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ABSTRACT 
 
The main purpose of this paper is to examine the effectiveness of the Half-Sweep Arithmetic Mean (HSAM) method in 
solving the dense linear systems generated from the discretization of the linear Fredholm integral equations of the 
second kind. In addition, the applications of the various orders of closed Newton-Cotes quadrature discretization 
schemes will be investigate in order to form linear systems. Furthermore, the basic formulation and implementation for 
the proposed method are also presented. Some illustrative examples are given to point out the efficiency of the 
proposed method. 

 
| Linear Fredholm equations | Quadrature scheme | Half-Sweep Arithmetic Mean method | 

 

 
1. Introduction  

 

Two-stage iterative methods are one of the widely used and successful classes of numerical algorithms to 

solve any system of linear algebraic equations that is generated by using approximation equations. Actually, there 

are many two-stage iterative methods can be considered such as the Alternating Group Explicit (AGE) [1], 

Iterative Alternating Decomposition Explicit (IADE) [2], Reduced Iterative Alternating Decomposition Explicit 

(RIADE) [3], Half-Sweep Iterative Alternating Decomposition Explicit (HSIADE) [4], Quarter-Sweep Iterative 

Alternating Decomposition Explicit (QSIADE) [5], Block Jacobi [6] and Arithmetic Mean (AM) [7] methods. 
 

In 2004, Sulaiman et al. [8] modified the standard AM method also named as the Full-Sweep Arithmetic 

Mean (FSAM) method by combining the concept of the half-sweep iteration method and then called as the Half-

Sweep Arithmetic Mean (HSAM) method. The concept of the half-sweep iteration method is introduced via the 

Explicit Decoupled Group (EDG) iterative method for solving two-dimensional Poisson equations [9]. Further 

studies of the HSAM method have been also conducted to solve Poisson’s equation using finite element [10] and 

fourth-order finite difference [11] methods. Besides that, HSAM method also have been applied to solve linear 

systems generated from the discretization of the Fredholm integral equations, see [12-14]. In this paper, the 
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application of the FSAM and HSAM methods using the approximation equation based on quadrature methods for 

solving linear second kind Fredholm integral equations is examined. 

 

Generally, linear second kind integral equations of Fredholm type in the standard form can be defined as 

follows  

( ) ( ) ( ) ( )xfdttytxKxy =− ∫Γ ,λ , [ ]ba,=Γ  0≠λ                                                (1)  

where the parameter λ , kernel ( ) ],[],[, 2 babaLtxK ×∈ and free term ( ) ],[2 baLxf ∈  are given, and ( )xy  is the 

unknown function to be determined. The kernel function ( )txK ,  is assumed to be absolutely integrable and 

satisfy other properties that are sufficient to imply the Fredholm alternative theorem. 

 

Theorem (Fredholm alternative) [15] 

 

Let χ  be a Banach space and let χχκ →:  be compact. Then the equation ( ) fy =−κλ , 0≠λ  has a unique 

solution χ∈x  if and only if the homogeneous equation ( ) 0=− zκλ  has only the trivial solution 0=z . In such 

a case, the operator  χχκλ
11

:
−
→−
onto

 has a bounded inverse ( ) 1−−κλ . 

 

Definition (Compact operators) [15] 

 

Let χ  and Υ  be normed vector space and let Υ→χκ :  be linear. Then κ  is compact if the set  

{ }1| ≤xxxκ  

has compact closure in Υ . This is equivalent to saying that for every bounded sequence { } χ⊂nx , the sequence 

{ }nxκ  has a subsequence that is convergent to some point in Υ . Compact operators are also called completely 

continuous operators. 

 

The remainder of this paper is organized in following way. In next section, the formulation of the full- and 

half-sweep quadrature approximation equations based on repeated Newton-Cotes schemes is described. The latter 

section of this paper will discuss the formulations of the FSAM and HSAM methods and some numerical results 

will be shown to indicate the effectiveness of the HSAM method. Meanwhile, conclusion and directions of the 

future works are drawn in final section.  

 

2. Half-Sweep Quadrature Approximation Equations 
 
 In many application areas, numerical approaches were used widely to solve Fredholm integral equations of 

the second kind than the analytical methods. For the solution of a linear integral equation, reduction of integral 

equation to the solution of system of linear algebraic equations is the basic concept used to solve the problems. 

There are many methods can be used to discretize the linear Fredholm integral equations into linear systems such 

as quadrature [15-19] and projection [20-23] methods. 

 

 In this paper, however, discretization schemes based on quadrature method were used to discretize the linear 

Fredholm integral equations of the second kind in order to form a linear system. Quadrature formulas in general 

have the form  

( ) ( ) ( )∫ ∑
=

+=
b

a

n

j

njj ytyAdtty

0

ε                                                             (2)    
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where jt , nj ,,1,0 K=  are the abscissas of the partition points of the integration interval [ ]ba,  or quadrature 

(interpolation) nodes, jA , nj ,,1,0 K= are numerical coefficients that do not depend on the function ( )ty  and 

( )ynε  is the truncation error of Eq. (2).  

 

To facilitate in formulating the full- and half-sweep approximation equations for linear Fredholm equation of 

the second kind, further discussion will be restricted onto Newton-Cotes quadrature method, which is based on 

interpolation formulas with equally spaced data. In this paper, four different schemes in Newton-Cotes method 

such as repeated trapezoidal (RT), repeated Simpson’s 
3

1
 (RS1), repeated Simpson’s 

8

3
 (RS2) and repeated 

Boole (RB) will be applied to discretize the problem. RT, RS1, RS2 and RB are first, second, third and fourth 

order schemes respectively. Meanwhile, Figure 1 shows the finite grid networks in order to form the full- and 

half-sweep approximation methods for problem (1). 

 

 

 

 

 

a) 

 

 

 

 

b) 

 

Figure 1: a) and b)  show distribution of uniform node points for the full- and half-sweep cases respectively. 

 

 

Based on the Figure 1, the full- and half-sweep iterative methods will compute approximate values onto node 

points of type   only until the convergence criterion is reached. Then other approximate solutions at remaining 

points (points of the different type, ) are obtained using the direct method [9,24,25]. By applying Eq. (2) into 

Eq. (1) and neglecting the error, ( )ynε  a system of linear algebraic equations can be formed for approximation 

values ( )xy  at the nodes nxxx ,,, 10 K . The following linear system generated using the Newton-Cotes quadrature 

method can be easily shown as 

fy =M                                                                              (3) 
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Based on repeated trapezoidal, repeated Simpson’s
3

1
, repeated Simpson’s 

8

3
 and repeated Boole schemes, 

numerical coefficient jA  satisfied following relations respectively.   


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
=

=
otherwiseph

njph
A j
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                                                                   (4) 
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where the constant step size, h is defined as  

n

ab
h

−
= .                                                                              (8) 

n is the number of subintervals in the interval [ ]ba, and then consider the discrete set of points be given as 

ihaxi += .  The value of p, which corresponds to 1 and 2, represents the full- and half-sweep cases respectively.  

 
3. Derivation of the Half-Sweep Arithmetic Mean Method 
 
 As afore-mentioned in the previous section, the HSAM method is one of two-stage iterative methods. It 

means that the iterative process for this method consists of solving two independent systems such as 
~
y  and 

∧
y . 

To develop formulation of HSAM and FSAM methods, matrix M needs to be decomposed into 

TDLM ++=                                                                         (9) 

where L, D and T are strictly lower triangular, diagonal and strictly upper triangular matrices respectively. Thus, 

for real positive acceleration parameter, r, the general scheme for both AM methods is given by 
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In Eq. (10), )(k
y  represents as an unknown vector at the kth iteration and )0(

y  is an initial vector 

approximation to the solution y of (9). Practically, the value of r will be determined by implementing some 

computer programs and then choose one value of r, where its number of iterations is the smallest. By determining 

values of matrices L, D and T as stated in Eq. (9), the general algorithm for FSAM and HSAM schemes in Eq. 

(10) would be described in Algorithm 1. The FSAM and HSAM algorithms are explicitly performed by using all 

equations at level (1) and (2) alternatively until the specified convergence criterion is satisfied.     

 

Algorithm 1: FSAM and HSAM schemes    
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iii) For npnpnppi ,,2,,2,,0 −−= L  

 Calculate 

  









+←

∧
+

ii
k

i yyy
~

)1(

2

1
 

 
4. Numerical Simulations 
 
 In this section, some numerical simulations have been conducted to assess the effectiveness of the proposed 

method through three parameters such as number of iterations, execution time and maximum absolute error. In 

comparison, the Full-Sweep Gauss-Seidel (FSGS) method act as the control of comparison of numerical results. 

In the implementation of the iterative methods, the convergence test considered the tolerance error, ε  of 1010− . 

As mentioned above, Newton-cotes quadrature schemes are used to discretize and to form a linear system for the 

following example. 

 

Example 1 (Wang [26])  

 

Consider the integral equation  

( ) ( ) ( ) xdttyxtxxy =−− ∫
1

0

24                                                             (11) 

and the exact solution of problem (11) is given by 

( ) 2924 xxxy −= . 

Results of numerical experiments, which were obtained from implementations of the iterative methods for 

Example 1, have been recorded in Table 1. 

 

Example 2 (Polyanin & Manzhirov [19]) 

 

Consider the integral equation 

∫ ++++−=
1

0

2236 ).()(105)( dttytxxxxxy                                                (12) 

Exact solution of the problem is 

84

2141

28

1045
5)(

236 +++−= xxxxxy . 

For Example 2, numerical results of FSGS, HSGS, FSAM and HSAM methods have been recorded in Table 2.   

 
5. Conclusions 
 

 In the previous section, it has shown that the quadrature approximation equations based on Newton-Cotes 

formulas can be easily formulated and rewritten in general form as shown in Eq. (3). Through numerical results 

obtained in Tables 1 and 2, clearly it shows that by applying the AM methods can reduce the number of iterations 

compared to Gauss-Seidel (GS) methods. Through the numerical results obtained for Example 1 by using RT and 

RS2 schemes, number of iterations for FSAM and HSAM methods have declined approximately 56.48 – 56.77% 

and 56.70 – 56.99% respectively compared to FSGS method. Number of iterations for FSAM and HSAM 

methods with RS1 and RB schemes for Example 1 have decreased by 56.48 – 56.70% and 56.54 – 56.99% 

respectively compared to FSGS method. Meanwhile, number of iterations for both AM iterative methods for  



 

 

 

Table 1: Comparison of a number of iterations, execution time (seconds) and maximum absolute error for the iterative methods using RT, RS1, RS2 and 

RB discretization schemes (Example 1). 

 

 

 Mesh 

size 
Methods 

Number of iterations Execution time (seconds) Maximum absolute error 

FSGS HSGS FSAM HSAM FSGS HSGS FSAM HSAM FSGS HSGS FSAM HSAM 

120 

RT 

RS1 

RS2 

RB 

192 

191 

192 

191 

189 

188 

189 

188 

83 

83 

83 

83 

83 

83 

83 

83 

0.66 

0.71 

0.77 

0.77 

0.16 

0.16 

0.17 

0.22 

0.60 

0.60 

0.61 

0.66 

0.11 

0.11 

0.16 

0.16 

8.5466 E-3 

7.4883 E-10 

6.8299 E-10 

7.2890 E-10 

3.4245 E-2 

6.2500 E-4 

6.2500 E-4 

6.2500 E-4 

8.5466 E-3 

2.3642 E-10 

2.3796 E-10 

2.3473 E-10 

3.4245 E-2 

6.2500 E-4 

6.2500 E-4 

6.2500 E-4 

240 

RT 

RS1 

RS2 

RB 

193 

193 

193 

193 

192 

191 

192 

191 

84 

84 

84 

84 

83 

83 

83 

83 

2.74 

2.91 

2.91 

3.19 

0.66 

0.71 

0.77 

0.82 

2.47 

2.58 

2.58 

2.74 

0.60 

0.61 

0.65 

0.71 

2.1357 E-3 

7.2615 E-10 

7.3756 E-10 

7.1661 E-10 

8.5466 E-3 

1.5625 E-4 

1.5625 E-4 

1.5625 E-4 

2.1357 E-3 

1.4414 E-10 

1.4114 E-10 

1.4486 E-10 

8.5466 E-3 

1.5625 E-4 

1.5625 E-4 

1.5625 E-4 
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RT 
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RS2 

RB 
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194 

193 

193 

193 

193 

84 

84 

84 

84 

84 

84 

84 
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2.91 
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3.9063 E-5 

5.3387 E-4 
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3.9063 E-5 

3.9063 E-5 

960 

RT 

RS1 

RS2 

RB 

194 

194 

194 

194 

194 

194 

194 

194 

84 

84 

84 

84 

84 

84 

84 

84 

43.83 

46.64 

47.02 

50.70 

11.26 
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10.22 
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1.3346 E-4 

7.5521 E-10 

7.5812 E-10 

7.5274 E-10 

5.3387 E-4 

9.7663 E-6 

9.7663 E-6 

9.7663 E-6 

1.3346 E-4 

1.5014 E-10 

1.4953 E-10 

1.5034 E-10 

5.3387 E-4 
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9.7658 E-6 

9.7658 E-6 
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84 
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18.29 

18.34 

21.25 

62.01 

63.22 

63.55 

68.54 

14.89 

15.93 

15.98 

18.07 

8.5416 E-5 

7.6332 E-10 

7.6567 E-10 

7.6132 E-10 

3.4167 E-4 

6.2507 E-6 

6.2507 E-6 

6.2507 E-6 

8.5417 E-5 

1.5052 E-10 

1.5005 E-10 

1.5068 E-10 

3.4167 E-4 

6.2501 E-6 

6.2501 E-6 

6.2501 E-6 
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Table 2: Comparison of a number of iterations, execution time (seconds) and maximum absolute error for the iterative methods using RT, RS1, RS2 and 

RB discretization schemes (Example 2). 

 

 

 

 

 

Mesh 

size 
Methods 

Number of iterations Execution time (seconds) Maximum absolute error 

FSGS HSGS FSAM HSAM FSGS HSGS FSAM HSAM FSGS HSGS FSAM HSAM 

120 

RT 

RS1 

RS2 

RB 

55 

55 

55 

55 

55 

55 

55 

55 

32 

32 

32 

32 

32 

32 

32 

32 

0.18 

0.19 

0.19 

0.22 

0.05 

0.05 

0.06 

0.07 

0.17 

0.18 

0.18 

0.20 

0.04 

0.04 

0.04 

0.05 

8.6975 E-3 

1.8143 E-7 

4.0839 E-7 

1.1615 E-10 

3.7011 E-2 

2.5842 E-3 

2.5856 E-3 

2.5831 E-3 

8.6975 E-3 

1.8150 E-7 

4.0845 E-7 

6.8426 E-11 

3.7011 E-2 

2.5842 E-3 

2.5856 E-3 

2.5831 E-3 

240 

RT 

RS1 

RS2 

RB 

56 

56 

56 

56 

55 

55 

55 

55 

32 

32 

32 

32 

32 

32 

32 

32 

1.25 

1.27 

1.28 

1.35 

0.20 

0.21 

0.21 

0.30 

1.23 

1.24 

1.24 

1.30 

0.18 

0.18 

0.19 

0.23 

2.1741 E-3 

1.1238 E-8 

2.5423 E-8 

1.0991 E-10 

9.2970 E-3 

6.4693 E-4 

6.4702 E-4 

6.4686 E-4 

2.1741 E-3 

1.1251 E-8 

2.5437 E-8 

1.0415 E-10 

9.2970 E-3 

6.4693 E-4 

6.4702 E-4 

6.4686 E-4 

480 

RT 

RS1 

RS2 

RB 

56 

56 

56 

56 

56 

56 

56 

56 

32 

32 

32 

32 

32 

32 

32 

32 

3.56 

3.66 

3.69 

3.80 

1.28 

1.30 

1.33 

1.50 

3.48 

3.51 

3.54 

3.74 

1.25 

1.26 

1.28 

1.41 

5.4352 E-4 

5.8823 E-10 

1.4742 E-9 

1.2051 E-10 

2.3300 E-3 

1.6185 E-4 

1.6186 E-4 

1.6185 E-4 

5.4352 E-4 

6.1321 E-10 

1.4930 E-9 

1.0556 E-10 

2.3300 E-3 

1.6185 E-4 

1.6186 E-4 

1.6185 E-4 

960 

RT 

RS1 

RS2 

RB 

56 

56 

56 

56 

56 

56 

56 

56 

32 

32 

32 

32 

32 

32 

32 

32 

14.43 

14.50 

14.59 

14.70 

3.80 

3.90 

3.95 

4.17 

14.10 

14.16 

14.20 

14.44 

3.57 

3.59 

3.60 

3.75 

1.3588 E-4 

8.3052 E-11 

3.8873 E-11 

1.2582 E-10 

5.8325 E-4 

4.0479 E-5 

4.0480 E-5 

4.0479 E-5 

1.3588 E-4 

6.1889 E-11 

3.6176 E-11 

1.0613 E-10 

5.8325 E-4 

4.0480 E-5 

4.0480 E-5 

4.0479 E-5 

1200 

RT 

RS1 

RS2 

RB 

56 

56 

56 

56 

56 

56 

56 

56 

32 

32 

32 

32 

32 

32 

32 

32 

18.45 

18.49 

18.53 

20.12 

6.05 

6.08 

6.10 

6.39 

17.73 

17.77 

17.80 

19.69 

5.87 

5.92 

5.95 

6.13 

8.6962 E-5 

1.0903 E-10 

8.7493 E-11 

1.2686 E-10 

3.7338 E-4 

2.5909 E-5 

2.5909 E-5 

2.5909 E-5 

8.6962 E-5 

8.8048E-11 

6.5183 E-11 

1.0631 E-10 

3.7338 E-4 

2.5909 E-5 

2.5909 E-5 

2.5909 E-5 
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Example 2 using RT, RS1, RS2 and RB discretization schemes as shown in Table 2 decreased approximately 

41.82 – 42.86% compared with FSGS method. For HSGS method with RT, RS1, RS2 and RB schemes, number 

of iterations is nearly same to the FSGS method for both examples, refer Tables 1 and 2. 

 

Through the observation in Tables 1 and 2, FSAM and HSAM iterative methods reduce the execution time 

compared to the FSGS method respectively. Overall, the computational time for HSGS and HSAM methods 

together with RT, RS1, RS2 and RB is superior compared to the corresponding full-sweep iterative methods. This 

is due to the computational complexity of the half-sweep iterative methods are approximately 50% less than full-

sweep iterative methods respectively. 

 

In terms of accuracy of numerical solutions obtained, repeated Simpson’s 
3

1
, repeated Simpson’s 

8

3
 and 

repeated Boole schemes are more accurate than the repeated trapezoidal  scheme. From the observation of the 

results obtained, it shows that application of the half-sweep iteration concept reduce the accuracy of the solution 

for RS1, RS2 and RB discretization schemes compared to the full-sweep cases respectively. Decrement of the 

accuracy for half-sweep iterative methods is due to the computational technique for calculating the remaining 

points using direct method as proposed by Abdullah [9].   

 

For future works, this study will be extended to investigate the applications of half-sweep concept with 

different approach for calculating the remaining points. The mesh sizes which have been proposed in this paper 

will generate a completed group for each discretization schemes. However, this study will also be proceeded to 

examine for the case of ungroup. 
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