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Abstract Multiple state model is a mathematical model which is characterised by two important 

elements, transition intensity and transition probability. Critical illness has increased rapidly which 

is alarmed by the healthcare experts, and becoming an important concern in society. In this paper, 

by using the Canadian health data, we provide an estimation of transition intensities from the healthy 

state to the critical illness state with the application of prevalence rate. We provide a discrete 

calculation of transition intensities with some mathematical formula discussed by some previous 

studies. Next, we assume that the transition intensities of critical illnesses and death due to other 

causes are modelled by Gompertz and Makeham mortality models. We also compare and estimate 

the transition intensities of critical illnesses and dead due to other causes between these two models 

using a model selection method. We observe the sensitivity of the Gompertz and Makeham models 

with the different values of extra mortality i . Lastly, we obtain and present the numerical results of 

the transition intensities of healthy lives to critical illness with the Canadian health data. 

 

Keywords: Multiple state models, Transition intensities, Gompertz-Makeham, Prevalence rates, Critical 

illness insurance.  
 

 

Introduction 
 

A multiple state model is a mathematical model that describes the movement of a transient between 
states. In multiple state model, transition intensity and transition probability are the key elements on 
developing the model. Both elements were used to calculate the insurance benefits and premiums. 
According to the past researches, researchers have proposed methods to estimate the transition 
intensity conveniently, for example, Christiansen [6], Dickson et al. [8], Haberman and Pitacco [15], and 
Jones [16]. A well-known method used in developing the transition intensity is called as Maximum 
Likelihood Estimation (MLE) function and it was first introduced by Waters [29]. This method has been 
applied in the recent actuarial context, for example, Baione and Levantesi [1], Li [17], and Pasaribu et 
al. [22] where the transition intensities were estimated discretely for each age group from a health data.  
When the collected data are discrete in terms of individual age or grouped age, a continuous mortality 
model is allowed to be used as a fitting model with the collected data. Many types of mortality model, for 
example, Gompertz-Makeham, Weibull and Exponential mortality models had been summarised by 
Forfar [10] where these mortality models are also applicable in the mortality and age population study. 
As a focus of this paper, we consider Gompertz-Makeham mortality model as a fitting model of the 
discrete transition intensity. 

 

Gompertz-Makeham mortality model is popularly used to estimate the transition intensity in most of the 
actuarial practice. Baione and Levantesi [1] estimated the transition intensity of critical illness, dead due 
to other causes, and dead due to critical illness by using Gompertz mortality model with the applications 
of prevalence rate to the critical illness insurance. Next, Baione and Levantesi [2] compared the transition 
intensities of dead due to other causes, and dead due to critical illness with Gompertz and Weibull 
mortality models by assessing the statistical results of the model such as R-square, adjusted R-square, 
mean square error (MSE) and root mean square (RMSE). They concluded that the Gompertz mortality 
model as a better fitting model due to its lowest residual standard error of model. On the other hand, Li 
[17] followed the research work contributed by Baione and Levantesi [2] and concluded that Gompertz 
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mortality model as a better mortality model due to its better goodness of fit using the Canadian health 
data.  

 

This paper follows the motivation of Baione and Levantesi [1], and Li [17] where it is organised as follows. 
First, we define the mathematical assumptions used in multiple state modelling for the critical illness 
insurance. Then, we describe the framework of transition intensities with Gompertz and Makeham 
mortality models while providing the derivation of the transition probabilities. By using the results 
obtained, we then perform an empirical analysis of the application to Canadian health data provide by 
Canadian Chronic Disease Surveillance System (CCDSS) [5]. Similar data has been used in Li [17] to 
investigate the transition intensities with Gompertz and Weibull mortality models. 

 
Review of Previous Study 
 

Actuarial researchers are interested to estimate the transition intensities with some estimation methods. 
The common approach of estimating transition intensities is called as Maximum likelihood estimation 
(MLE) method which was introduced by Waters [29]. This method can be applied if there is a sufficient 
data. For a further extension of MLE method, Baione and Levantesi [1], Forfar et al. [9], Li [17] and 
Pasaribu et al. [22] applied MLE method on a continuous mortality model which is act as a graduation 
(or a fitting) model of transition intensities in their research. 

 

Gompertz, Makeham, generalised Gompertz-Makeham, Lee-Carter and many other mortality models 
can be acted as a graduation model which has been summarised by Forfar [10]. Gompertz mortality 
model is a pioneer model introduced by Gompertz [13] which is used to describe the mortality rate in a 
mortality data. This mortality model captures the mortality rates that depends on age. Gompertz mortality 
model is also applicable in such biological study, for example, Shklovskii [25] assumed and applied 
Gompertz mortality model to neutralize the defective cells based on random encounters of hazard 
substances in the biological mechanism. Nevertheless, Michael [20] also estimated the parameters of 
Gompertz mortality model by addressing some analytical techniques for the insured population in 
England and Wales. However, Gompertz mortality model captures the mortality rates that is highly 
depending on age. Therefore, Makeham [18] added an age-independent parameter into the Gompertz 
mortality model to further extend the work contributed by Gompertz [13]. This extension of mortality 
model contributed by Makeham [18] is called as Makeham mortality model which provides a better 
capture of population study in the mortality data. Several researchers also used Makeham mortality 
model into their research. For example, Ping and Xiang [25] considered the application of Makeham 
distribution to the discrete life insurance with some variable interest rates. Salhi et al. [24] also considered 
Makeham mortality model as an adaptive smoothing function to adjust the graduated mortality table by 
using credibility approach. A generalisation of the combined models of Gompertz and Makeham mortality 
models is called as Gompertz-Makeham (GM) mortality model. GM mortality model also have discussed 
thoroughly by Golubev [11] and Pitacco and Tabakova [23]. Golubev [12] also used Strehler-Mildvan 
correlation method to examine the correlation between the parameters of GM mortality model. Also, 
Wrycza [35] presented and shown that the parameter of the Gompertz-Makeham mortality model can be 
associated with a simple expression of life table entropy in demographic study. Other than these three 
types of mortality model, Lee-Carter mortality model is also popularly used to model and forecast the 
age population study. This mortality model is introduced by Carter and Lee [4] and it has been 
demonstrated with some reliability study of the model (see, for example, Girosi and King [14]). However, 
the Lee-Carter mortality model may not be suitable for a certain data sets due to its nature of the data. 
Therefore, some improvement of this mortality model in terms of its parameter estimation, robustness, 
and interpretability have been suggested by De Jong and Tickle [9], De Jong et al. [10], Lee et al. [22], 
Park et al. [27] and Santolino [33]. 

 

From the defined continuous mortality model, it is important for actuarial science researchers to select 
the most preferred mortality models as a final model in our study. Therefore, a comparison between the 
mortality models should be made with some statistical method. A statistical method that is usually used 
to select a final model is known as model selection. Some literature reviews for model selection method 
are also used by Baione and Levantesi [2], Castellares et al. [4], Li [17] and Melnikov and Romaniuk 
[19]. 

 

Definitions and Assumptions 
 

In this section, we provide the mathematical assumptions which will be applied in our transition intensity 
modelling. To start with the assumption, we first provide the definition of the transition probability and the 
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transition intensity. Here, let ( )S x  be the state of a person at age x and for any positive value from time 

0 to time T, we denote as  0,T . 

 

Transition probability defines the probability of a person currently aged x who transits from State i to 
State j within t years, it can be expressed as: 

 

( ) ( )= = | = , for [0, ],  , ,  .ij

t xp P S x t j S x i t T i j S i j +                         

 
Specifically, if a person currently aged x and is in State i will remain in the same State i for the next t 
years, then the transition probability is defined by: 

 

 = ( ) =  for all [0, ],  ( ) =1ii

t xp P S x z i z T S x+            (1) 

 

Besides, transition intensity is fundament for modelling lifetimes based on its rate of occurrence of 

events. In a multiple state model, transition intensity, denoted by ij

x , is defined as the instantaneous 

rate of occurrence of a person who currently aged x will make a transition from State i to State j. It can 
be expressed as: 

 

0

= , for [0, ],  , ,  .lim

ij
ij t x
x

t

p
t T i j S i j

t


→

    

 
According to the approach mentioned by Waters [29], the transition intensity is also defined as a ratio of 
the number of observed transitions from State i to State j over the total observed times spent in State i. 
Therefore, the transition intensity is now expressed as: 

 

( )
= ,  for , ,  < ,  

ij
ij x
x i

x

d
i j S i j i j

l
                 (2) 

 

where ij

xd  is the number of people who make a transition from State i to State j  between age x and age 

x + t and ( )i

xl  is the number of people who currently aged x and is in State i. 

 

With the defined transition intensities, the transition probabilities can be solved using the Kolmogorov 
forward differential equations if the transition intensities are available in the model (see, for example, 
Dickson el al. [8], Haberman and Pitacco [15]). Therefore, the general formula for the transition 

probabilities for ,i j S  where i j  are: 

 

0
= exp

t
ii ij

t x x u

i j

p du
+



 
− 
 

           (3) 

0
=

t
ij ii ij

t x t x x up p du
+                   (4) 

0 00 0

0
=

t
i i ii

t x u x x u t u x up p p du
+ − +

             (5) 
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Figure 1. Multiple states and transitions for critical illness insurance model 

 

 

In this paper, we consider a multiple state model with three types of critical illness, stroke, heart attack 
and cancer as shown in Figure 1 where State 0 denotes as ‘Healthy’, State 1 as ‘Stroke’, State 2 as 
‘Heart attack’, State 3 as ‘Cancer’, State 41 as ‘Dead due to stroke’, State 42 as ‘Dead due to heart 
attack’, State 43 as ‘Dead due to cancer’ and State 5 as ‘Dead due to other causes’ respectively. 

 

We also made the following assumptions of the model:  

• Dead due to other causes (State 5) includes all types of death other than stroke (State 1), heart 
attack (State 2) and cancer (State 3).  

• A healthy insured will not make a direct transition to State 41, 42, 43.  

• The probability of transitioning from one critical illness to another is zero.  

• We do not consider the recovery of the insured in this insurance plan so probability of transitioning 
from a critical illness to healthy is assumed to be zero.  

• Death states are absorbing states where the probabilities of transitioning from these death states to 
other states are zero.  

• It is possible that an insured with cancer dies due to heart attack or stroke, or an insured who 
survives from heart attack (or stroke) dies due to cancer or stroke (or heart attack). Since it is hard 
to find the corresponding reliable mortality data, we will ignore these transitions in this research for 
simplicity. 

 

According to the model in Figure 1 and the equations (3) and (4), for = 1,2,3i , the transition probabilities 

are as follows: 

 

( )00 01 02 03 05

0
= exp

t

t x x u x u x u x up du   
+ + + +

− + + +           (6) 

( )4 5

0
= exp i

t
iii i

t x x u x up du 
+ +

− +                                                (7) 

4 4

0
=i i

t
i iii

t x u x x up p du
+             (8) 
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Transition Intensities Framework 
 

A direct method on estimating the transition intensities from a critical illness (State i) to death due to 
other causes (State 5) are applicable if there is a complete data available. It is appropriate to introduce 

extra mortality on 
05  to estimate 

5i  for critical illness i. The extra mortality, denoted by i , is defined 

as the ratio of the differences between the actual number of deaths who are exposed to risk and the 
expected number of deaths due to illnesses i to the expected number of deaths during a given time 
period (see Haberman and Pitacco [15]). For example, Dash and Grimshaw [7] assume that the extra 
mortality as the mortality rate of the critical illness from other causes exceeding that of healthy people. 

 

If the data obtained are incomplete, discrete and aggregated age-group for both mortality and morbidity 
data, it is appropriate to fit the discrete transition intensities with the continuous mortality models. 
Suppose the issuing age of the insureds in the critical illness insurance is at age x. First, we assume that 

the transition intensities  31 2 3414 24, ,x x x   , 05

x  and  15 25 35, ,x x x    are described by two independent 

Gompertz-Makeham (GM) model. 

 

We define the general formula of the Gompertz-Makeham (GM) model of order ( , )r s  as: 

 

1 1

=1 =1

( , ) = exp
r s

h k

h k

h k

GM r s x x − − 
+  

 
            (9) 

 

where r is the polynomial order and s is the polynomial order of the exponential, while   and   are the 

vectors of non-negative parameters. 

 

We would want to obtain the two independent GM mortality model. We first fix the parameters r  and s  

of GM by considering 1r   and 2s = . By fixing r and s, the GM model with ( , ) (0,2)r s =  is the 

Gompertz mortality model and ( , ) (1,2)r s =  is the Makeham mortality model. The solution for 0r =  and 

2s =  may not suitable for all mortality experiences data but to avoid over-parameterisation when the 

data is scarce (see for example, Brink [3]). This assumption provides a consistent empirical evidence for 
various data sets on health data. GM models generally act as a graduation function on mortality and 
morbidity data however the choice of concerning must be made carefully as it will make a big difference 
on modelling results based on the obtained data. 

 

For the transition intensity, denoted by 4 ii

x , a direct estimation of the direct transition intensity can be 

obtained by using equation (2). After obtaining the discrete transition intensity, we denote ( , )ijGM r s  to 

be the ( , )GM r s  models from State i to State j. Now, we assume the mortality model of the transition 

intensity, denoted by 4 ii

x  will be fitting with the two independent GM models. 

 

Suppose that 
4 4 (0,2)i ii i

x GM  . In the formula, let 

 

( )4 4 4 4 4

1 2 1 2= exp  with < 0 and > 0i i i i ii i i i i

x x    + ,          (10) 

 

where 
4

1
ii  and 

4

2
ii  are the constant parameters for people in State 0. 

 

Also, by 
4 (1,2)iiGM , 

 

( )4 4 4 4 4 4 4

3 4 3 4= exp  with < 0 and , 0i i i i i i ii i i i i i i

x x      + +  ,         (11) 

 

where 
4ii , 

4

3
ii  and 

4

4
ii  are the constant parameters for people in State 0. 
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However, the transition intensity, denoted by 05

x  cannot be estimated directly using equation (2) since 

it consists of all causes of death except stroke, heart attack and cancer. Therefore, by Li [17], it can be 
expressed as: 

 
3

4

05 1

3
( )

1

ii

x x

i
x

i

x i x

i

d d

l l





=

=

−

=

+




,          (12) 

 

where xd  is the total number of death currently aged x for all causes, 4 ii

xd  is the number of death 

currently aged x transits from State i to State 4i,  xl  is the total number of lives currently aged x and ( )i

xl  

is the number of lives currently aged x and is in State i. 

 

By obtaining the discrete transition intensity 05

x  using equation (12), it is assumed to follow a 

05(0,2)GM  model and 
05(1,2)GM  model for all 1,2,3i =  where 

05 , 05

1 , 05

2 , 05

3  and 05

4  are the 

GM parameters for critical illness sufferers: 

 

( )05 05 05 05 05

1 2 1 2= exp  with < 0 and > 0x x    + ,          (13) 

and 

( )05 05 05 05 05 05

3 4 3 4= exp  with < 0 and > 0x x     + + ,          (14) 

 

Meanwhile, for the transition intensity denoted by 5i

x , we apply the approach proposed by Dash and 

Grimshaw [7] based on the assumption that the transition intensities of being critically ill people from 
causes other than critical illness exceeds the transition intensities of healthy ones by an extra mortality 

of i  where 0i  , which is: 

 

( )5 051  for all 1,2,3i

x i x i  = + = ,           (15) 

 

For a continuous estimation on the transition intensities 5i

x , the Gompertz and Makeham mortality 

models can be expressed as follows: 

 

( )5 5 5 5 5

1 2 1 2= exp  with < 0 and > 0i i i i i

x x    + ,          (16) 

and 

( )5 5 5 5 5 5

3 4 3 4= exp  with < 0 and > 0i i i i i i

x x     + + ,          (17) 

 

where the continuous parameters of the models are ( )5 051i

i   + , ( )05 05ln 1j i j   +  for 1,3k =  

and 5 05i   for 2,4= . 

 

Before we discuss the methodology used in the transition intensity 0 i

x , we introduce the prevalence 

rate as follows. We denote the state of a person aged x as ( )S x . Suppose all insureds currently aged 

0x  and is in Healthy state (State 0)  where ( )0 1S x = . According to Haberman [14], the prevalence rate 

aged x, denoted by xf , is defined as the ratio of the number of person who currently aged x and are sick 

at a specific point in time over the total cohort size at that time. Hence, the prevalence rates of critical 

illness ( )i

xf  can be considered as the probability of the insureds currently aged 0x  being critically ill at 

age x such that 0x x s= +  for 0s   is 

 

 ( )

0= ( ) = | ( ( ) = 0 ( ) = ) ( ) = 0 , =1,2,3i

xf P S x i S x S x i S x i  ,         (18) 
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Consequently, the following equation holds according to Haberman [14]. For 1,2,3i =  and 0s  , 

 

+
+ + +

0

0

0 0 0 0

0

( )

00 01 02 03
=

i

s xi

x s

s x s x s x s x

p
f

p p p p
,             (19) 

 

From equation (19), we can expand the prevalence rate for age 0x s t+ + , thus we have 

 

0

0

0 0 0 0

0

( )

00 01 02 03
= .

i

s t xi

x s t

s t x s t x s t x s t x

p
f

p p p p

+

+ +

+ + + +
+ + +

,                 (20) 

 

where + +


0 0 0

00 00 00
=

s t x s x t x s
p p p  and + + +

+
0 0 0 0 0

0 00 0 0
=

i i i ii

s t x s x t x s s x t x s
p p p p p . 

 
After we have understand the prevalence rate and defined all the mortality functions, now we are able to 

determine the transition intensities, denoted by 0 i

x . The transition intensity can be described by a 

piecewise constant function (for = 1,2,3i  and = −0,1,2, , 1k n ) as follows (Olivieri [21]): 

 

0

0 0

1

0

0 ,  <

= ,  <

,  

i i

x k k k

i

n n

x x

x x x

x x

 



+





 

,             (21) 

 

where n is the number of prevalence rates available from statistical data. 

 

The use of piecewise constant transition intensity has been proposed by Jones [16]. Practically, the 
transition intensity tends to vary as the age-group interval increases. 

 

A summary table of all the defined mortality functions of the transition intensity ij

x  for i j  and ,i j S   

are presented in Table 1. 

 

Table 1. Summary table of mortality models for transition intensities estimation 
 

Mortality model Transition intensity Parameter 

01 02 03, ,x x x    
Constant 

piecewise function 

0

0 0

1

0

0 ,  <

= ,  <

,  

i i

x k k k

i

n n

x x

x x x

x x

 



+





 

 0i

k  

05

x  

05(0,2)GM  ( )05 05 05

1 2= expx x  +  
05 05

1 2 and    

05(1,2)GM  ( )05 05 05 05

3 4= expx x   + +  
05 05 05

3 4,  and     

114

x  

114 (0,2)GM  ( )1 1 114 14 14

1 2= expx x  +  1 114 14

1 2 and    

114 (1,2)GM  ( )1 1 1 114 14 14 14

3 4= expx x   + +  1 1 114 14 14

3 4,  and     

224

x  

224 (0,2)GM  ( )2 2 224 24 24

1 2= expx x  +  2 224 24

1 2 and    

224 (1,2)GM  ( )2 2 2 224 24 24 24

3 4= expx x   + +  2 2 224 24 24

3 4,  and     

334

x  

334 (0,2)GM  ( )3 3 334 34 34

1 2= expx x  +  3 334 34

1 2 and    

334 (1,2)GM  ( )3 3 3 334 34 34 34

3 4= expx x   + +  3 3 334 34 34

3 4,  and     

15 25 35, ,x x x    

5(0,2)iGM  ( )5 5 5

1 2= expi i i

x x  +  
5 5

1 2 and i i   

5(1,2)iGM  ( )5 5 5 5

3 4= expi i i i

x x   + +  
5 5 5

3 4,  and i i i    
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We shall show that these assumptions are fit in the later sections. 

 
Transition probabilities estimation 
 

This section provides the derivation of formula of the transition probabilities from healthy (State 0) to 

critical illness (State i) for 1,2,3i = . 

 

Using the assumptions of the transition intensities 0 i

x  and 5i

x  shown in Table 1, and considering 

equation (6), the probability of an insured currently aged x and is in State 0 will remain in the same state 
until time t is: 

 
( )( )

05 05
1 200 01 02 03 05

0
= exp

t x u

t x k k kp e du
 

   
+ +

− + + + +  

 

for = 0,1,2, , 1k n − , 1<k kx x x
+

  and 1kt x x
+

 −  and for =k n  where > nx x  and t . 

 

Fixed 05 05

1 1= exp( )  , the solution of the previous equation is: 

 

( )
05 05
2 2

05
( ) ( )00 01 02 03 05 1

05

2

= exp ( ) x t x

t x k k kp t e e 
   



+ 
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From equation (5), we use the equations (22) and (23) as well as considering the assumption of transition 
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x  shown in Table 1, we have 
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for = 0,1,2, , 1k n − , 1<k kx x x
+

  and 1kt x x
+

 −  and for =k n  where > nx x  and t . 

 

To solve equation (24), we assume the following an approximation solution according to a Taylor series 
expansion: 
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By using (25), equation (24) becomes 
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Equations (19) and (20) are possible to use to obtain an estimation of the unknown parameters, 0 i
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Data 
We will be using the Canadian health data in our study. We describe the Canadian health data collected 
from Public Health Infobase provided by CCDSS [5]  as follows. The data for stroke and heart attack 
(acute myocardial infraction) in year 2015 is reported by the hospital from the patients who stayed in the 
hospital for a certain time period (CCDSS [5]). The prevalence rates of stroke and heart attack presented 
in Table 2 are the accumulation of number of cases reported based on the yearly basis. The collected 
data for the prevalence rates of stroke and heart attack are categorised into 5 age groups for male and 
female, i.e., 20 − 34, 35 − 49, 50 – 64, 65 – 79 and 80+. Based on Table 2, the prevalence rates increase 
as age increases for both genders and both critical illnesses. At younger age, males have lower 
prevalence rates of stroke as compare to females. However, starting age 50 onwards, the prevalence 
rates of stroke for males are higher than females. As for the heart attack, males has higher prevalence 
rates than females for all ages. 

 

Table 2. Prevalence rates of stroke and heart attack in year 2015 
 

Prevalence Rates 

Age 
group 

Stroke Heart attack 

Males Females Males Females 

20 – 34 0.0012 0.0014 0.0003 0.0001 

35 – 49 0.0057 0.0064 0.0055 0.0015 

50 – 64 0.0240 0.0201 0.0351 0.0098 

65 – 79 0.0773 0.0596 0.0849 0.0312 

80+ 0.1847 0.1643 0.1349 0.0799 

 

 

On the other hand, the prevalence rates of cancer (malignant neoplasm) in year 2015 are categorised 
into 8 age groups for males and females‚ is obtained from [26] which is presented in Table 3. At younger 
age between age 20 to age 59, the prevalence rates of cancer for males are lower than females. Starting 
age 60 onwards, males have higher prevalence rates of cancer as compared to females. In general, 
males tend to have higher prevalence rates of stroke, heart attack and cancer at older age, based on 
Table 2 and Table 3. 

 

Table 3. Prevalence rates of cancer in year 2015 
 

Prevalence Rates 

Age 
group 

Cancer 

Males Females 

20 – 29 0.0016 0.0018 

30 – 39 0.0029 0.0053 

40 – 49 0.0060 0.0126 

50 – 59 0.0177 0.0241 

60 – 69 0.0480 0.0397 

70 – 79 0.0835 0.0560 

80 – 89 0.0919 0.0565 

90+ 0.0757 0.0431 

 

 

The number of populations in year 2015 for males and females obtained from [27], are presented in 
Table 4, where it is divided into 15 age groups, starting 20 − 24, 25 − 29, …, 85 − 89 and 90+. Besides, 
the number of deaths for stroke, heart attack, cancer and all causes other than these 3 critical illnesses 
in year 2015 are obtained from [28] and shown in Table 5. Similar to Table 4, the data in Table 5 are 
categorised based on 2 genders and 15 age groups. 
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Table 4. Number of populations in year 2015 
 

Number of populations 

Age 
group 

Males Females 

20 – 24 1244697 1150926 

25 – 29 1239356 1190201 

30 – 34 1230618 1229883 

35 – 39 1174086 1197143 

40 – 44 1167211 1182711 

45 – 49 1220275 1225541 

50 – 54 1392935 1390415 

55 – 59 1300456 1314212 

60 – 64 1102960 1140251 

65 – 69 926287 976717 

70 – 74 649566 708146 

75 – 79 452282 530742 

80 – 84 317644 417363 

85 – 89 177089 290076 

90+ 77062 191352 

 

Table 5. Number of deaths due to critical illnesses in year 2015 
 

Number of deaths 

Age 
group 

Stoke Heart attack Cancer All causes 

Males Females Males Females Males Females Males Females 

20 – 24 1 5 0 0 60 31 897 376 

25 – 29 5 7 2 1 58 76 1061 441 

30 – 34 14 9 7 1 126 148 1131 577 

35 – 39 18 14 24 8 176 232 1238 698 

40 – 44 42 32 54 14 291 421 1735 1094 

45 – 49 58 48 147 31 618 764 2727 1667 

50 – 54 118 106 306 64 1471 1660 4887 3326 

55 – 59 190 158 539 130 2725 2725 7456 4921 

60 – 64 249 191 710 259 4188 3589 10021 6707 

65 – 69 382 329 890 339 5402 4372 12788 8708 

70 – 74 563 462 928 451 5893 4781 14242 10447 

75 – 79 751 735 913 629 5995 4771 16341 12918 

80 – 84 1148 1321 1204 927 6034 5096 20196 18664 

85 – 89 1199 1841 1208 1242 4519 4257 20006 23499 

90+ 1019 2768 994 1939 2747 3631 16940 35512 

 

 

We will use the data obtained from Tables 2 – 5 to estimate the transition intensities   ij
 in the later 

sections. 

 
Empirical Analysis 
 
By using the collected data presented above, we perform the estimation of transition intensities in this 
section. As discussed in previous sections, selected equations and mortality models will be applied to 
the Canadian health data in Tables 2 – 5 to estimate the required transition intensities. A comparison of 
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mortality models and analysis of transition intensities will be discussed and presented in details under 
this section. 
 

Estimation of Transition Intensity 
4 ii

x  

 

By using Tables 2 – 5, we estimate the transition intensities with the defined mathematical formula in the 
sections “Transition intensities framework” and “Transition probabilities estimation”. Based on the 

collected data as in Tables 4 and 5, the values of transition intensities for  114x , 224

x  and  334

x  are 

calculated discretely using equation (2) as presented in Table 6. 

 

Table 6. Discrete transition intensities 4 ii

x  for 1,2,3i =  
 

Transition intensities 

Age 
group 

114

x  224

x  334

x  

Males Females Males Females Males Females 

20 – 24 0.00067 0.00310 0.00000 0.00000 0.03030 0.01515 

25 – 29 0.00336 0.00420 0.00538 0.00840 0.02941 0.03592 

30 – 34 0.00948 0.00523 0.01897 0.00813 0.03492 0.02292 

35 – 39 0.00269 0.00183 0.00372 0.00445 0.05113 0.03691 

40 – 44 0.00631 0.00423 0.00841 0.00789 0.04161 0.02831 

45 – 49 0.00834 0.00612 0.02190 0.01687 0.08453 0.04957 

50 – 54 0.00353 0.00379 0.00626 0.00470 0.05959 0.04950 

55 – 59 0.00609 0.00598 0.01181 0.01009 0.11824 0.08598 

60 – 64 0.00941 0.00833 0.01834 0.02318 0.07908 0.07920 

65 – 69 0.00534 0.00565 0.01132 0.01112 0.12146 0.11263 

70 – 74 0.01121 0.01095 0.01683 0.02041 0.10868 0.12064 

75 – 79 0.02148 0.02324 0.02378 0.03799 0.15879 0.16063 

80 – 84 0.01957 0.01926 0.02810 0.02780 0.20663 0.21618 

85 – 89 0.03666 0.03863 0.05057 0.05359 0.27756 0.25983 

90+ 0.07159 0.08804 0.09561 0.12682 0.47102 0.44012 

 

 

The discrete transition intensities 114x , 224

x  and 334

x  of the insureds currently aged x are fitted with 

the proposed mortality models shown in Table 1. The fitted transition intensities under both Gompertz 
and Makeham mortality models for males and females are presented in Figures 2 – 7. 
 

 

Figure 2. Gompertz and Makeham mortality models of 114x  (Stroke) on male 
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Figure 3. Gompertz and Makeham mortality models of 114x  (Stroke) on female 

 

 

Figure 4. Gompertz and Makeham mortality models of 224

x  (Heart Attack) on male 

 

Figure 5. Gompertz and Makeham mortality models of 224

x  (Heart Attack) on female 
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Figure 6. Gompertz and Makeham mortality models of 334

x (Cancer) on male 

 

 

Figure 7. Gompertz and Makeham mortality models of 334

x (Cancer) on female 

 

 

Figures 2 – 7 show that the Gompertz mortality model of 114x  and 224

x  for both males and females are 

underestimated during the younger age and work well after age 70. Conversely, Makeham mortality 

model of 114x  and 224

x  on males and females are ideally fitted although there are a huge fluctuation in 

male data at the beginning of younger ages. Moreover, Gompertz mortality model of 334

x  is slightly 

underestimated on males. For the transition intensity of 334

x  under female, both Gompertz and 

Makeham mortality model provide a similar curve which are closer to the observed transition intensities. 
By observing the graphs of both Gompertz and Makeham mortality models, it is hard to differentiate 
which models are preferred in this study. Thus, a model selection is required for a better model adequacy 
check. 

 

In this paper, we will consider the residual sum of square and residual standard error as the criteria of 
our model selection. Residual sum of square defines the variation of data which can be explained by the 
estimated model and residual standard error defines the standard error of the estimated model. 
According to Montgomery et al. [23], the mathematical formula of residual sum of square, denoted by 
RSS and residual standard error, denoted by RSE are: 
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( )
=
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n
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According to the fundamental concept of model selection, a preferred model must be selected when the 
criterion of the goodness of fit are met. Thus, the model will be considered as a best fitting model if the 
residual sum of square and residual standard error of the model are smallest in values. We perform the 

model selection of the Gompertz and Makeham mortality models on 4 ii

x  for 1,2,3i = . The results are 

then provided in Table 7. 

 

Table 7. Model residual of Gompertz and Makeham mortality models of 4 ii

x  for 1,2,3i =  
 

Transition 
intensity 

Mortality 
model 

Gender 

Model residual 

Sum of 
square 

Standard 
error 

114

x  

(Stroke) 

Gompertz 
Male 0.00235 0.00567 

Female 0.00311 0.00653 

Makeham 
Male 0.00156 0.00465 

Female 0.00236 0.00573 

224

x  

(Heart Attack) 

Gompertz 
Male 0.00686 0.00969 

Female 0.00976 0.01156 

Makeham 
Male 0.00391 0.00737 

Female 0.00704 0.00989 

334

x  

(Cancer) 

Gompertz 
Male 0.08840 0.0348 

Female 0.04260 0.02417 

Makeham 
Male 0.05390 0.02735 

Female 0.03300 0.02141 

 

 

Based on the results in Table 7, Makeham mortality model is preferred for the transition intensities  114 ,x  

224

x  and 334

x  due to its smallest values of residual sum of square and residual standard error. 

Therefore, the values of the parameter of Makeham mortality model on the 4 ii

x  for 1,2,3i =  are 

presented in Table 8. 

 

Table 8. Parameter values of Makeham mortality model of 4 ii

x  for 1,2,3i =  
 

Transition 
intensity 

Gender 
Parameter values for 4 ii

x  

4ii  
4

1
ii  

4

2
ii  

114

x  

(Stroke) 

Male 0.00480 −13.12000 0.11220 

Female 0.00435 −14.13000 0.12540 

224

x  

(Heart Attack) 

Male 0.00954 −13.48168 0.11889 

Female 0.00883 −13.67462 0.12406 

334

x  

(Cancer) 

Male 0.04709 −8.38730 0.08086 

Female 0.02586 −7.14590 0.06712 
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Estimation of Transition Intensity 
05

x  

 
We consider a set of values of extra mortality for critical illnesses i (i.e. Stroke, Heart attack and Cancer), 

is denoted by i , that is, 0i = ,  0,2,4,6,7,8,9i =  for 1,2,3i =  to observe the sensitivity of both 

Gompertz and Makeham mortality model to fit 05

x . The extra mortality will affect the transition intensity 

as it varies when we refer to equation (12). For example, an extra mortality of zero, 0i = , reflects that 

there is no increasing in the number of lives in State i, ( )i

xl . When the extra mortality increases, 0i  , 

it reflects that there are more people who diagnosed critical illnesses i than the observed number of lives 

in State i, ( )i

xl . 

 

We calculate 05

x  for each values of extra mortality using equation (12) presented in Table 9 and Table 

10. Then, 05

x  on each values of extra mortality will be fitted with the proposed mortality model (refer 

Table 1). The results for both Gompertz and Makeham mortality model under a set of values of i  are 

presented in Table 11. 
 

Table 9. Discrete transition intensities 05

x  when 6i   
 

Transition intensities 

Age 
group 

0i =   = 3i  6i =  

Males Females Males Females Males Females 

20 – 24 0.00067 0.00030 0.00067 0.00029 0.00066 0.00029 

25 – 29 0.00080 0.00030 0.00080 0.00030 0.00079 0.00029 

30 – 34 0.00080 0.00034 0.00079 0.00033 0.00078 0.00033 

35 – 39 0.00087 0.00037 0.00083 0.00036 0.00080 0.00034 

40 – 44 0.00115 0.00053 0.00110 0.00051 0.00105 0.00047 

45 – 49 0.00156 0.00067 0.00148 0.00065 0.00141 0.00060 

50 – 54 0.00215 0.00108 0.00175 0.00097 0.00147 0.00081 

55 – 59 0.00308 0.00145 0.00250 0.00131 0.00211 0.00110 

60 – 64 0.00442 0.00234 0.00334 0.00205 0.00269 0.00165 

65 – 69 0.00660 0.00376 0.00405 0.00298 0.00292 0.00211 

70 – 74 0.01056 0.00671 0.00608 0.00519 0.00427 0.00357 

75 – 79 0.01920 0.01278 0.01105 0.00988 0.00776 0.00680 

80 – 84 0.03718 0.02712 0.01664 0.01694 0.01072 0.00967 

85 – 89 0.07386 0.05571 0.03305 0.03479 0.02129 0.01987 

90+ 0.15806 0.14201 0.07231 0.09019 0.04688 0.05214 

 
 

Table 10. Discrete transition intensities 05

x  when 6i   
 

Transition intensities 

Age 
group 

7i =  8i =  9i =  

Males Females Males Females Males Females 

20 – 24 0.00066 0.00029 0.00066 0.00029 0.00065 0.00029 

25 – 29 0.00079 0.00029 0.00078 0.00029 0.00078 0.00029 

30 – 34 0.00078 0.00033 0.00077 0.00032 0.00077 0.00032 

35 – 39 0.00079 0.00034 0.00078 0.00034 0.00077 0.00033 
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Transition intensities 

40 – 44 0.00103 0.00046 0.00102 0.00046 0.00100 0.00045 

45 – 49 0.00139 0.00059 0.00137 0.00058 0.00135 0.00057 

50 – 54 0.00140 0.00078 0.00133 0.00075 0.00127 0.00072 

55 – 59 0.00200 0.00105 0.00191 0.00101 0.00182 0.00098 

60 – 64 0.00253 0.00157 0.00238 0.00150 0.00225 0.00144 

65 – 69 0.00267 0.00196 0.00246 0.00184 0.00228 0.00173 

70 – 74 0.00388 0.00331 0.00356 0.00309 0.00329 0.00289 

75 – 79 0.00706 0.00630 0.00647 0.00588 0.00598 0.00551 

80 – 84 0.00958 0.00874 0.00866 0.00796 0.00790 0.00732 

85 – 89 0.01903 0.01794 0.01721 0.01636 0.01570 0.01503 

90+ 0.04196 0.04716 0.03797 0.04305 0.03468 0.03960 
 

Table 11. Model residual of Gompertz and Makeham mortality of 05

x  with different values of extra 

mortality 
 

Extra 
Mortality 

Mortality 
model 

Gender 
Model residual 

Sum of square Standard error 

0i =  

Gompertz 
Male 0.00565 0.00880 

Female 0.00565 0.00879 

Makeham 
Male 0.00564 0.00885 

Female 0.00565 0.00886 

2i =  

Gompertz 
Male 0.00181 0.00499 

Female 0.00231 0.00563 

Makeham 
Male 0.00178 0.00497 

Female 0.00230 0.00566 

4i =  

Gompertz 
Male 0.00091 0.00354 

Female 0.00126 0.00416 

Makeham 
Male 0.00087 0.00347 

Female 0.00125 0.00417 

6i =  

Gompertz 
Male 0.00056 0.00277 

Female 0.00080 0.00331 

Makeham 
Male 0.00052 0.00268 

Female 0.00079 0.00331 

7i =  

Gompertz 
Male 0.00046 0.00250 

Female 0.00066 0.00300 

Makeham 
Male 0.00042 0.00240 

Female 0.00065 0.00300 

8i =  

Gompertz 
Male 0.00038 0.00229 

Female 0.00055 0.00275 

Makeham 
Male 0.00034 0.00218 

Female 0.00054 0.00274 

9i =  

Gompertz 
Male 0.00033 0.00211 

Female 0.00047 0.00254 

Makeham 
Male 0.00029 0.00199 

Female 0.00046 0.00253 
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We compare the results between both Gompertz and Makeham mortality models for the set of values of 

extra mortality i  in Table 11. The model which has the lowest value of both residual sum of square and 

residual standard error will fulfill the model selection criterion, hence, can be claimed as the best fitting 

model. Under 0i = , the value of residual sum of square on both Gompertz and Makeham mortality 

models are too close to make decision on selecting the preferred model. However, for the residual 
standard error, Gompertz mortality model has smaller value compare to Makeham mortality model, for 
both males and females. Therefore, we cannot conclude that Gompertz mortality model is the best fitting 
model based on its residual sum of square and residual standard error since it does not fully fulfill the 
two model selection criterion. 
 

Under  = 3i , Makeham mortality model is better fitted for male data. For female data, the model 

selection results does not fully fulfill the model selection criterion for neither Gompertz mortality model 
nor Makeham mortality model. The results for both male and female data are consistently similar for all 

6i  . 

 

When we increase the value of i  to 7, we observed that Makeham mortality model has the best fitting 

for both male and female by having the smallest residual sum of square and residual error. The results 

fulfill the model selection criterion under 7i =  and consistently similar throughout 8i =  and 9i = . 

Since the results of Makeham mortality model hold for 6i  , we will select the minimum value of extra 

mortality as our final model, that is, 7i = . Therefore, we can conclude that Makeham mortality model 

is preferred in the fitting of 05

x  for both male and female when 6i  .  To strengthen the results on 

choosing the minimum values of the Makeham mortality model of 7i = , we observe the 05

x  from the 

graph as  presented in Figures 8 – 9. 

 

 

Figure 8. Gompertz and Makeham mortality models of 05

x on male when 7i =  
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Figure 9. Gompertz and Makeham mortality models of 05

x on female when 7i =  

 

 

Based on Figures 8 – 9, Makeham mortality model provides a better fitting of 05

x  on both genders for 

7i =  where all the mortality rates are ideally distributed throughout all ages. Conversely, Gompertz 

mortality model of 05

x  on both genders does not provide a good fitting due to the underestimation of 

mortality rates before age 70. This evidence shows that Makeham mortality model is a better fitting model 

of 05

x  for 7i = . Since Makeham mortality model is preferred for both genders and for all transitions, 

therefore the values of the parameter of Makeham mortality model is provided in Table 12. 

 

Table 12. Parameter values of Gompertz and Makeham mortality of 05

x  with extra mortality 7i =  
 

Transition 
intensity 

Gender 
Parameter values for 05

x  

05  
05

1  05

2  

05

x  
Male 0.00100 −14.92000 0.12630 

Female 0.00048 −16.11000 0.14060 

 

 

Estimation of Transition Intensity 
5i

x  

 

Since 05

x  follows a Makeham mortality model when 7i = , we will estimate the transition intensities 

5i

x  for 1,2,3i = . First, we calculate 5i

x  for 1,2,3i =  discretely using equation (15) and is presenetd 

in Table 13. 

 

Note that the extra mortality i  is assumed to be the same throughout the three types of critical illnesses 

(Stroke, Heart attack and Cancer) when we first introduced it, therefore the values of 5i

x  for 1,2,3i =  

are equal using equation (15). After obtaining the discrete calculation of the values of 5i

x  for 1,2,3i =

, we fit the transition intensities with the proposed mortality models, that is, Gompertz and Makeham 
mortality model as shown in Table 1. Thus, the results of the model selection between the two mortality 
models, Gompertz and Makeham mortality models are presented in Table 14. 
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Table 13. Discrete transition intensities 5i

x  for 1,2,3i =  
 

Transition intensities 

Age 
group 

15

x  25

x  35

x  

Males Females Males Females Males Females 

20 – 24 0.00526 0.00231 0.00526 0.00231 0.00526 0.00231 

25 – 29 0.00629 0.00235 0.00629 0.00235 0.00629 0.00235 

30 – 34 0.00620 0.00260 0.00620 0.00260 0.00620 0.00260 

35 – 39 0.00632 0.00272 0.00632 0.00272 0.00632 0.00272 

40 – 44 0.00825 0.00371 0.00825 0.00371 0.00825 0.00371 

45 – 49 0.01114 0.00470 0.01114 0.00470 0.01114 0.00470 

50 – 54 0.01117 0.00625 0.01117 0.00625 0.01117 0.00625 

55 – 59 0.01601 0.00843 0.01601 0.00843 0.01601 0.00843 

60 – 64 0.02020 0.01258 0.02020 0.01258 0.02020 0.01258 

65 – 69 0.02137 0.01570 0.02137 0.01570 0.02137 0.01570 

70 – 74 0.03106 0.02649 0.03106 0.02649 0.03106 0.02649 

75 – 79 0.05646 0.05043 0.05646 0.05043 0.05646 0.05043 

80 – 84 0.07665 0.06989 0.07665 0.06989 0.07665 0.06989 

85 – 89 0.15226 0.14354 0.15226 0.14354 0.15226 0.14354 

90+ 0.33567 0.37729 0.33567 0.37729 0.33567 0.37729 

 

 

Table 14. Model residual of Gompertz and Makeham mortality models of 5i

x  for 1,2,3i =  
 

Transition 
intensity 

Mortality 
model 

Gender 

Model residual 

Sum of 
square 

Standard 
error 

5i

x  

Gompertz 
Male 0.02930 0.02003 

Female 0.04220 0.02403 

Makeham 
Male 0.02660 0.01921 

Female 0.04150 0.02400 

 

 

Based on the results in Table 14, it is clearly show that Makeham mortality model on both genders 

provides a better fitting in 5i

x  for 1,2,3i =  based on its smallest residual sum of square and residual 

standard error. The values of parameter of Makeham mortality model are then provided in Table 15. 

Furthermore, the graphs of 5i

x  for 1,2,3i =   on both genders are plotted in Figures 10 – 11. We 

observed that the mortality rates under Makeham mortality model is ideally distributed throughout all 
ages whereas the mortality rates under Gompertz mortality model is underestimated before age 70. 

 

Table 15. Parameter values of Makeham mortality model of 5i

x  for 1,2,3i =  
 

Transition 
intensity 

Gender 
Parameter values for 5i

x  

5i  
5

1

i  5

2

i  

5i

x  
Male 0.00802  −12.83632 0.12633 

Female 0.00387 −14.03323 0.14055 
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Figure 10. Gompertz and Makeham mortality models of 5i

x  on male 

 

 

Figure 11. Gompertz and Makeham mortality models of 5i

x  on female 

 
 

Estimation of 
0i

x  

 

After obtaining the values of the parameter of Makeham mortality model for all transitions in the section 

“Empirical Analysis”, we input the estimated values of the parameter of 4 ii

x  for 1,2,3i =  and 05

x  into 

the equations (11), (14) and (17) when 7i = . Hence, equations (11) and (12) are applied to estimate 

the discrete values of 0 i

x  for 1,2,3i =  by performing an iterative approach namely Newton-Raphson 

method. This iterative approach calculates a Jacobian of the function at each iteration. A quadratic 
convergence will be shown when the closed solution is iterated. With the use of this iterative approach, 

we obtained the numerical values of 0 i

x  for 1,2,3i =  associated with the piecewise constant function 

shown in Table 1 is then presented in Table 16. We plotted the values of 01

x , 02

x  and 03

x  as presented 

in the Figures 12 – 17. 
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Figure 12. Gompertz and Makeham mortality models of 01

x  on male 

 

 

Figure 13. Gompertz and Makeham mortality models of 01

x  on female 

 

Figure 14. Gompertz and Makeham mortality models of 02

x  on male 
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Figure 15. Gompertz and Makeham mortality models of 02

x  on female 

 

 

Figure 16. Gompertz and Makeham mortality models of 03

x  on male 

 

 

 

Figure 17. Gompertz and Makeham mortality models of 03

x  on female 
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Table  16. Discrete transition intensities 0 i

x  for 1,2,3i =  with 7i =  
 

Transition intensities 

Age 
group 

01

x  02

x  03

x  

Males Females Males Females Males Females 

20 – 24 0.00025 0.00029 0.00006 0.00002 0.00037 0.00039 

25 – 29 0.00001 0.00001 0.00000 0.00000 0.00009 0.00006 

30 – 34 0.00001 0.00001 0.00001 0.00000 0.00040 0.00083 

35 – 39 0.00095 0.00104 0.00110 0.00029 0.00017 0.00021 

40 – 44 0.00007 0.00005 0.00009 0.00002 0.00091 0.00189 

45 – 49 0.00007 0.00005 0.00010 0.00002 0.00040 0.00062 

50 – 54 0.00405 0.00296 0.00660 0.00180 0.00339 0.00350 

55 – 59 0.00036 0.00019 0.00071 0.00014 0.00152 0.00173 

60 – 64 0.00041 0.00024 0.00080 0.00017 0.01023 0.00629 

65 – 69 0.01389 0.00950 0.01363 0.00527 0.00646 0.00480 

70 – 74 0.00231 0.00158 0.00316 0.00110 0.02206 0.01208 

75 – 79 0.00374 0.00291 0.00489 0.00189 0.02165 0.01333 

80 – 84 0.04427 0.03913 0.02624 0.01973 0.04003 0.02168 

85 – 89 0.02777 0.03181 0.02387 0.01832 0.02387 0.03534 

90+ 0.06092 0.06976 0.05065 0.03929 0.08711 0.04411 

 

 

Based on the graphs in Figures 12 – 17, 01

x  and 02

x  on both genders show an increasing trend along 

the age-group starting from age 20 to age 90 and above. A small fluctuation of values of 01

x  and 02

x  

occurred before age 65 and a large fluctuation occurred after age 65. These fluctuations indicate that 
there is a slight increase in the prevalence rates of stroke and heart attack presented in Table 2 from 
age 20 to age 65 and increase after age 65. 

 

Moreover, 03

x  on both genders also show an increasing trend along the age group starting from age 20 

to age 90 and above. On the male gender, the values of the transition intensities 03

x  occur a small 

fluctuation before age 65 and a large fluctuation occurred after age 65. However, 03

x on female show a 

steady increasing trend and small fluctuation occurred along the age group from age 20 to age 90 and 
above. It indicates that there is an small increase in the prevalence rates of cancer presented in Table 3 
from age 20 to age 89, and a slightly decrease for age 90 and above. 

 

Now, we can conclude that the estimated transition intensities 0 i

x  for 1,2,3i =  are highly depending 

on the prevalence rates of the three types of critical illness using Newton-Raphson method. 

 

Conclusion and Future Work 
 

In this paper, we propose a multiple state model which consists of the three types of critical illness, i.e., 

stroke, heart attack and cancer, and two types of death, i.e., dead due to critical illness and dead due to 

other causes. The multiple state model is linked to the prevalence rate which may affect the number of 

deaths due to the three types of critical illness. When the prevalence rate of the critical illness increases, 

the number of death due to the three types of critical illness will increase along the number of populations. 

In this context, the consideration of transition intensities would be more suitable on the observation of 

the rate of occurrence of critical illness. 

 

At the end of the study, Makeham mortality model of 
4 ii

x for 1,2,3i =  is preferred to fit the Canadian 

health data collected due to its smallest residual sum of square and residual standard error. Similar 
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results have obtained for 05

x   and 5i

x   for   with the assumption of 7i = . We estimated 0 i

x   for  

1,2,3i =  using Newton-Raphson method. Hence, the estimated 0 i

x   for  1,2,3i =  will be associated 

with the piecewise constant function. 

 

The trend of 4 ii

x , 05

x  and 5i

x  for 1,2,3i =  appears regularly with its time-dependent parameters. 

However, for 01

x  and 02

x , the increasing trend fluctuated regularly from age 20 to age 65 and highly 

fluctuated after age 65 due to its increasing in prevalence rates of stroke and heart attack. 03

x  on male 

provides a similar trend as 01

x  and 02

x . Consequently, 03

x  on female show a steady increasing trend 

along all ages due to the small amount of increase in percentage of the prevalence rates of cancer. In 

our next study, we will apply the estimated transition intensities to investigate effect of the insurance 

premiums in the critical illenss insurance by considering a few different types of insurance models. 
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