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ABSTRACT

In this paper a new subclass of uniformly convex functions with negative coefficients defined by Dziok-Srivastava
Linear operator is introduced. Characterization properties exhibited by certain fractional derivative operators of
functions and the result of modified Hadmard product are discussed for this class. Further class preserving integral
operator, extreme points and other interesting properties for this class are also indicated.
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1. Introduction and Definitions

Let S denote the class of functions of the form
(1.1) f) =2+ a.",
n=2

which are analytic and univalent in the unit disk U = {2z : |z| < 1}. Also
denote by T the class of functions of the form

(1.2) f(z):z—Zanz" (zeU) (a, >0),

which are analytic and univalent in U.
For functions

(13) £ = =3y 2, (any 2 0, (G = 1,2
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in the class T', the modified Hadamard product f; * fo(z) of fi(2) and fa(2)
is defined by

(1.4) (fi*f2)(z —Z_Zanlan2z

A function f(z) € S is said to be f-uniformly starlike functions of order
a denoted by 3 — S(«) iff

(1.5) Re{zf (z) _ al > ﬁ| -1,

f(Z

for some a(—1 < a < 1), >0and all (z € U).
and is said to be S-uniformly convex of order a denoted by  — K(«a) iff

(1.6) Re{l + Zf (z

for some a(—1 < a < 1), 5>0and all (z € U).

The class 0 — S(a) = S(a), and 0 — K (a) = K(«), where S(a) and K («) are
respectively the well-known classes of starlike and convex functions of order
a(0<a<l).

The classes S(«) and K(«) were first studied by Reborston [10], Schild [1],
Silverman [7], and others. While the classes § — S(a) and f — K(a) were
introduced and studied by Goodman [2], Rgnneing [5], and Minda and Ma
[4]. let

(17) $*(a) = S@)NT, K*(a) = K(@)NT, - 5*(a) = [6 - S@]OT
and 8- K*(a) = [ - K(@)NT.

Fora; € C(i=1,2,3...,0)and §; € C—{0,—-1,-2,..} ( =1,2,3,...,m),
the generalized hypergeometric function is defined by

o0

(1.8) 1Fo(a, a0 By ooy ) = Z (<gll)) 0:322—7: ,

(I<m+1;me Ny=1{0,1,2...}) ,
where (a), is the Pochhammer symbol defined by

I'(a+n) 1; n=0
(1.9) (a), = T { ala+1(a+2)...(a+n+1), ne N=1,2, ...
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Corresponding to the function h(aq, ..., ap; 51, -, Bm; 2) = ziFm (a1, ooy a5 By ovy i)
the Dziok-Srivastava operator [9], HZ (o, ..., au; B1, ..., Bm) is defined by

(1.10) Hfl(ozl, ey O By ey B ) [ (2) = h(aay ooy aq; Bry ooy B 2) % f(2)

(n—1)!

It is well known [9] that
(L11) ayHE(ay + 1, . 003 81, oy B f(2) = 2[HE (o, oooy s By, oo, B ) f(2)]

+(ar—1)HE (g, ooy iy Buy ooy Brn) f(2)
To make the notation simple, we write,

HE o f(2) = HE(ay, a0 Bh, oo, B ) f(2)

We note that special cases of the Dziok-Srivastava operator HZ o] include
the Hohlov linear operator [15], the Carlson-Shafer operator[3], the Ruschweyh
derivative operator[13], the Srivastava-Owa fractional operators [14], and
many others.

Now using H%[ay] we define the following subclass of analytic function.

Definition 1. For -1 < a <1, 8 >0, oy € C (i = 1,2,3...,1) and
;e C—{0,-1,-2,..} (j = 1,2,3,...,m), we let S' (aq, B, [,) be the
subclass of S consisting of functions f(z) of the form (1.1) and satisfying the
following condition

Hyjloq +1]f(2)
HJ o] f(2)

Hilon +1)£(2)
H[oa]f(2)

(1.12)Re{a1 +1—a1—a}>ﬁa1 —aq|,z€U

also let Tfn(ozl,ﬁm,ﬁ, a)= an(alwﬁmvﬂ> a)(T.

It may be noted that the class T (cy, B, 3, ) extends the classes of star-
like, convex, J-uniformly starlike and S-uniformly convex for suitable choice
of [, m,qa;, 85,8 and . For example

i) For I = 1,m = 0,01 = 1 the class T (o, B, 3, @) reduces to the class of
(G-uniformly starlike functions.

(ii) For I = 1,m = 0, a; = 2 we obtain the class of -uniformly convex func-
tion.
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(iii) For l =3,m = 2,a1 =2 —vy+n,a = 2,a3 = 1,0 =2 —7,0, =
2 — p+mn, 0 =1 we obtain the class studied in [6].

Several other classes studied by various research workers can be obtained
from the class T (o, Bm, 3, @).

Following Raina and Nahar [12], the fractional derivative
operator Dé‘y’f " of a function f(z) is defined as follows.

Definition 2. Form —1 <A <m;m € N and u,n € R

(L13)  DREf(2) = sy J (2 — 1)
2Fi(p— A,m —mym — N 1= 1) f(t)dt},

where the function f(z) is analytic in a simply connected region of the z-
plane containing the region , with the order

f(z) =o(lz]") , 2 —0

where 7 > max{0, x —n} —1 and the multiplicity of (z — is removed
by requiring log(z —t) to be real when (z —t) > 0 and is well defined in the
unit disk.

The operator defined by (1.13) includes the well known Riemann-Liouville
fractional derivative operator D2 f(z) [11]. Indeed we have

)m)\l

(1.14) Dy f(z) = oDXf(2),

SHHT] M1

The fractional operator JO is defined in terms of DS}Z as follows.

L@2—pI'(2=A+n)
I'(2—p+n)

(A>05 p<2;n>maz{A pu} —2)

(1.15) Tt f(z) = 2 Dyt f(z),

Lemma 1. [12]. if A > 0; n > maz{0, n —n} — 1, then

A o Pt D)I(n—ptn+1) n—p
(1.16) DO@’ < T T'(n—p+1)T'(n—A+n+1) )
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Applying Lemma 1 for the function f(z) defined by (1.1) we have from (1.15)

oo

(117) T f(z) =24y

n=2

(2)n-1(24 1 — 1)1 )
R v R G

2. Coeflicient Estimates.

Theorem 1. A function f(z) defined by (1.2) is in the class T, (ay, B, 3, ),
-1<a<1,82>20,a € C(i=1,23.,1l)and g; € C—{0,-1,-2,..}
(j =1,2,3,...,m), if and only if

20 Y00~ et 0) A a1 a),
where

. (1)n-1---(Q1)n—1
(22> ¢(n) - (6l)n—1“-(ﬂm)n—l

and the result is sharp.
Proof. Let f(z) € T' (aj, Bm, 3, @) and z be real then by virtue of (1.10)
and (1.11) we have

1— > n (f:(_%! a, 2" 1 S (n—1) (f:(_nl))! a, 2" 1
n:oi N 2 ﬁ n=2 —
1- 2_32 ol an 271 1- Z_:Q oy an 2

Letting z — 1 along the real axis, we obtain the desire inequality (2.1).

Conversely, assuming that (2.1) holds, then we show that

HElay +1]f(2)

e L HE k105G
S AP T e {1 HE [on]/ () 1}“
We have
HElon +1]f(2) ol —Rre s HElon +1]f(2) W
S 7 e T R R {1 HE (o] £ (2) 1}
< (145) o Hloa +117G)

Hr% [a1] f(2)
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< n=2 .

L Z_:Q o an

This expression is bounded above by (1 — «) if

¢(n)
(n—1)!

a, < (1—a),

> {n1+0) = (a+ )}
n=2
The equality in (2.1) is attained for the function

(1—a)(n—1)
2.3 f(z)=2— Z".
29 B = LT+ B - (at Do)
and hence the proof is complete.
Corollary 1. Let the function f(z) defined by (1.2) be in the class T%, (o, B, 3, @),
1<a<1,B8>0, € C(i=123.1) and B € C—{0,—-1,-2,.}
(j=1,2,3,...,m). Then

W < (1 —a)(n—1)!
T {1+ 8) —(a+P)}é(n)

n>2

3. Characterization Properties.

Theorem 2. Let a; > 0 (i = 1,2,3...,p) and b; > 0 (j = 1,2,3,...,q)
q p

such that [ b; > ] a;. Also let the function f(z) defined by (1.2) satisty
. )

00 ﬁb]
n(l+p8)— (a+ 0 n j=1

for =1 <a <1, 3>0. then

Hg[a’l]f(z) € Trln<al7 ﬁma 67 Oé) )
where ¢(n) is given by (2.2).
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Proof. We have from (1.10)

(3.2) HPa1]f(2) = HE(ay, ..., ap; by, ..., 0g) f(2) = Z—Z d(n)a, 2",
where
(3.3) 5(n) = Wty )

(bl)n_l...(bq>n_1(n — 1)'
Under the conditions stated in the theorem, we observe that the function
d(n) is non-increasing, that is, it satisfies the inequality d(n + 1) < d(n) for
all n > 2, and thus we have

—
£

Il
—

(3.4) 0<6(n)<6(2) ="

A:Q
&

<
I
—_

Therefore, (3.1) and (3.4) yield

{n(0+5) - (a+P)} o)
(35) Z (1—a) GRS

Z{n1+/3 (a+0)} é(n)

<1
Hence by Theorem 1, we conclude that
Hyla] f(2) € T, (0w, B, B, ) -
Remark 1. The equality in (3.1) is attained for the function f(z) defined
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Corollary 2. Let A, u,n € R such that

A _
(3.7) A>0, u<2, max()\,u)—2<77§w

also, let the function f(z) defined by (1.2) satisfy

(3.8)

— {n(1+5) = (a+0)} 2-—p2+n-—A)
HZ; 1-—«a = 22+n-p)

for -1 <a<1,3>0. then

Jolf(2) € B — 57(a)
Proof. The corollary follows from Theorem 2 by settingp =3, ¢ =2, a; =
1, a0=2, a3 =24n—p, by =2—p, by =24+n—Aandl=1, m=0, ay = 1.

Remark 2. In Corollary 2, if the function f(z) is given by (1.1) and 8 = 0,
we obtain the corresponding result due to Raina and Nahar [12, P. 4, Theo-
rem 1].

Corollary 3. Under the conditions stated in (3.7), let the function f(z)
defined by (1.2) satisfy

(3.9)

—n{n(l+B) — (o + B)} 2—p)2+n-)
Z 1 -« fin = 22+n—p)

n=2

for -1 <a <1, >0. then

Tolf(z) € B—K'(a)

Proof. The corollary follows from Theorem 2 by setting p =3, ¢ =2, a; =
1, aa=2, a3 =24n—p, by =2—p, by =24+n—Aandl =1, m=0, a; = 2.

Remark 3. In Corollary 3, if the function f(z) is given and (1.1), and
= 0, we obtain the corresponding result due to Raina and Nahar [12, p. 5,
Theorem 2 |.
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4. Results Involving Modified Hadamard Product.

Theorem 3. Let ozz >0 (i =1,23.,0)and 8; >0 (j = 1,2,3,...,m)
such that H B; > H ;. Also for functions f;(z) (j = 1,2) defined by (1.3),

j=1

let fi(z) € T,i@(az,ﬁm,ﬁ, a) and fo(2) € Ty, (o4, B, B, 7).

then f1 * fo(2) € T (au, Bm, 3,0) where

m

1+ 81 —a)d =11 5)

Jj=1

(246 -a)2+p- wgi )~ (1— a)(1— )

(41) 6=1- .
B5;)

=t

and the result is sharp.
Proof. To prove the theorem it is sufficient to assert that

Up,1 Qp,2 S 1 5

where ¢(n) is defined in (2.2) and 0 is defined in (4.1). Now by virtue of
Cauchy-Schwarz inequality and Theorem 1, it follows that

= An(1+8) = (a+ B {n(148) - (v + B}? ¢(n)
(43) Z: (1 — a)(l — ’7) (n — 1)' vV an,lan,Q S 1 )

Hence (4.2) is true if
{n(1+5) — (0 +5)} ¢n)

1-0 (n— 1) “mt 2
{n(1+5) — (0t O n(1L+8) — v+ OY” o(n)
= (I—a)(1—7) (11 Ve

<1

or, equivalently

{(1+9) = (a+ O} {01+ 6) = (v + B
(1—=a)(1=7)

X

(44) vV QUn,10n.2 S

1—-46
{n(1+p8)—(+8)}
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By virtue of (4.3), (4.2) is true if

VI—a)T-7) (n—1)
{(n(1+8) — (a+ B {n(1+8) — (v + B} 6(n)

_ {0+ 8) — @+ Y {(n(1+8) — (1 + )}
- (1_CY><1—")/>

X

1-9§
{n(1+p8)—(+8)}

which yields

(n-1)(3+1)(1-a)(1-7)(n—1)
S B ) e B Gy e A e S e T

Under the stated conditions in the theorem, we observe that the function
¢(n) is a decreasing for n (n > 2), and thus (4.5) is satisfied if § is given by
(4.1). Finally the result is sharp for

(1—a)(1] 3)

u—vxﬁ@n
fo(2) =2 — - z 22
(245 -)(ILa)

Theorem 4. Under the conditions stated in Theorem 3, let the functions
fi(z) (j = 1,2) defined by (1.3), be in the class T! (a;, Bm,3,«). Then
fl * fQ(Z) € Trln(ala ﬁma 57 5) where

(1+8)(1 — (11 3)
(4.6) §=1- l =
(2406 — 04)2(':1_[1 a;) — (1 — 04)2(1;[15]»)

Proof. The result follows by setting o = v in Theorem 3 .
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Theorem 5. Under the conditions stated in Theorem 3, let the functions
fi(z) ( = 1,2) defined by (1.3), be in the class T" (cy, Bm, 8, ). Then

oo

(4.7) hz)=z-> (a2, +ap,) 2

n=2

is in the class T (ay, B, 3,9) where

(4.8) §=1-

Proof. In view of Theorem 1, it is sufficient to prove that

(n o 1)|( ai,1+a721,2> S 1 )

where ¢(n) is defined in (2.2) and ¢ is defined in (4.8).
as fi(z) € T, (au, B, B, ) (j = 1,2), Theorem 1 yields

2:{M1+ﬁ m+5»¢mq2&

(1—-a)(n—1)! .

n=2

- i Fn(l +8)—(a+p)}om) 1

2 1—a)n—1) n.j
<1,
hence
1 [{n(1+8)—(a+8 n)1* ., 9
(410) > 5 [{ ( (1_)a)((n_1§,}¢( )} (a7 ,+as,) <1

(4.9) is true if

{n(1+8) -+ 58)} o)
1—5 (n—1) (1t anz)

IN

L {n(1+8) — @+ D} 2
2 [ (1—a)(n—1)! ] (an1 +a52)
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that is, if
2(n —1)(1 1—a)*(n—1)!
[n(1+B) = (a+ B)]" ¢(n) — 2(1 — @)*(n — 1)!
Under the stated conditions in the theorem, we observe that the function

¢(n) is a decreasing for n (n > 2), and thus (4.11) is satisfied if ¢ is given by
(4.8).

5. Extreme points of the class T! (o, B, 3, @) -

Theorem 6. Let fi(z) = z and

o (I —a)(n—1)! o (n
R T R T O M

Then f(z) € T!,(ay, B, B, @) if and only if it can be expressed in the form

(5.2) f(z)=Mhilz +Zwﬂ

where A, > 0 and Z A, =1, and ¢(n) is given in (2.2).
n=1
Proof. Let (5.2) holds, then by (5.1) we have

(1—a)(n—1) N
Z{n T+ 8) - (at Ay o) "

Now
;{n(l +0)— (a+P)} (nd)(_n;)' G,
— ;{n(l +8) = (a+6)} (ngb(_ni)!
y (1-—a)(n-1) A
{n(1+5) = (a+8)} o(n) ™"
= (1 — Oé) Z An
n=2
< (1—a)i>\n
< l-aqa. "
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Hence by Theorem 1, f(z) € T! (ay, B, 3, ).
Conversely, suppose f(z) € T, (o, Bm, 3, @). Since

(I —-a)(n—1)!

n < ; > 2

" S+ f -@rAtem =7

setting \,, = {n(l—(klﬁ_);)(&tﬁl))y(n) an and A\ = 1— i An, we get (5.2). This
’ n=2

completes the proof of the theorem.
6. Closure properties

Theorem 7. Let the functions f;(z) defined by (1.3) be in the class T7., (au, B, 3, ).
Then the function h(z) defined by

hz)=2z— Z d,z"
n=2
belongs to T, (ay, Bm, 3, ), where
T Y
n — G, j, Qpj; = U).
m j:l 7] 7.]

Proof. Since f;(z) € T, (cu, B, B, @), it follows from Theorem 1 that

¢(n)
(n—1)!

where ¢(n) is given by (2.2). Therefore

> (n(1+9) - 0+ B 20
n=2

an; < (1—a),

(6.1) > {n(1+8)— (a+8)}

dn,

= 8 -t ) (;Z)
S 1- a,

by (6.1), which shows that T (ay, B, 3, @).
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7. Integral transforms

Recently, Jung, Kim and Srivastava [8] introduced the following one-
parameter family of integral operators

(71)  If(z) = ZFQ—(O_)/O (1og %)Ulf(t) it (0>0).

Theorem 8. Let the function f(z) defined by (1.2) be the class T' (ay, B, 3, ).
Then the integral transforms (7.1) belongs to T% (o, Bm, 3, @).
Proof. Using (1.2) and (7.1) we get

If(2) =2 — i (142—71)0 anz".

n=2
Therefore,
- ¢(n) 2\’
;{n(l—l—ﬂ)—(a—kﬂ)}(n_l)! =)
> n
< (4 - @t 8) A,
n=2 '
< 1-—a.
which implies that T, (ay, B, 3, ).
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