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Abstract This paper proposes a new one-parameter discrete distribution for positive count data, 

named underdispersed size-biased Poisson distribution, as an alternative to modeling underdispersed 

positive count data. Several properties and measures are presented, such as moments about origins, 

variance, skewness, kurtosis, index of dispersion, coefficient of variation, and recurrence relationship. 

Estimators are also developed based on two estimation techniques, i.e., maximum likelihood and 

moment method. It was found that both estimation techniques yield an identical estimator, which is 

unique, positively biased, consistent, and asymptotically normal. Finally, a dataset is fitted to the 

proposed distribution to verify the ability of the proposed distribution to explain the real dataset with a 

comparison to two known size-biased distributions. 

Keywords: Double size-biased poisson, two-component mixture distribution, underdispersion.  
 

 

Introduction 
 

When modelling positive count data, the heterogeneity in the data must be taken into account by 
considering a mixed distribution with truncation or those with similar effects as truncation, such as 
weighted distributions. Several examples of weighted distributions with different weights, for which a 
special case is known as the probability proportional to the size that involves the weight to be proportional 
to the size of observations, were introduced [1]. This type of weighted distribution is known as the size-
biased distribution [2]. Modelling data using size-biased distributions is a common practice because of 
the nature of the collected samples due to the following three reasons – non-observability of events, 
partial destruction of observations, and sampling with unequal chances of observations [1]. Generally, 
when the events are unobserved, the data will be truncated. Furthermore, some data, especially the 
ones produced by nature, may also be destroyed. Besides that, targeting a specific event and tracing 
back its actual observations in the population may not give an equal chance for the event to occur in the 
population [1]. These reasons cause deformity in the collected sample data. Therefore, it is reasonable 
to consider size-biased distributions for modelling this type of data. Several examples of size-biased 
distributions include the size-biased Poisson, the size-biased binomial, the size-biased negative binomial 
distributions [2], and the size-biased Poisson-Lindley distribution [3]. A size-biased distribution can be 
written as ℎ(𝑥) = 𝑥𝑓(𝑥) 𝜇⁄ , where 𝑓(𝑥) is an unweighted distribution and 𝜇 is the mean of the unweighted 
distribution. 

 

Another way of handling count data with heterogeneity is by employing finite mixture models, as they are 
very flexible [4]. The mixing proportion and the dispersion of the two components representing the two 
subpopulations affect the model fitting of overall data [5]. The finite mixture models are used in modelling 
multimodal data in the area of insurance claims [6] and weather spells [7-8]. A two-component mixture 

distribution can be written as ℎ(𝑥) = 𝑝𝑓1(𝑥) + (1 − 𝑝)𝑓2(𝑥), where 𝑝 is the mixing distribution for the two 

𝑓𝑖(𝑥) distributions for 𝑖 = 1, 2. 

 

An attempt has been made in this paper to develop and explore a new flexible underdispersed (variance 
less than mean) distribution by considering both weighted distribution and two-component mixture 
distribution approaches. By combining both approaches, the new distribution has increased flexibility, 
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yet with a simple form, which facilitates the fitting of the model. The new distribution, which is a one-
parameter distribution based on the two-component of the size-biased Poisson distribution, is believed 
to provide an adequate fit for positive count data with underdispersion property.  

 

The paper is organized as follows. Section 2 discusses the probability mass function of the proposed 
distribution with its moments and moment-related measures. In Section 3, the maximum likelihood 
estimator and the moment estimator for the parameter of the proposed distribution, as well as their 
properties, are discussed. In Section 4, the proposed distribution is fitted to a dataset with a comparison 
to two other size-biased distributions. Finally, section 5 concludes the study and gives recommendations 
for future studies. 

 
The Proposed Distribution 
 

Probability Mass Function 
Let 𝑋 be a random variable that follows the proposed distribution, which we denote as an underdispersed 

size-biased Poisson (USBP) distribution with parameter 𝜆 > 0. The probability mass function (pmf) of 
USBP distribution is given as: 

Pr(𝑋 = 𝑥) =
𝑥𝜆𝑥−1 exp(−𝜆)

(𝜆 + 1)(𝑥 − 1)!
,                                                                 (1) 

for 𝑥 = 1,2, …. The cumulative function, 𝐹(𝑥) for 𝑋 is given as 

𝐹(𝑥) =
1

(𝑥 − 1)!
[Γ(𝑥, 𝜆) −

𝜆𝑥 exp(−𝜆)

𝜆 + 1
], 

where Γ(𝑥, 𝜆) is the upper incomplete gamma function. Figure 1 below shows the pmf plot of USBP 

distribution for different values of 𝜆. The pmf plots suggest that the USBP distribution may provide a good 
fit to the data with mode and mean greater than one. 

 

 
 

Figure 1. The pmf Plot of USBP Distribution for λ = 1.0, 2.0, 3.0, 4.0. 

 

 

Note that USBP distribution can also be written as a mixture of two types of underdispersed size-biased 

Poisson  distributions, which can be written as Pr(𝑋 = 𝑥) = 𝜃𝑓(𝑥) + (1 − 𝜃)𝑔(𝑥), where: 
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𝑓(𝑥) =
𝜆𝑥−1 exp(−𝜆)

(𝑥 − 1)!
, 𝑔(𝑥) =

𝜆𝑥−2 exp(−𝜆)

(𝑥 − 2)!
, and 𝜃 =

1

𝜆 + 1
. 

 

Contrary to the usual two-component mixture distributions, the two components of the USBP distribution 
have the same parameter 𝜆, and the mixing proportion takes on a fixed form. Also note that the USBP 
distribution can also be obtained by considering size-biased of the size-biased Poisson distribution, 
which we can name as double size-biased Poisson distribution. The pmf of the size-biased Poisson 
(SBP) distribution can be written as: 

𝑓(𝑥) =
𝜆𝑥−1 exp(−𝜆)

(𝑥 − 1)!
; 𝑥 = 1, 2, 3, …, 

 

with 𝜇 = 𝜆 + 1, and thus, the USBP distribution can be derived as: 

 

Pr(𝑋 = 𝑥) =
𝑥

𝜇
𝑓(𝑥) =

𝑥

𝜆 + 1
[
𝜆𝑥−1 exp(−𝜆)

(𝑥 − 1)!
] =

𝑥𝜆𝑥−1 exp(−𝜆)

(𝜆 + 1)(𝑥 − 1)!
; 𝑥 = 1, 2, 3, …. 

 

Furthermore, the probability for each value of 𝑥 can be obtained using the following recurrence relation 

 

Pr(𝑋 = 𝑥 + 1) = 𝜆 (1 +
1

𝑥
)Pr(𝑋 = 𝑥)  with Pr(𝑋 = 1) =

exp(−𝜆)

𝜆 + 1
. 

 

To find the mode of the distribution, one can differentiate the log pmf of the USBP distribution and set it 
to zero. The differentiated log pmf, 𝑡 is given by: 

 

𝑡 =
𝑑 ln Pr(𝑋 = 𝑥)

𝑑𝑥
=
1

𝑥
+ ln 𝜆 −

Γ′(𝑥)

Γ(𝑥)
=
1

𝑥
+ ln 𝜆 − 𝜓(𝑥), 

 

where Γ(𝑥) = (𝑥 − 1)! is the gamma function for 𝑥 and 𝜓(𝑥) is the digamma function for 𝑥. The 𝜓(𝑥) 
function can be approximated with ln 𝑥 − (2𝑥)−1 [9]. The 𝑡 function with the approximated 𝜓(𝑥) is set to 

zero, yielding the mode, 𝑥𝑚 

𝑥𝑚 ≈ 𝜆 exp [𝑊 (
3

2𝜆
)], 

 

where 𝑊(∙) is the Lambert 𝑊 function, and the integer value is close to the value of 𝑥𝑚 is the mode of 

USBP distribution. Note that 𝑥𝑚 ≥ 1.  

 

Moments and Some Related Measures 
The 𝑟𝑡ℎ moments about the origin of USBP distribution can be obtained using: 

 

𝜇′𝑟 = 𝐸(𝑋
𝑟) = ∑

𝑥𝑟+1𝜆𝑥−1 exp(−𝜆)

(𝜆 + 1)(𝑥 − 1)!

∞

𝑥=1

. 

 

The first four moments about the origin are given respectively as: 

 

𝜇′1 = 𝜇 =
𝜆2 + 3𝜆 + 1

𝜆 + 1
, 

 

𝜇′2 =
𝜆3 + +𝜆2 + 7𝜆 + 1

𝜆 + 1
, 

 

𝜇′3 =
𝜆4 + 10𝜆3 + 25𝜆2 + 15𝜆 + 1

𝜆 + 1
, 

 

𝜇′4 =
𝜆5 + 15𝜆4 + 65𝜆3 + 90𝜆2 + 31𝜆 + 1

𝜆 + 1
. 

 

With these four moments, some measures such as variance, skewness, kurtosis, index of dispersion 
(IOD), and coefficient of variation (CV) can be obtained. The formulae for the variance, the index of 
dispersion, and the coefficient of variation are respectively given as: 
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𝜎2 =
𝜆(𝜆2 + 2𝜆 + 2)

(𝜆 + 1)2
, 

 

𝐼𝑂𝐷 =
𝜎2

𝜇
= [1 −

1

𝜆 + 1
] [1 −

𝜆 − 1

𝜆2 + 3𝜆 + 1
] < 1, 

 

𝐶𝑉 =
𝜎

𝜇
=
√𝜆(𝜆2 + 2𝜆 + 2)

𝜆2 + 3𝜆 + 1
. 

 

Based on the IOD formula, it can be observed that the USBP will always be underdispersed for 𝜆 > 0. 

Table 1 shows the trend of some measures as 𝜆 increases. From Table 1, it is clear that as 𝜆 increases, 
the mean, the variance, and the IOD increase. However, the IOD can only increase up to less than one, 
showing the underdispersion property of the USBP distribution. On the other hand, the skewness values 

are positive and decrease as 𝜆 increases, which suggests that the USBP is skewed to the right. 

Interestingly, the kurtosis values show a J-shaped curve, and for higher values of 𝜆, this suggests that 
the USBP distribution has a heavy tail. Unlike kurtosis, the CV shows an inverse J-shaped curve, and 
for higher values of 𝜆, this suggests that the USBP distribution is concentrated more around the mean. 

 
Table 1. Moment-related measures of USBP distribution for different values of λ 

 

Measures ↓ 𝝀 → 0.1 0.3 0.5 1.0 2.0 5.0 10.0 

Mean 1.191 1.531 1.833 2.500 3.667 6.833 11.909 

Variance 0.183 0.478 0.722 1.250 2.222 5.139 10.083 

Skewness 2.147 1.199 0.935 0.716 0.581 0.421 0.310 

Kurtosis 136.947 94.349 96.959 121.960 181.590 393.915 896.821 

𝑰𝑶𝑫  0.153 0.312 0.394 0.500 0.606 0.752 0.847 

𝑪𝑽  0.359 0.451 0.464 0.447 0.407 0.332 0.267 

 

 

Some Generating Functions 
Several generating functions, such as moment generating function, probability generating function, and 
cumulant generating functions, are given respectively as: 

 

𝑀𝑋(𝑡) =
exp(−𝜆)

𝜆 + 1
exp(𝜆𝑒𝑡 + 𝑡) [𝜆 exp(𝑡) + 1], 

 

𝐺𝑋(𝑡) = 𝑀𝑋(ln 𝑡) =
𝜆𝑡2 exp[−𝜆(1 − 𝑡)]

𝜆 + 1
, 

 

𝐶𝑋(𝑡) = ln𝑀𝑋(𝑡) = ln[𝜆 exp(𝑡) + 1] − ln(𝜆 + 1) + 𝜆 exp(𝑡) − 𝜆 + 𝑡. 
 

 

Estimation Methods 
 

In this section, the parameter 𝜆 of the USBP distribution is estimated using the maximum likelihood and 
moment estimation techniques. 
 

Maximum Likelihood 
The maximum likelihood estimator (MLE) of 𝜆 is obtained by maximizing the likelihood function:  

 

𝐿(𝜆) =∏[Pr(𝑋 = 𝑥)]𝑛𝑥

∞

𝑥=1

, 

 

where 𝑛𝑥 is the frequency for 𝑥-valued data, or equivalently, by maximizing the log-likelihood function: 

 

𝑙 = ln 𝐿(𝜆) = ∑𝑛𝑥 ln Pr(𝑋 = 𝑥)

∞

𝑥=1

∝ ∑𝑛𝑥[(𝑥 − 1) ln 𝜆 − 𝜆 − ln(𝜆 + 1)]

∞

𝑥=1

= 𝐴 ln 𝜆 − 𝑛𝜆 − 𝑛 ln(𝜆 + 1), 
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where 𝐴 = ∑ 𝑛𝑥(𝑥 − 1)
∞
𝑥=1 = 𝑛(𝑥̅ − 1), 𝑛 = ∑ 𝑛𝑥

∞
𝑥=1  and 𝑥̅ is the sample mean. Differentiating the log-

likelihood function above and equating it to zero will result in a quadratic equation given as: 

 

𝑛𝜆̂2 + (2𝑛 − 𝐴)𝜆̂ − 𝐴 = 0, 
 

which can be solved using the quadratic formula given by: 

 

𝜆̂ =
−(2𝑛 − 𝐴) + √4𝑛2 + 𝐴2

2𝑛
. 

 

However, −(2𝑛 − 𝐴) = −𝑛(3 − 𝑥̅) and 4𝑛2 + 𝐴2 = 𝑛2[4 + (𝑥̅ − 1)2] = 𝑛2(𝑥̅2 − 2𝑥̅ + 5). Therefore, 

 

𝜆̂ =
−(3 − 𝑥̅) + √𝑥̅2 − 2𝑥̅ + 5

2
.                                                                      (2) 

 

Moment Estimator 
The moment estimator (ME) of 𝜆 can be obtained by equating the sample mean with the theoretical mean 
as given by: 

𝑥̅ =
𝜆̃2 + 3𝜆̃ + 1

𝜆̃ + 1
, 

 

where 𝑥̅ is the sample mean and 𝜆̃ is the ME of 𝜆. The above equation yields a quadratic equation, given 
as: 

 

𝜆̃2 + (3 − 𝑥̅)𝜆̃ + (1 − 𝑥̅) = 0, 
 

which can be solved using a quadratic formula given by: 

 

𝜆̃ =
−(3 − 𝑥̅) + √𝑥̅2 − 2𝑥̅ + 5

2
, 

 

identical to 𝜆̂ in (2). Onwards, we use 𝜆̂ as the estimator of 𝜆.  
 

Some Properties of 𝝀̂ 
Theorem 1. The estimate 𝜆̂ is a unique estimator for 𝜆. 
Proof 

The quadratic equation yields 𝜆̂ can produce two real roots since the discriminant 𝑑 = 𝑥̅2 − 2𝑥̅ + 5 > 0 

with a minimum value at 𝑑 = 4. However, −(3 − 𝑥̅) < √𝑥̅2 − 2𝑥̅ + 5 and since 𝜆 > 0, therefore, there is 
only one acceptable solution to the quadratic equation. 

 

Theorem 2. The estimate 𝜆̂ is positively biased. 

Proof 

Let 𝜆̂ = 𝑔(𝑥̅) where 𝑔(𝑡) = [−(3 − 𝑡) + √𝑡2 − 2𝑡 + 5] 2⁄ , 𝑡 > 0.  

Then, 

 

𝑔′′(𝑡) =
2

(𝑡2 − 2𝑡 + 5)3/2
> 0. 

 

Therefore, 𝑔(𝑡) is strictly convex. By Jensen’s Inequality, we know that 𝐸[𝑔(𝑋̅)] > 𝑔(𝐸[𝑋̅]). Since 

 

𝑔(𝐸[𝑋̅]) = 𝑔(𝜇) = 𝑔(
𝜆2 + 3𝜆 + 1

𝜆 + 1
) =

𝜆(𝜆 + 2)2

2(𝜆 + 1)
> 𝜆, 

 

hence, 𝐸[𝜆̂] > 𝜆. 

 

Theorem 3. The estimate 𝜆̂ is consistent and asymptotically normal: 

 

√𝑛(𝜆̂ − 𝜆)
    𝑑    
→   𝑁(0, 𝐼−1(𝜆)), 
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where 

𝐼(𝜆) =
𝜆3 + 3𝜆2 + 4𝜆 + 1

𝜆2(𝜆 + 1)2
, 

 

is the Fisher information about 𝜆. 
Proof 

The USBP distribution satisfies the regularity conditions under which the estimator 𝜆̂ is consistent and 
asymptotically normal (see [10, chapter 6]). Therefore: 

 

𝐼(𝜆) = 𝐸 (−
𝑑2 ln Pr(𝑋 = 𝑥)

𝑑𝜆2
) = 𝐸 (

𝑥 − 1

𝜆2
−

1

(𝜆 + 1)2
) =

𝜆3 + 3𝜆2 + 4𝜆 + 1

𝜆2(𝜆 + 1)
. 

 

Theorem 3 implies that the asymptotic 100(1 − 𝛼)% confidence interval for 𝜆 is 𝜆̂ ∓ 𝑧𝛼/2
𝐼−1/2(𝜆̂)

√𝑛
. 

 

 
 

Figure 2. The 95% confidence interval of λ for λ = 0.5, 1.0, 5.0, 10.0. 

 

 

For illustration purposes, the 95% confidence interval region based on 𝐼−1/2(𝜆) √𝑛⁄  for 𝜆 =
0.5, 1.0, 5.0, and 10.0 are shaded and given in Figure 2. It is clear from Figure 2 that as 𝑛 increases, the 

confidence interval band becomes narrower. Also, as 𝜆 increases, the confidence interval band becomes 
wider. 

 
Simulation Study  
 

Since both moment and maximum likelihood estimators yield identical estimators, a simple simulation 
study is conducted to investigate the unbiasedness and consistent properties. For this simulation study, 
𝜆 is set to 1, 2, 3, and 4, whereas the sample size, 𝑛 is set to 200 (200) 1000. Each set of simulations is 
replicated 2000 times. To measure the unbiasedness and consistency properties of the estimator, the 
mean absolute deviation, 𝑀𝐴𝐷 and the root-mean-squared error values, 𝑅𝑀𝑆𝐸 are used. The formulae 

for 𝑀𝐴𝐷 and 𝑅𝑀𝑆𝐸 are respectively given as: 
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𝑀𝐴𝐷 =
1

2000
∑|𝜆̂𝑖 − 𝜆|

2000

𝑖=1

, 

𝑅𝑀𝑆𝐸 = √
1

2000
∑(𝜆̂𝑖 − 𝜆)

2
2000

𝑖=1

, 

where 𝜆̂𝑖 is the 𝑖th  estimated parameter of 𝜆. Generally, a good estimator gives small 𝑀𝐴𝐷 and 𝑅𝑀𝑆𝐸 
values. The results of the simulation study are given in Figure 3. 

 
Figure 3. The 𝑀𝐴𝐷 and 𝑅𝑀𝑆𝐸 values for λ = 1, 2, 3, 4 with varying sample sizes 

 

 

From Figure 3, it is clear that as 𝑛 increases, both 𝑀𝐴𝐷 and 𝑅𝑀𝑆𝐸 values decrease, suggesting the 

estimator is asymptotically unbiased and consistent. Besides that, a larger sample size (𝑛 ≫ 1000) is 

required to reduce the 𝑀𝐴𝐷 and 𝑅𝑀𝑆𝐸 values when dealing with large 𝜆. 

 
Applications 
 

A dataset on bowel cancer data [11] is considered where (𝑛1, 𝑛2, 𝑛3, 𝑛4, 𝑛5, 𝑛6) = (8,12,16,21,12,31) for 
model fitting. The bowel cancer data is secondary data that was collected based on 122 patients with 
confirmed cancer status, with 𝑛0 = 22 refers to deceased patients [11]. Therefore, only data based on 
the remaining 100 patients are used for modelling. The data is fitted to the USBP distribution and 
compared with the size-biased Poisson (SBP) distribution and the size-biased Poisson-Lindley (SBPL) 
distribution [3], and the best model is selected based on the chi-square goodness of fit test, mean 
squared error (MSE), as well as the root, mean squared error (RMSE) values, where 

𝑀𝑆𝐸 = ∑
(𝑒𝑥)

2

𝑘

𝑘

𝑥=1

 and 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 = √∑
(𝑒𝑥)

2

𝑘

𝑘

𝑥=1

, 

where 𝑒𝑥 is the difference between observed and fitted 𝑥-valued data and 𝑘 = max(𝑥). Note that the MLE 

𝜆̂ for SBP distribution is given as 𝜆̂ = 𝑥̅ − 1 whereas the MLE 𝜃 for SBPL distribution can be obtained by 
solving the maximum likelihood function given by [3] numerically (refer to page 305 in [3]). These two 
distributions have been selected for comparison because both have one parameter only as the proposed 
USBP distribution. 
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The summary of the model fittings is presented in Table 2. Based on Table 2, the significant p-value from 
the model fitting using the SBP distribution indicates that the SBP distribution does not fit the bowel 
cancer data adequately. On the other hand, both USBP and SBPL distributions provide adequate fitting 
to the data based on the non-significant p-value from the chi-square goodness of fit test. However, the 
MSE and the RMSE values from the model fitting based on the USBP distribution are the smallest. 
Hence, the USBP distribution is selected as the best model for describing the bowel cancer data. 

 

Table 2. Summary of model fitting the bowel cancer data to the USBP, SBP, and SBPL distributions 

    

Measures 
Distributions 

USBP SBP SBPL 

Parameter estimate 2.3946 3.1000 0.8659 

MSE 17.028 195.412 25.159 

RMSE 4.127 13.979 5.016 

𝝌𝟐  6.179 11.999 8.777 

df 4 4 4 

p-value 0.186 0.017 0.067 
 

 

Conclusions 
 

This study developed a new USBP distribution for count data and discussed the statistical properties as 
well as the estimation of parameters for the distribution. The USBP distribution is found to be 
underdispersed, skewed to the right, and has a heavy tail. The MLE and the ME of the parameter are 
found to be identical, and the estimator is unique, positively biased, consistent, and asymptotically 
normal. Simulation studies concluded that the estimator is asymptotically unbiased and consistent. 
Application study suggests that the USBP distribution provides an adequate and better fit than the SBP 
and the SBPL distributions. 

 

The USBP distribution relies solely on one parameter, thus making it less flexible. However, it is believed 
that the USBP distribution can be further improved by 1) keeping the weight, 𝜃, as a parameter and not 

as a function of 𝜆 thus providing flexible mixing proportion, and 2) considering two rate parameters i.e. 

𝜆1 and 𝜆2 instead of a common 𝜆, allowing the two types of size-biased distributions to be flexible. By 
doing such, the USBP distribution has the capacity to become more flexible. Developing new distributions 
based on the suggestions above will increase the number of parameters and ultimately decrease the 
degrees of freedom. The USBP distribution will then become a special case for the new distributions. 
With the recent advancement in a one-inflated model in the statistics literature, the USBP distribution 
can be further extended to cater to excess ones in the data.  
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