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ABSTRACT

We constructed a new fourth order four-stage diagonally implicit Runge-Kutta (DIRK) method which is specially
designed for the integrations of linear ordinary differential equations (LODEs). The method is obtained based on the
Butcher’s error equations. In the derivation, the error norm is minimized so that the free parameters chosen are
obtained from the minimized error norm. Row simplifying assumption is also used so that the number of equations for
the method can be reduced and simplified. A set of test problems are used to validate the method and numerical
results show that the new method is more efficient in terms of accuracy compared to the existing method.

| Runge-Kutta | Linear ordinary differential equations | Error norm |

1. Introduction

We consider the numerical integration of linear inhomogeneous systems of ordinary differential equations
(ODEs) of the form

y'=Ay+G(x) (1.1)

where 4 is a square matrix whose entries does not depend on yor X, and yand G(x) are vectors. Such

systems arise in the numerical solution of partial differential equations (PDEs) governing wave and heat
phenomena after application of a spatial discretization such as finite-difference method.

Explicit Runge-Kutta method is very popular for simulations of wave equations; see Zingg and Chisholm
[81, due to their high accuracy and low memory requirements.
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To derive Runge-Kutta (RK) methods, we need to fulfill certain order equations; see Dormand [3]. These
order equations resulted from the derivatives of the function y' = f'(x, y) itself. If the function is linear then
some of the error equations resulted by the nonlinearity in the derivative function can be removed, thus less order
equations need to be satisfied, hence a more efficient method in some respect than the classical method can be
derived.

In this paper, we construct diagonally implicit Runge-Kutta method specifically for linear ODEs with
constant coefficients. We consider the principal terms of the local truncation error to minimize the error norm.

Then, the stability aspect of the method is looked into and a few test equations are used to validate the new
method.

2. Materials and Methods
Derivation of the Method

In this section, we consider the following scalar ODE
y':f(x,y). 2.1)

When a general s-stage diagonally implicit Runge-Kutta method is applied to the ODE, the following
equations are obtained,

yn+1 = yn + hzbzkz
i=1 (2.2a)
where

ki =f(x, +chy, +hzaijkj)
B (2.2b)

We shall always assume that the row-sum condition holds ¢; = Zai]., wherei =1,2..5. According to
J=1
Dormand [3], the following eight order equations (error equations) are equations needed to be satisfied by fourth

order four-stage DIRK method.

Table 2.1: Runge-Kutta order equations for fourth order
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The restriction to linear ODEs reduces the number of equations which the coefficients of the RK method
must satisfy in table 2.1. Zingg and Chisholm [8] have derived new explicit RK methods which are suitable for
linear ODEs that are more efficient than the conventional RK methods.

For this new fourth order DIRK method which is suitable for linear ODEs, equation 6 in table 2.1 can be
eliminated, as in [8]. This condition is eliminated by exploiting the fact that, for linear ODEs,

f _df
ou®  Ouot

Using the simplifying assumption:
Yba,=b(-c).  j=234

we can removed several equations, i.e. equation 4 and 7 in table 2.1. This makes the new fourth order four-stage
DIRK method different from the classical method. So, the number of order equations can be reduced. Thus, the
equations needed to be satisfied are:

J=2->b,y+bsay, +b,a, =b,(1-c,)
J=3->by+ba, =by(1-c,)
j=4—>c,=1-y

Altogether there are seven equations to be satisfied and we have 10 unknowns. So, we can take three free

parameters which are chosen to be ¢,,c; andy . Solving all the related equations, we have all equations in

terms of ¢,,c; and .
Table 2.2: Runge-Kutta order equations for fifth order

(5)
9. sz cl 120
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ijk
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In order to choose the free parameters ¢,,c; and ¥, the principal terms of the local truncation error must be

Npi

considered. Using the error function @, = Z Tj(.p D j(p "D and RK error coefficients [3], the principal term for
j=1

fourth order method is

5
_ ) [ (5)
= ZT/' F;
=

5 5 5
()’FS( )’rg()

For case of RK suitable for linear ODEs, we only considered 1“1 and 1“;5’. Here we can

(5) 3(5),2.4(15) (S)and 2.(5)

eliminated several equations i.e. 7, The best strategy for practical purposes would be

to choose the free RK parameters is to minimize the error norm, see [3];

np+]

2@’
j=1

AP ||z.(17+1)

.

So we have the principal error norm for this method;

5 5 5)\2 5)\2 5)\2 5)\2
A =, =@ + @) + (w7 + ()

where Tj(,s) is the error equations associated with the fifth order method, (in table 2.2). Then we get the principal

error  norm in terms of ¢,,c; and . Minimizing the error norm, we obtained

¢, =0.36376391115508,c, = 0.62453338645147 andy =0.091291733465251.
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Substituting the values of ¢,,c; and y and solving all the equations we finally get all the coefficients as
follows;

0.091291733465251

0.27247217768983  0.091291733465251

0.18592608940281  0.34731556358341 0.091291733465251

0.23857907019768  0.20938627024938  0.36945119262243  0.091291733465251
0.22017939484654  0.26923249008354  0.28860138224069 0.22198673282923

Substituting all the parameters into the general form of RK method, we have the new fourth order four-stage
DIRK method which is suitable for linear ODEs with minimized error norm,

V,q =y, +h(02201..k +0.2692..k, +0.2886...k, +0.2219...k,)
where

k= f(x,+0.0912..h,y, + h(0.0912...k,))

ky, = f(x,+0.3637..h,y, +h(0.2724...k, + 0.0912...k,))

ky=f(x,+0.6245..h,y, + h(0.1859...k, +0.3473...k, + 0.0912...k,))

k, = f(x,+0.9087..h,y, +h(0.2385...k; +0.2093...k, + 0.3694...k, + 0.0912...k,))

Stability

One of the practical criteria for a good method to be useful is that it must have region of absolute stability.
When an s-stage Runge-Kutta method (equations (2.2a) and (2.2b)) is applied to

y'=f(xy)
the following equations is obtained
yn+l = R(h}‘)yn

with
R(hA)=R(h)=1+hb" (I -hA)'e

where 4 is (m x m), e is (m x 1) and R(f;) is called the stability polynomial of the method. The stability region is
obtained by taking R(};) =1l=cosf+isinf.

From this Butcher’s array,

bT
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We can solve for 4 using the Mathematica packaged and get the stability polynomial and also the stability
region. The stability polynomial for new fourth order four-stage DIRK method is

0.221987(0.2093864 + 0.0900857 /> — 0.00996914/° )
1-0.365167/ +0.0500051/42 —0.00304337 4* + 0.0000694586 7 *

0.288601(0.185926/; + 0.0606868 — 0.00708974 7 )
1-0.365167 4 + 0.0500051/2 — 0.00304337 /> + 0.0000694586 /1*
1.(1-0.2738754 + 0.0250025 4> — 0.000760842 />)
1-0.365167 4 + 0.0500051/2 — 0.00304337 /> + 0.0000694586 /*
0.269232(0.272472 /i — 0.0497489 4% + 0.00227083 /°
1-0.365167 4 + 0.0500051/% — 0.00304337 /> + 0.0000694586 /*
0.288601(0.347316/ — 0.06341414° + 0.00289459 /%)
1-0.365167 4 + 0.0500051/% — 0.00304337 /> + 0.0000694586 /*
0.221987(0.3694514 — 0.0674557 h* + 0.00307907 /°
1-0.365167 1+ 0.05000514% — 0.00304337 /> + 0.0000694586 /*
0.221987(0.238579 /1 + 0.082182 /% + 0.0254717 /°)
1-0.365167 4 + 0.0500051/% — 0.00304337 /> + 0.0000694586 /*

1+ﬁ

+

+

R(h) =

The stability polynomial is set to zero and solve for }; which gives the value of ‘ R(};)‘ <1; this is done by

using Mathematica package. The stability region is obtained by tracing the values of /4 and is shown in Figure
2.3. The stability region for new fourth order four-stage DIRK is black in colour.

Imaginary Part Stability Region
10

- 10k ,
-5 - 10 o5 0 5 Real Part

Figure 2.3: The stability region for new 4" order 4-stage DIRK with minimized error norm
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3. Results and Discussion

The following are some of the problems tested. All the problems are linear ODEs.

PROBLEM I:
y'(@)=-y

y(t)y=e"

0<t<1,y(0)=1

Source: Richard L.Burden and J.Douglas Faires (2001)

PROBLEM 2:

y'(t)=—-ytant —
cos t

y(t)=cost—sint
Source: J. C. Butcher (2003)

PROBLEM 3:
2
y'(1) = 7y+tze’

y(t)y=1t'(e' —e)

0<t<1, y(0)=1

1<£<5,9(1)=0

Source: Richard L.Burden and J.Douglas Faires (2001)
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The numerical results are tabulated and compared with the existing method and below are the notations

used:
e H Step size used
e MTHD Method employed
e MAXE Maximum error |y(x,.) - y,|
e ERK4 Fourth order four-stage explicit RK method (Zingg and Chisholm, 1999 [8])
e DIRK4 minimized New fourth order four-stage DIRK method with minimized error norm
e SDIRK44 Optimal fourth order four-stage singly-DIRK (Ferracina and Spijker,2007 [4])

Table 3.1: Comparison between ERK4 and DIRK4 for solving problem 1

MTHD H MAXE
1. ERK4 0.1 3.33241e-007
DIRK4 minimized 1.47717e-008
SDIRK4,4 1.10407e-008
2. ERK4 0.05 1.99761¢-008
DIRK4 minimized 8.98578e-010
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MTHD H MAXE
SDIRK4,4 6.72222e-010
ERK4 0.025 1.22274¢-009
DIRK4 minimized 5.54087e-011
SDIRK4,4 4.14714¢-011
ERK4 0.01 3.09133e-011
DIRK4 minimized 1.40699¢-012
SDIRK4,4 1.05449¢-012
ERK4 0.005 1.92441e-012
DIRK4 minimized 8.79297e-014
SDIRK4,4 6.66134e-014
ERK4 0.0025 1.16185e-013
DIRK4 minimized 4.66294¢-015
SDIRK4,4 3.77476e-015
ERK4 0.001 5.10703e-015
DIRK4 minimized 1.88738e-015
SDIRK4,4 1.99840e-015

Table 3.2: Comparison between ERK4 and DIRK4 for solving problem 2

MTHD H MAXE
ERK4 9.88164e-006
DIRK4 minimized 0.1 8.60900e-009
SDIRK4,4 1.34285e-008
ERK4 1.22646¢-006
DIRK4 minimized 0.05 1.59223e-010
SDIRK4,4 4.30729¢-010
ERK4 1.52419¢-007
DIRK4 minimized 0.025 8.36314e-012
SDIRK4,4 2.58894¢-011
ERK4 9.72342¢-009
DIRK4 minimized 0.01 1.88294¢-013
SDIRK4,4 6.47565¢-013
ERK4 1.21412e-009
DIRK4 minimized 0.005 1.14908e-014
SDIRK4,4 3.98570e-014
ERK4 1.51681e-010
DIRK4 minimized 0.0025 1.07692¢-014
SDIRK4,4 1.37113e-014
ERK4 9.70071e-012
DIRK4 minimized 0.001 4.44089¢-016

SDIRK4,4

4.44089¢-016
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Table 3.3: Comparison between ERK4 and DIRK4 for solving problem 3
MTHD H MAXE
ERK4 3.53422e-002
1. DIRK4 minimized 0.1 7.04943¢-005
SDIRK4,4 4.98821e-006
ERK4 4.58145e-003
2. DIRK4 minimized 0.05 4.60092e-006
SDIRK4,4 3.19676e-007
ERK4 5.83708e-004
3. DIRK4 minimized 0.025 2.89703e-007
SDIRK4,4 1.89380e-008
ERK4 3.77980e-005
4. DIRK4 minimized 0.01 7.51152e-009
SDIRK4,4 4.04270e-010
ERK4 4.74347e-006
5. DIRK4 minimized 0.005 3.61979e-010
SDIRK4,4 9.18590e-011
ERK4 5.93553e-007
6. DIRK4 minimized 0.0025 5.08408e-010
SDIRK4,4 4.77939¢-010
ERK4 3.71388e-008
7. DIRK4 minimized 0.001 8.95852e-010
SDIRK4,4 8.92669¢-010

4. Conclusion

The new fourth order four-stage DIRK method with minimized error norm has been presented for the
integration of linear ODEs. It has a bigger stability region compared to explicit RK method (of the same order),
hence more stable. From the numerical results in Table 3.1 to 3.3, we can conclude that the new fourth order
four-stage DIRK method which is suitable for linear ODEs performs better in terms of maximum error compared
to fourth order four-stage ERK method [8]. This new method is also as good as the optimal fourth order four-
stage singly-DIRK [4].
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