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Abstract Let 𝑆 denote the subclass of the analytic function and univalent functions in 𝐷, where 

𝐷 is defined as the unit disk and having the Taylor representation form of 𝑆. In this paper, we will 

estimate the second Hankel determinant which the elements are the logarithmic coefficients of the 

class close-to-convex function with respect to the Koebe function in 𝑆. 
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Introduction 
 

Let S  be a subclass of class A , where the class A  is analytic and normalized by ( ) ( ) 0100 =−= ff  in 

D . The notation of D  is defined as the unit disk, 1|| z  such that Cz . If the function Af  , then 

( )zf  has the series form 

 ( ) 


=

+=

2n

n
n zazzf . (1) 

Starlike functions, convex functions, and close-to-convex functions are the three main subclasses in S . 

We made S  represent the class of univalent functions in A . If the following criteria have been met, 

 
( )
( )

0Re 






 

zf

zfz
, (2) 

then Af   becomes a starlike function for Dz . The starlike function class is denoted by S . It has an 

important class member, the Koebe function, which can be defined as follows, 

 ( )
( )2
1 z

z
zk

−
= . (3) 

In the most recent issues for the 
S  and S  classes, the Koebe function plays a crucial role as an extreme 

function. When a function Af   fits the following criteria, it is called a convex function, 

 
( )
( )

01Re 













+

zf

zfz
, (4) 

for Dz . This class is denoted by CV  in class S . If there is a real number,  , where 2/||    and 

a convex function ( )zg  that fits the following conditions, a function Af   is said to be close-to-convex, 
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( )
( )

0Re 














zg

zf
ei , (5) 

where Dz [13]. In 1916, Alexander stated that there is a link between a starlike function and a convex 

function, with the condition that if function ( ) Szh  then ( ) ( )zgzzh =  and ( ) CVzg   respectively [10]. 

Therefore, the condition (5) can be formed as follows 

 
( )
( )

0Re 











 

zh

zfz
ei , (6) 

where Dz . From there, we can deduce that the starlike functions and convex functions are both close-

to-convex functions. We may sum it up by SKSCV  
 with suitable inclusion. We denote the class 

of close-to-convex function as K .  
 

The class of 
S , CV  and K  functions have a representation that uses the Caratheodory class P . 

The class p  is an analytic function P  in D  by having the following form, 

 ( ) 


=

+=

1

1

n

n
nzczp , (7) 

where Dz  and having a positive real part in D . These classes can be expressed by the coefficients 

of functions in P . The logarithmic coefficients of function f , can be written as, 

 
( )




=

=

1

2log

n

n
n z

z

zf
 , (8) 

where Dz . Milin's conjecture relies heavily on the logarithmic coefficients (cited by author in [15]). It 

can be seen that the class sharp estimates for the single logarithmic coefficient, 11  , 635.02  , 

and ,4,3=n , are unknown. The study of logarithmic coefficients has recently attracted the public's 

curiosity. [1], [2], [5], [8], [9], [11], [17], [18], [22] and [23], are just a few examples of logarithmic coefficient 
estimations that have been established. 
 

Hankel matrices and determinants serve some important roles in mathematics and have a variety of 
applications. The Hankel determinants for their classes have been identified by many researchers. The 
authors in [4], [6], [12], [13], [16], [19] and [21] are just a few examples. Recently, the author in [15] 
issued a sharp finding of the Hankel determinants, whose entries are the logarithmic coefficients of 

,Sf   that is 

( )

( )121

21

11

, 2/

−++−+

+++

−++

=

qnqnqn

qnnn

qnnn

fnq FH















, 

where Nnq , . They are working on determining the Hankel determinants for the starlike and convex 

function classes in their research. In addition, the author in [3] found a second Hankel determinant with 
the logarithmic coefficients for the starlike and convex functions classes with excellent results. During 
that year, the author in [4] obtained an accurate result of the second Hankel determinant of the 
logarithmic coefficient for some subclasses of the analytic functions. 
 

From there, we were inspired to obtain the Hankel determinant for the subclasses of S , particularly for 

the class of close-to-convex functions. In the same year, the author in [20] defined the class K  which 

is a class of close-to-convex function with the satisfaction of the following conditions 

( )
( )

 






 

zg

zfz
eiRe , 
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where Dz , ( ) Szg , 
2


  , and ( )  cos . From there, we tend to find the Hankel determinant 

for the class of close-to-convex function 0K  where the function ( )zg  in the form of Koebe function. 

In this paper, we deal with functional ( ) 2
2311,2 2/  −=fFH  when the function f  is close-to-convex 

univalent function. We know that ( )2/1,2 fFH  corresponds with the functional ( ) 2
231,2 aafH −=  over 

class S  or its subclasses. Also, it associated with the coefficient 1b  in the class   and area theorem 

(cited by author in [15]). Besides, this functional for the class S  was estimated by Bieberbach in 1916 

(cited by author in [15]). We know that the logarithmic coefficients can write as 

      
21

2

1
a= ,  








−= 2

232
2

1

2

1
aa ,  and  








+−= 3

23243
3

1

2

1
aaaa . 

Therefore, 

( ) 







+−= 4

2
2
3421,2

12

1

4

1
2/ aaaaFH f . 

Note that, the condition if the function ,Sf   and R , then ( ) ( )zefezf ii 


−−=: . Therefore, we have 

the following inequality, 

( ) ( )2/
12

1

4
2/ 1,2

44
2

2
342

4

1,2 f
i

i

f FHeaaaa
e

FH 



=








+−= . 

The objective of this paper is to find the upper bound of ( )2/1,2 fFH  when the function f  is the class of 

close-to-convex function, 0K . The following Lemmas will be used to get the upper bound of ( )2/1,2 fFH  

for class 0K . 

 

Lemma 1.1. (Cited by author in [15]) If p  is of the form (7) with 01 c , then 

  11 2=c , (9) 

 

 ( ) 2
2
1

2
12 122  −+=c , (10) 

and  

 ( ) ( ) ( ) 3
2

2
2

1
2
21

2
121

2
1

3
13 11212142  





 −−+−−−+=c . (11) 

for some  1,01  and 2 ,  1::3 = zCzD . For D1  and  1:2 == zCzT , there is a 

unique function p  with 1c  and 2c   as in (9)-(10), namely, 

( )
( )
( ) 2

2121

2
2121

1

1

zz

zz
zp





−−+

+++
= , Dz . 

For 1 , D2  and T3 , there is a unique function p  with 1c , 2c  and 3c   as in (9)-(11) 

( )
( ) ( )
( ) ( ) 3

3
2

23213112131

3
3

2
23213112131

1

1

zzz

zzz
zp





−−−+−++

+++++++
= , Dz . 

  
Lemma 1.2. (Cited by author in [3]) Given real numbers A, B, C, let 

. ( )  DzzzCzBACBAY −+++= :1max:,,
22  

I. If 0AC , then 

( )

( )

( )
( )










−
−

++

−++

=
.12,

14
1

,12,

,, 2

CB
C

B
A

CBCBA

CBAY  

II. If 0AC , then 
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( )

( )
( )

( )
( )

( )
































−−+

−
++

−







−−

−
+−

=

,,,

1
1

4,14min,
14

1

,121
1

4,
14

1

,,
2

22
2

2

2

2

otherwiseCBAR

C
ACCB

C

B
A

CBB
C

AC
C

B
A

CBAY  

where 

( )

( )
( )

( )













−+

−++−

+−+

=

.
4

1

,4,

,4,

:,,

2

otherwise
AC

B
AC

ABCABCBA

ABABCCBA

CBAR  

The following theorem will prove the second Hankel determinant with entries are logarithmic coefficient 
for the class of close-to-convex function with respect to the Koebe function. 
 

Theorem 1.0. If the function 0Kf   (close-to-convex function), then 

80851342406.02
231 −  

The inequality is sharp. 
 
Prove. From the following equation, 

( )
( )

( )zp
zg

zfz
=


 

where ( ) ( )
( )21 z

z
zKzg

−
==  is the Koebe function. Then, we have 

 ( ) ( ) ( )zpzgzfz = . (12) 

By differentiating the equation (12) and computing the coefficients of 2z , 3z , and 4z , we get 

 12
2

1
1 ca += , (13) 

 1
3

2

3

1
123 ++= cca , (14) 

and 

 1
4

3

2

1

4

1
1234 +++= ccca . (15) 

respectively. Note that, the logarithmic coefficients for 1 , 2 , and 3  give 

 21
2

1
a= , (16) 

 







−= 2

232
2

1

2

1
aa , (17) 

and 

 







+−= 3

23243
3

1

2

1
aaaa . (18) 

respectively. Then, substitute the equation of (13), (14), and (15) into the logarithmic coefficients, (16) - 
(18), yields 

 11
4

1

2

1
c+= , (19) 

 
2
1122

16

1

4

1

12

1

6

1
ccc −++= , (20) 

and 

 
3
1

2
1211233

48

1

24

1

12

1

6

1

24

1

12

1

8

1
ccccccc +−−+++= . (21) 

Then, by applying Lemma 1.1 into the logarithmic coefficient (19) – (20), we have 
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 11
2

1

2

1
 += , (22) 

 ( )
4

1

6

1
1

3

1

12

1
12

2
1

2
12 ++−+=  , (23) 

and 

 

( ) ( )

( ) ( ) .
6

1

12

1
1

6

1
11

4

1

1
4

1
1

6

1

12

1

12
2

13
2

2
2

1

2
21

2
121

2
1

3
13

++−+




 −−+

−−−+=





 (24) 

Note that, the second Hankel determinant denotes ( ) 2
2311,2 2/  −=fFH . For simplification, we need to 

let 311 =A  and 
2
22 =A . From there, we get 

( ) ( ) ( )( )

( ) ( ) ( ) 2
1

2
2

2
1

2
12

2
1

2
1

4
112

2
1

3
2

2
2

11
2
21

2
121

2
1

3
11

24

1
1

8

1
1

12

1

24

1

8

1
1

12

1
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8

1
1

8

1
1

6

1
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1
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

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
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and 

( ) ( )

( ) ( ) 12
2

121
2
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3
12

2
1

2
1

2
1

2
2

22
1

4
12
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1
1

6

1
1

9

1

36

1
1

18

1

16

1

72

5
1

9

1

144

1
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

+−+−+

+−+++−+=A

 

After that, we subtract the equation of 1A  and 2A  (
2
23121  −=− AA ), and it yields 

( )

( ) ( ) ( )( ) 3
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1
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1
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5
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1
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and gives 
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2

2
2
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1
4
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8

1
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1
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1
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1
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5
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

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A). Suppose that 11 = , then 
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2
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1
1
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
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1
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1
=  

B). Suppose that 01 = , and 12   then 
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2
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2
22432
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1
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
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C). Suppose that ( )1,01 , Since 13  , we have 
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and gives 
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Then, we have 
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2472144

5
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2
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2
11

2
231

−+++





 −+++−+=−



 CBA

 (25) 

where, 
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2
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=A ,  
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
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
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


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+
=
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4

9

2

1
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2

1

1
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
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=

9

8

91

1
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2
1

1





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We tend to solve the equation ( )( )( )




 −+++−+

2
2

2
22

2
11 1118/1  CBA  by using the lemma 1.2, 

then we solve it together with the rest of the equation. The first step is showing the inequality of 0AC , 

for ( )1,01 , that gives 

( )
0

9

8
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2
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2
1

2
1










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
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−−−

+





, 

and further simplification, we have the following inequality, 
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( )

0
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1

1 
+

+
−




, 

which is showed decreasing for ( )1,01 . Since 0AC , we apply Lemma 1.2 only for case II. Before 

we venture into more details, we know that the absolutes of A , B  and C  give 

( )
,

99

1
2

2

1

2
1 














+
=


A

( )
( )

,
99

642
2

1

2
1

2

1
2

1















+

−+
=




B and 

( ) 2

1

2
1

9

8













 +
=


C . 

C1). Note that, the inequality of 01
1

4 2

2
−








−− B

C
AC , gives 

( )

( )( ) ( )
0

1

3

2

9

4

9

2

199

1

9

8

9

1

9

8

9
8

2
1

2

1
2

1

11

2

1

2
1

2
1

1

2
1


+














−−

−
++























−














−−−

+














−−−

−














 

Further simplification of the above equation, we have 

( ) ( )
0

8181

15235624128484

1
2

1

1
2

1
3
1

4
1

5
1 

++

−+−−−−




 

yields 

015235624128484 1
2
1

3
1

4
1

5
1 −+−−−−   

By solving it computationally using the Maple software of the 2019 version for the equation, we have the 
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following roots 453204077.81 − , 4958717766.01   and 11  . The root for 4958717766.01   and 

11   are hold for ( )1,01  of the inequality 015213562
1243

11284
1485

14 −+−−−−  . Now we look 

into another inequality for ( ) 012 −− CB , which gives 

( ) ( ) ( ) ( ) ( )
( )  08

9

2
2

99

9

99

12

9

2

99

4

99
2 2

1
2

1

2

1

2
1

2
1

1

2
1

2
1

2
1

3
1

2
1

4
1 ++−















+
+

+
−

+
−

+
+

+
















 , 

and 
 

( )
( ) ( ) 08

9

2
232

99

2
11

2
1

1

++−−+
+




. 

By simplifying the equation, we get 

( )
0

99

844

1

1
2

1 
+

−+




, 

and 

0844 1
2
1 −+  , 

which is false for ( )1,01 . Therefore, for the case C1 is not fulfilled 

C2).  Next, we move on to the inequality of ( )
















−−+ 1

1
4,14min

2

22

C
ACCB . From there, we have 

( )
( )

2
2

12

9

8
1414
















+

+=+


C , 

which gives 

( )
( )

81

64

81

4

9

64168

81

580
14 1

2
11

2
12 

++
++

−=+ C . 

 
Next, the following equation can be expressed as 

( )

( )( )11

2

1

2
1

2
1

1

2
1

2 199

1

9

8

9

1

9

8

9
8

1
1

4










++























−














−−−

+














−−−

=







−−

C
AC , 

and by further simplify it, we get 

64872981

1361288
1

1
4

1
2

1

1
2

1

2 ++

+−−
=








−−





C
AC . 

By substituting any values for ( )1,01  , and comparing the solution for the following equation,  

( )
81

64

81

4

9

64168

81

580 1
2

11
2

1 
++

++
−  

and 

64872981

1361288

1
2

1

1
2

1

++

+−−




. 

From there, we know that, 

( ) 







−−+ 1

1
414

2

2

C
ACC , 

Then, we can say that ( )2142 CB + . From that inequality, we know that ( ) 0
2

142 +− CB , and 

gives 
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( )

( )
0

9

8
14

1

3

2

9

4

9

2
2

2
1

2
1

2

1
2

1

















+

−−
+














−+







, 

and further simplification, we get 

( )
( )

0
181

2316

2
1

1
3
1 
+

+−



  

By solving computationally of the inequality above, we noted that the roots obtained are 11   and 

21 − . These do not lie on the interval ( )1,0  for 
1 . Therefore, the case C2 is unfulfilled. 

 

C3).  Now, we look on the inequality of ( ) ABABC + 4 . Before that, we need to calculate them 

separately for a better simplification. We know that 

( )
( )21

1
2

1

181

324





+

−+
=AB  and 

( )
( )

81

1

32
4

2

1

4
1

2

1
2

1















+

−+

=




AB . 

Then, the inequality of ( ) 04 −+ ABABC , can be written as 

( ) ( )
( )

( )
( )

( ) ( )
( )

0
81

1

32
4

9

99

1
8

99

642
8

4
1

2

1
2

1
2

1
2

1

2

1
2

12
1



















+

−+

+































+
+

+

−+








+










, 

and 

( ) ( )
( )

0
81

1

32
4

9

99

8

99

642
8

2
1

1
2

1

11

1
2

1
1
















+

−+

+














+
+

+

−+
+










. 

We can further simplify the inequality as follows, 
 

( )
0

181

284250222

2
1

1
2

1
3
1

4
1 

+

+++++




 

 

From there, we can see that the obtained roots for the above inequality, yielding  
 

21 −=  and 
( )

( )
254730169.83

2160540

20

3

2160540

3

1

3

1

1 −−

+

−
+

−= , 

 

which the roots are not satisfied for ( )1,01 . Therefore, the case C3 is failed. 

C4). Next, we look into the inequality of ( )ABCAB 4− , that gives 

( ) ( )
( )

( ) ( )
( )

( )
( )

,0
9

99

1
8

99

642
8

81

1

32
4

2
1

2
1

2

1
2

12
14

1

2

1
2
1

































+
−

+

−+








+

−

















+

−+










 

and. 

( )
( )

( )

.0
9

99

8

99

642
8

81

1

32
4

11

1
2

1
12

1

1
2

1
















+
−

+

−+
+

−














+

−+










 

We can simplify the above inequality becomes, 

( )
( )

.0
181

505117112

2
1

1
2

1
3
1

4
1 

+

−−+−
−




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Then, we obtained the root for the inequality as follows, 
 

8602810742.01 − , 
 

which the root obtained do not lie on the interval ( )1,0  for 1 . Therefore, the case C4 is not satisfied. 

C5).  Lastly, we choose the inequality of ( )
AC

B
AC

4
1

2

−+ . Then 

( )( )( )
144

1

2472144

5

4
111

8

1 1
3
1

4
1

2
2

11
2
231 −+++−+−+−




AC

B
AC  

which gives, 

( )( ) ( )

( )

( )

( )

( )1
1

3
1

4
1

1

2
1

1

1

2

1
2

1

2
1

2
12

11
2
231

:
144

1

2472144

5

9

8

9
1

99
3

2

9

4

9

2
2

16
99

1
2

9

8
11

32

1

















=++++






































−−−+

+













−+

−






























+
+

+
−+−

 

Now, we determine in which of the half-plane (left or right) that provide the root on the interval ( )1,0  for 

the function ( )1 . First, we observe the function ( )1  for the right half-plane, which gives 

( ) ( )( ) ( )

( )

( )

( )

.
144

1

2472144

5

9

8

9
1

99
3

2

9

4

9

2
2

16
99

2

9

8
11

32

1

1
3
1

4
1

1

2
1

1

1

2

1
2

1

1

12
111

++++






































−−−+

+













−+

−














+
+

+
−+=
















 

By solving computationally for the numerical root finding, we obtained the roots for 005506079.11   

which is false for ( )1,01 . Again, we used the same approach to obtain the root for the left half plane 

for the function ( )1 . We have 

( ) ( )( ) ( )( )

( )

( )

( )

,
144

1

2472144

5

9

8

9
1

99
3

2

9

4

9

2
2

16
99

)2(

9

81
11

32

1

1
3
1

4
1

1

2
1

1

1

2

1
2

1

1

12
111

++++






































−−−+

+













−+

−














+

−
+

+−
−+=
















 

which gives the root 9945678421.01  , and this root holds for ( )1,01 . Therefore, we have, 

( ) 08513424.09945678421.02
231 −   

This concludes the proof. 

 

Conclusions 
 
We summarised the inequality in (25) that followed from the section A until C, the equality for the function 

Af   provided by equation (12), where Pp . It has the form of (7) with 9945678421.01  , 12  , and 

13   that give, 

( )
( )

( )
2

2

1

989135684.11

z

zz

zg

zfz

−

++
=


, Dz  

. 
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