥 + 0, 𝑦 + 0) 𝑓(𝑥 + 1, 𝑦 + 0)

𝑓(𝑥 − 1, 𝑦 − 1) 𝑓(𝑥 + 0, 𝑦 − 1) 𝑓(𝑥 + 1, 𝑦 − 1)
] (22) 

 
A new image, 𝐏𝐋 = [𝑓𝐋(𝑥2, 𝑦2)](𝑀−2)×(𝑁−2);  𝑥2, (𝑦2) = 1, 2, … ,𝑀 − 1, (𝑁 − 1) has resulted 

after the convolution process completed, where the intensity value of each pixel, 𝑓𝐋 is 
computed based on Eq. (23). 
 

𝑓𝐋(𝑥2, 𝑦2) = ∑ 255𝑣𝑒𝑐(𝐌𝐋)′𝑣𝑒𝑐(𝐒𝐏)

𝑥2+1,𝑦2+1

𝑥2−1,𝑦2−1

 (23) 

 
where 𝑓𝐋 ∈ {−∞,… ,−1, 0, 1, … ,∞}, and 𝑣𝑒𝑐(∙) represents the vectorisation function.  

STEP 3: The resulting 𝑓𝐋 in STEP 2 is not within the desired range of [0, 1]. As a result, there is a

 requirement to scale the range of 𝑓𝐋 using mix-max normalisation. In mathematical, the

 function can be utilised to normalise the intensity value of each pixel, 𝑓𝐍 can be
 expressed as 

 

𝑓𝐍(𝑥2, 𝑦2) =
1

255
⌊
𝑓𝐋(𝑥2, 𝑦2) − 𝑚𝑖𝑛 𝐏𝑓𝐋
𝑚𝑎𝑥 𝐏𝑓𝐋 −𝑚𝑖𝑛 𝐏𝑓𝐋

× 255⌋ (24) 

 

where ⌊∙⌋ represents the floor function. Meanwhile, 𝑚𝑖𝑛 𝐏𝑓𝐋 and 𝑚𝑎𝑥 𝐏𝑓𝐋 represent the 

minimum and maximum intensity values of each pixel for the image 𝐏𝐋. Consequently, a 

normalised image, 𝐏𝐍 = [𝑓𝐍(𝑥3, 𝑦3)](𝑀−2)×(𝑁−2); 𝑥3, (𝑦3) = 1,… ,𝑀 − 2, (𝑁 − 2) is resulted.
 

STEP 4: Otsu [34] threshold selection method is employed to binarise the image 𝐏𝐍. Otsu’s method
 is employed in this study because this method is widely and successfully utilised in
 multidisciplinary applications [5,6,12,13,22,35,36,37] even though this threshold method
 has been introduced over four decades ago. An optimal threshold value, 𝑤̃, is attained by

 maximising the function defined in Eq. (25). Consequently, a binary image, 𝐏𝐁 = 
[𝑓𝐁(𝑥3, 𝑦3)](𝑀−2)×(𝑁−2), is resulted in intensity values “1” when 𝑓𝐍 ≥ 𝑤̃ and “0” when 𝑓𝐍 < 𝑤̃. 

 

𝑤̃ =
1

255
arg (max

𝑤
((𝜇𝐿 − 𝜇𝑤)

2 (
𝜋𝑤

1 − 𝜋𝑤
))) (25) 

 

where 𝜇𝐿 = ∑ 255𝜃𝑘𝐍
𝐿
𝜃=0 (𝜃), 𝜇𝑤 = ∑ 255𝜃𝑘𝐍(𝜃)

𝑤
𝜃=0 , 𝜋𝑤 = ∑ 𝑘𝐍(𝜃)

𝑤
𝜃=0 ,  𝑘𝐍(𝜃) =

∑ 𝐼(𝑓𝐍(𝑥3, 𝑦3) = 255𝜃)
𝑀−2,𝑁−2
𝑥3,𝑦3

(𝑀 − 2)(𝑁 − 2)
⁄ , and 𝐼(∙) represents the indicator functions. 

STEP 5: This study is compared to the proposed automated probabilistic machine learning
 identification algorithm which is applied with the weighted least square estimator proposed
 by Albano [38] and the unweighted least square estimator proposed by Moura and Kitney
 [18]. The preliminary analysis results indicated the proposed identification algorithms which
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 are applied with an unweighted least square estimator are more effective rather than the
 identification algorithms which are applied with a weighted least square estimator in terms
 of ballistics identification accuracy rate and execution time. As a result, an unweighted
 least square estimator has been employed in research in order to estimate the coordinate

 of the anchor point, 𝐀𝑇 = [𝑋𝐀, 𝑌𝐀] and radius, 𝑟, for centre-firing pin impression circular
 boundary (Figure 1-Right) based on Eqs. (26) and (27), respectively. 

 

𝐀 = [
2(𝛼𝛽20 − 𝛽10

2 𝛽00) 2(𝛼𝛽11 − 𝛽10𝛽01)

2(𝛼𝛽11 − 𝛽10𝛽01) 2(𝛼𝛽02 − 𝛽01
2 𝛽00)

]

−𝟏

 

× [
𝛼(𝛽12 + 𝛽30) − 𝛽10(𝛽20 + 𝛽02)

𝛼(𝛽21 + 𝛽03) − 𝛽01(𝛽20 + 𝛽02)
] 

(26) 

𝑟 = √
1

(𝑀 − 1)(𝑁 − 2)
∑((𝑋𝐀 − 𝑥3)

2 + (𝑌𝐀 − 𝑦3)
2)

𝑥3,𝑦3

 
(27) 

 
where 𝛼 = ∑ 𝑓𝐁(𝑥3, 𝑦3)𝑥3,𝑦3  and 𝛽𝑢𝑣 = ∑ 𝑥3

𝑢
𝑥3,𝑦3 𝑦3

𝑣𝑓𝐁(𝑥3, 𝑦3).  

STEP 6: Segment the 𝐑 by utilising the estimated 𝐀 and 𝑟 from STEP 5. 

STEP 7: Extract the OLM as features with values of 𝑝 and 𝑞 respectively up to the order of 3. In
 this research, the low-order moment invariants have been selected rather than the high-
 order moment invariants. This is due to the low-order moments imposing low
 mathematical complexity and more stability to noise [19]. 

STEP 8: Conduct the correlation analysis to obtain the Pearson correlation coefficient among the
 OLM features set extracted from 𝐑.  

STEP 9: Categorise the pairs of the extracted OLM features set corresponding to the following
 classification of strength association measurements.  

 

Weak association classification : 0.0 ≤ |𝜌̂| < 0.3 

Moderate association classification : 0.3 ≤ |𝜌̂| < 0.7 

Strong association classification : 0.7 ≤ |𝜌̂| < 1.0 
 

STEP 10: Selects a set of informative features for the weak classification of strength association
 measurements by employing the stepwise selection technique and multicollinearity effects
 measured in terms of tolerance (< 0.1). The selected informative features set required
 does not meet the multicollinearity condition due to the multicollinearity effects being able
 to decrease the statistical efficiency. 

STEP 11: Trains a supervised paradigm of probabilistic machine learning model, namely Fisher’s
 Linear Discriminant Analysis (LDA) [21] model based on the selected informative features
 in STEP 10. 

STEP 12: Identify the classes of the unknown pistols (The unselected centre-firing pin images in
 STEP 1 which is known as the test set) using the trained LDA model in STEP 11.  

STEP 13: Summarise the identification accuracy rate in a confusion matrix. In addition, record the
 imposed computational time in running the proposed identification algorithm. 

STEP 14: Compute the average of the identification accuracy rate among the classes of pistols
 diagonally based on the resulting confusion matrix in STEP 13. 

STEP 15: Repeat STEPS 1-14 for the distinctive sample sizes for the training sets, classification of
 strength association measurements and the statistical moments invariant employed in this
 study. 

 
Results and Discussion 
 

There are 747 centre-firing pin impression images utilised in this study. These images were collected 
from five pistols model of Parabellum Vektor SP1 9 mm, namely Pistol A (150 images), Pistol B (150 
images), Pistol C (150 images), Pistol D (149 images) and Pistol E (148 images). The five pistols 
employed in this study are selected by the judicatory ballistic expert of the Royal Malaysia Police and 
comprise similar age, caliber, made and model so it is difficult to distinguish among these five pistols. In 
addition, the pistols model of Parabellum Vektor SP1 9 mm is employed in this study because this is the 
pistol model typically utilised by criminals in Malaysia. 

 

This study has allocated the acquired centre-firing pin images into a training set and a test set. The 
principal objective training set is utilised in this study to train the classifiers, whereas the test set is utilised 
to evaluate the efficiency of the proposed identification algorithm. A total of 100 images from each pistol 
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are randomly selected and assigned to the training set while the unselected images are assigned to the 
test set. In particular, four distinctive sample sizes of training sets such as 125, 250, 375 and 500 images, 
which these images are selected randomly from the 500 images assigned for training purposes with 
equivalent frequency among the five pistols. This article highlighted that the low ratio of the training set 
(sample size of 125 images) rather than the test set is also taken into account in this study to consolidate 
the effectiveness of the extracted moment invariants as features set despite that the LDA model trained 
using a small sample size of the training set. The identification accuracy rates and the execution time 
are shown in Table 1 and Table 2. 

 

Table 1. Ballistics identification accuracy rates (in %) correspond to the weak, moderate, and strong 
classification of strength association measurements among the selected features by utilising the test set 
 

Moment 
Invariants 

The Number of 
Features 
Extracted 

The Sample 
Size of the 
Training Set 

Ballistics Identification Accuracy Rate 

Weak Moderate Strong 

OLM 16 125 94.7(9)  F1 94.7 (9)  F1 NA 

250 95.5 (13) 96.0 (11) NA 

375 96.0 (9) 93.5 (9) NA 

500 96.8 (9) 95.5 (9) NA 

HM 10 125 71.7 (4)   66.0 (3)  F2 66.0 (3) F2 

250 75.7 (7)   73.3 (7)  F3 66.4 (4) 

375 77.3 (8) 73.3 (7)  F3 61.1 (5) 

500 77.7 (8) 73.3 (7)  F3 69.6 (5) 
TMM 12 125 95.5 (7) 92.3 (5) 92.7 (6)  F4 

250 95.1 (7) 89.9 (5) 93.5 (8) 

375 95.5 (8) 92.3 (7) 92.7 (6)  F4 

500 94.3 (8) 88.7 (7) 94.3 (8) 

PKM 13 125 93.5 (6) 95.5 (7) 87.0 (4) 

250 93.9 (7)  F5 93.9 (7)  F5 89.5 (6)  F6 

375 93.9 (7)  F7 93.9 (7)  F7 89.5 (6)  F6 

500 93.9 (8)  F8 93.9 (8)  F8 89.5 (6)  F6 

CGM  14 

 
125 96.8 (7)  F9   96.8 (7)  F9  96.8 (7) 

250 97.2 (8) 96.4 (7) 97.2 (10)  F10 

375 97.6 (10) 95.5 (7) 96.8 (8) 

500 98.0 (10) 98.0 (10) 97.2 (10)  F10 

Note: The superscript “F1-F10” means that the selected feature set is the same for those sharing the same number in the superscript.  

 

Table 2. The execution time (in seconds) correspond to the weak, moderate and strong classification 
of strength association measurements among the selected features by utilising the test set 
 

Moment 
Invariants 

The Number of 
Features 
Extracted 

The Sample 
Size of the 
Training Set 

Ballistics Identification Accuracy Rate 

Weak Moderate Strong 

OLM 16 125 82.0  F1 82.0 F1 NA 

250 86.8 84.8 NA 

375 82.3 82.2 NA 

500 82.3 82.5 NA 

HM 10 125 78.1  74.1 F2 74.1 F2 

250 79.5  79.7 F3 78.3 

375 82.8 79.7 F3 78.4 

500 82.8 79.7 F3 78.4 
TMM 12 125 80.4 77.1 78.8 F4 

250 79.8 77.4 81.1 

375 81.1 79.7 78.8 F4 
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Moment 
Invariants 

The Number of 
Features 
Extracted 

The Sample 
Size of the 
Training Set 

Ballistics Identification Accuracy Rate 

Weak Moderate Strong 

500 80.9 79.6 81.2 

PKM 13 125 83.3  84.4  81.1  

250 84.7 F5 84.7 F5 83.9 F6 

375 84.2 F7 84.2 F7 83.9 F6 

500 85.9 F8 85.9 F8 83.9 F6 

CGM 14 125 82.7 F9  82.7 F9 82.1 

250 83.6 82.3 85.6 F10 

375 85.7 82.1 83.5 

500 85.8 85.9 85.6 F10 

Note: The superscript “F1-F10” means that the selected feature set is the same for those sharing the same number in the superscript.  

 

 

Based on Table 1, the empirical analysis results indicated that for the weak classification of strength 
association measurements, the accuracy rate of the proposed automated probabilistic machine learning 

identification algorithm employing OLM, TMM, PKM and CGM is > 90% for all sample sizes of the 
training sets taken into account in this study, whereas the ballistics identification accuracy rates for the 
algorithm extracting HM is < 80%. Meanwhile, for the moderate classification of strength association 
measurements, the identification accuracy rates of the proposed identification algorithm extracted OLM, 
PKM and CGM as the feature set are > 90% for all sample sizes of training sets and vice versa for the 

HM (< 80%). Conversely, the ballistics identification accuracy rates for the strong classification of 
strength association measurements of OLM are not available (NA). This is due to no pair of these 
extracted features existing, for which the Pearson correlation coefficient is within the range of  0.7 ≤
|𝜌̂| < 1.0.  Moreover, Table 1 also illustrates that on average, the larger the sample size employed for 
the training set, the higher the ballistics identification accuracy rate for all classifications of strength 
association measurements. This empirical analysis results are consistent and can be consolidated based 
on the machine learning perspective. 

 

On the other hand, the larger the number of features utilised in the classifier, the longer the required 
execution time. This statement is proven by the empirical analysis results of the execution time for the 
proposed identification algorithm depicted in Table 2. In particular, it can be observed that empirical 
analysis results of LDA with a larger number of selected features impose a longer execution time rather 
than a small number of selected features. In addition, the type of features extracted from 𝐑 generally 
affects the execution time. Based on these theories, the type and the number of features utilised in the 
algorithm are factors which influence the execution time in order to perform the proposed identification 
algorithms. However, the empirical analysis results in Table 2 are unsupported by the aforementioned 
theories. In other words, there is not much difference between the execution times of the proposed 
identification algorithm when both factors are taken into account simultaneously. 

 

According to Leng and Huang [10], the limitation of the semi-automated probabilistic machine learning 
identification algorithm of Ghani et al. [3,4,15] is ignoring the rotation of the circular firing pin impressions. 
Contrarily, the empirical analysis results of this research conveyed that the rotation of the centre-firing 
pin impression circular boundary plays a minor role in the proposed automated probabilistic machine 
learning identification algorithm in this study. In particular, the ballistics identification accuracy rates for 
the proposed identification algorithm that extracted HM as features for identification are frequently <
80% for all classification of strength association measurements and all sample sizes of training sets 
taken into account in this study. These lower identification accuracy rates are due to the characteristic 
of HM which is invariant corresponding to rotation. In fact, the identification accuracy rates for these 
identification algorithms are the lowest compared to OLM, TMM, PKM and CGM. As a result, this study 
concluded that the HM is inappropriate to be employed as features set in the proposed identification 
algorithm due to the low identification accuracy rates. 

 

Conversely, Table 1 revealed that the identification accuracy rates for the proposed identification 
algorithm employed CGM as a feature set resulted in the highest for all classification of strength 
association measurements and all sample sizes of training sets rather than OLM, HM, TMM, and PKM. 
Among the three classifications of strength association measurements of CGM, the feature set selected 
from the weak classification of strength association measurements is superior rather than the moderate 
and strong classifications. Furthermore, Table 2 also presented that there is not much difference in 
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execution times among the classification of strength association measurements and all sample sizes of 
the training set for CGM. Therefore, this study concludes that the proposed automated probabilistic 
machine learning identification algorithm for ballistics which extracted the selected CGM as an 
informative feature set from the weak classification of strength association measurements is the superior 
identification algorithm rather than other classifications of strength association measurements and 
moments invariant taking into account this study. 

 
Conclusions 
 

In summary, there are two principal objectives in this article, namely to develop an improvised automated 
probabilistic machine learning identification algorithm for ballistic that utilises the unweighted least 
square-fitting circle to detect the position (anchor point) of the centre-firing pin impression circular border 
with radius 𝑟, and to identify the most appropriate statistical moment invariants for images extracted from 
the segmented ROI corresponding to the centre-firing pin impression images. In order to pursue these 
objectives, a total of 747 centre-firing pin impression images from five pistols of model Parabellum Vektor 
SP1 9mm are employed to test the proposed identification algorithm in distinctive scenarios. These 
include the distinctive classification of strength of association measurements and sample sizes of the 
training sets. The empirical results of this study revealed that the proposed probabilistic machine learning 
identification algorithm for ballistic which extracted a selected informative CGM based on weak 
classification of strength association measurements is superior with identification accuracy rates >
96.5% for all sample sizes of training set rather than the identification algorithm which extracted other 
moment invariants taking into account in this study. Moreover, this study also revealed that the proposed 
identification algorithm which extracted features of moment invariants merely comprise the rotation 
invariant properties is insufficient and ineffective in ballistics identification. Conversely, extracted features 
of moments invariant merely comprise the translation or position invariant properties that are superior in 
ballistics identification. The superior automated probabilistic machine learning identification algorithm for 
ballistics proposed in this study could be beneficial for the authority such as judicatory ballistics experts 
in Malaysia for ballistics identification. This is due to the proposed identification algorithm does not 
require physical interpretation and competently completing an identification task ranging from seconds 
to minutes. This study suggests extending this work in future by employing deep learning approaches 
such as artificial neural network (ANN) and convolutional neural network (CNN) approaches.  
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