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Abstract A confidence interval is an interval estimate of a parameter of a population calculated 

from a sample drawn from the population. Bootstrapping method, which involves producing 

several new data sets that are resampled from the original data in order to estimate parameter for 

each newly created data set, allowing an empirical distribution for the parameter to be estimated. 

Since certain statistics are harder to estimate, confidence intervals are rarely employed. Several 

statistics might necessitate multi-step formulas assuming that are impractical for calculating 

confidence intervals. This paper reviews research on the concept of bootstrapping and bootstrap 

confidence interval. The current narrative analysis was developed to answer the main research 

question: (1) What is the concept of the bootstrap method and bootstrap confidence interval? (2) 

What are the methods of bootstrapping to obtain confidence interval? This study has found 

general bootstrap method idea, various techniques of bootstrap methods, its advantages and 

disadvantages, and its limitations. There are normal interval method, percentile bootstrap method, 

basic method, first-order normal approximation method, bias-corrected bootstrap, accelerated 

bias-corrected bootstrap and bootstrap-t method. This study concludes that the advantages of 

using bootstrap CI is that it does not require any assumptions about the shape of distribution and 

universality of the approach. Bootstrapping is a computer-intensive statistical technique that relies 

significantly on modern high-speed digital computers to do massive computations. 
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Introduction 
 

In statistics, the information in sample X = (X1, X2, …, Xn) is used to estimate an unknown parameter 
(Salkind 2010). There are several methods in estimating a value of a parameter, such as by using 
hypothesis testing, point estimation and confidence interval (CI) estimation. A CI is an interval estimate 
of a parameter of a population calculated from a sample drawn from the population. An unknown 
population parameter’s interval estimate generated from a sample chosen from that population. 
Whenever there is a known and statistically reasonable level of confidence that the unknown population 
parameter resides within that interval, it is described as CI (Petty 2012). CI is an important statistical 
estimator of population location and dispersion parameters (Abu-Shawiesh, Sinsomboonthong, and 
Kibria 2022). The CI is the upper bound and lower bound that contains a true mean value. CI gives the 
probability of the population parameter of interest (Tapia, Salvador, and Rodríguez 2020).  A confidence 
level is utilized to construct interval estimates. This is the probability that the interval corresponds to the 
population parameter that is being estimated. Despite 95% confidence level which certainly the most 
commonly used, confidence intervals can be calculated at any confidence level, for instance, 90% or 
99%. 
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CI provides additional information than point estimates (Das, 2019). A point estimate is a single value 
(i.e., mean, median) that is an unknown parameter based on statistics. CI is a range calculated from 
observable data that includes the true value of an unknown population. Due to the procedure's tendency 
to generate intervals that contain the population parameter, CI is a good estimate of the parameter (Das, 
2019). CI is wonderful basis for inference because give point estimate together (Cumming, 2007).  CIs 
are consisting of a margin of error and point estimate around that point estimate. On the other hand, a 
parameter's of CI estimation is a range of probable values. Therefore, the CI estimation is more suitable 
than point estimation because it gives statistically significant information (Saito & Dohi, 2018). Figure 1 
shows a type of estimation.   

Figure 1. Type of estimation (Das, 2019) 

 
The researcher tend take a small sample size when time constraints and costs are high. Then, estimation 
for the population parameters will be more suitable if it can be generated using statistics from the small 
samples. However, there are three basic assumptions of validity of CIs that are challenging to meet with 
small sample sizes (LaFontaine 2021). LaFontaine (2021) summarized that once a representative 
sample is obtained, those inferences can be made. There are three assumptions for the accuracy of 
these inferences. The assumption of normality of the sampling distribution of the parameter is the first of 
these three assumptions. The standard assumption of the CI is the residual must be identically and 
independently distributed with normal distribution. Depending on the standard normal and t-distributions, 
the common CI is symmetric at about zero (Berrar 2019; Dogan 2004). The second assumption is that 
the estimated parameter's standard error is a close approximation to the standard deviation of the 
estimated parameter's sampling distribution. The last of the assumptions is the estimated parameter has 
little bias in its estimate. For some parameters, these assumptions can be met relatively easily, while for 
other parameters it requires a different set of methods to meet these assumptions. These assumptions 
need to be fulfilled when making inferences on the population mean. Violation of assumptions will create 
problems, especially when estimating the CIs.  

 

The uncommon use of CIs is related to estimation difficulties for specific statistics, according to a study 
by Banjanovic & Osborne (2016). Some statistics may necessitate multi-step formulas with assumptions 
that are not constantly inconvenient to be used when generating CIs. The traditional CI are computed 
using the Equation 1 and 2. The 95% CIs are calculated based on formula.   

 

 for large data                                                                                                              (1) 

 for small data (n less than 30),                                                                                 (2) 

 

in which    denotes the sample mean, s is the standard deviation, n represents the sample size,  

is standard error, and   is margin.  

 

The traditional approach is accompanied by two problems. First off, the distribution is symmetric and 
relies on the normality assumption. As a result, the normality assumption also forms the basis of the (1 
– α)100% CI with respect to the population mean (μ). Nonetheless, real life does not support the 
normality assumption. The traditional approach is not particularly reliable in these circumstances by 
many other researchers, which include (Boos and Hughes-Oliver 2000; David 1998; Desharnais et al. 
2015; Wilcox 2021). Although its average variability and widths were not as low as other CI, prior studies 
have showed that the traditional approach fits well for asymmetric distributions and small sample sizes 
with respect to the coverage probability approaching the nominal confidence coefficient (Boos and 

Hughes-Oliver 2000; Shi and Golam Kibria 2007; Wang 2001; Zhou and Dinh 2005). 
 

Traditional approach to statistical inference is based on assumptions. The weakness of this traditional 
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approach is that it is not robust under extreme deviations from normality. Normal approximation theory 
is imprecise for limited data and lack estimate of the precision (Saha and Kapilesh 2016). When the 
assumption of normality is not followed, the bootstrapping method is an alternative technique to estimate 
the parameter (L. I. Tong, Saminathan, and Chang 2016; Flowers-Cano et al. 2018). Bootstrapping is a 
method that relaxes normality, independence, and constants variation assumptions (Hongyi Li and 
Maddala 2007; L. I. Tong, Saminathan, and Chang 2016; Rousselet, Pernet, and Wilcox 2021).  

 

Bootstrapping, jackknife resampling, permutation test, cross-validation, and Monte Carlo simulation are 
examples of resampling techniques. When sample size and population-representative are limited, the 
bootstrapping method is used. The sample is assumed to be connected to the population in the same 
way that an empirical distribution created via resampling N samples with substitutions from the original 
distribution, each of the same sizes as the original sample, is connected to the population. Moreover, 
the researcher can assess the accuracy of the predictions on the population parameter by producing an 
empirical distribution and comparing it to the sample statistic (LaFontaine, 2021). The distribution of 
observed data such as data in a random sample is the empirical distribution. The values of the statistic 
can generate standard errors and CIs for the statistic (L. I. Tong et al., 2016). The use of bootstrapping 
CI in reporting the results can be seen in the area of biomedical research, financial investment, and off-
policy evaluation (Hanna et al., 2017; Haukoos & Lewis, 2005; Klaudia & Łukasz, 2020).  

 

The process of generating a pseudo sample from the original sample or applying a model to the original 
sample is known as the bootstrapping principle (Puth et al., 2015). The purpose of this paper is to 
comprehend CI utilising various bootstrap techniques. This includes first-order normal approximation, 
percentile bootstrap method, bias-corrected bootstrap, normal interval method, accelerated bias-
corrected bootstrap, basic method, as well as bootstrap-t method. This article attempts to introduce the 
reader to the concepts and methods of bootstrap in statistics, which is under a larger umbrella of 
resampling. Although previous research has study about concept of bootstrapping, which has been a 
limitation in most studies.  The procedure of the bootstrap method has been discussed to provide an 
understanding of application of bootstrap methods in the calculation of CI. 

 

This paper is organized as follows. The first section provides a summary of the bootstrapping method 
and the concept of bootstrapping method. The next section discusses different methods of bootstrapping 
to obtain a CI, process of bootstrapping method, and the performance of CI. The final section concludes 
about overall bootstrapping method.  

 
Bootstrap Method in General 
 

Efron (1979) proposed the bootstrap method which is a databased simulation method for statistical 
inferences. Bootstrap method can be applied for interval estimate for mean, standard deviation, or any 
other statistic with the assumption that the observations are independent and come from the same 
distribution (Good & Hardin, 2012). Bootstrap method is a method for resampling a model or one's data 
inferred from the data to estimate the distribution of an estimator or test statistic (Horowitz, 2019).  

 

Given its generality, the bootstrapping method is a common method for generating CIs. A similar 
procedure may be utilized to a wide variety of statistics (Puth et al., 2015). The goal of bootstrapping is 
to conclude a population parameter based on the data available (Rousselet et al., 2021). Bootstrap 
method is more generalized and versatile than traditional method because bootstrap method is 
computationally intensive and efficiently applied for uncertainty analysis (Saha & Kapilesh, 2016; L. I. 
Tong et al., 2016). Bootstrapping is used when sample sizes are small, the distribution of estimators is 
unknown or when the satisfaction of relevant assumptions is not met (Bochniak, Kluza, Kuna-
Broniowska, & Koszel, 2019). Bootstrapping method with robust estimators (for example, M-estimators, 
trimmed means, median) can aid people in comprehending data more deeply than traditional means. 
Robust estimators do not react very strongly to outliers. Advantageously, the bootstrapping method does 
not become reliant on underlying population assumptions (L. I. Tong et al., 2016). Bootstrap methods 
are thought to have two primary benefits over more conventional ways: (a) they are more robust, coping 
effectively with data that does not comply with standard parametric assumptions, and (b) they are 
frequently easier to enforce, relying on computer power to replace complex derivations (Hoyle & 
Cameron, 2003). Therefore, this study will explore and understand the concept of bootstrapping.  

 

Generally, bootstrap method also known as percentile bootstrap CI (Pek, Wong, and Wong 2017; Abu-

shawiesh and Saeed 2022). Although CI development tends to involve a complicated resampling 

technique with a good theoretical coverage probability performance, the CI might perform erratically in 

practice depending on the bootstrap estimator’s distribution (Sinsomboonthong, Abu-Shawiesh, and 
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Kibria 2020). Additionally, this approach is difficult to put into practice since it requires statistical 

programming to compute, in contrast to bootstrap-t, which is suggested in this study and is simple to put 

into use. 

 

Concept of bootstrap method and bootstrap CI 
Suppose  is a random sample of size n drawn from original sample. Generate a bootstrap 
sample from the replacement sample. There is a total of nn resamples feasible. Bootstrap sampling is 
the same as sampling from the empirical population distribution with replacement. Then, estimate the 
parameter value for each bootstrap sample.    

 

In the bootstrapping method, the number of replications is important because it acts as a guideline for 
an efficient and accurate bootstrap resampling (Hedges 1992). According to DiCiccio & Efron (1996) and 
Yan (2022), at least 2000 replications are used when conducting bootstrapping methods. The number 
of bootstraps cannot be less than nn (Efron and Tibshirani 1993). (L. I. Tong, Saminathan, and Chang 
2016; Zhao et al. 2021; Wilcox 2021) suggest that to get reasonable accuracy in terms of CI estimates 
for the parameter, at least 1000 bootstrap resamples are adequate. Let B be the number of bootstrap 
samples to be derived from the original dataset. Therefore, a much bigger value of B is required for 
bootstrap CI (Efron and Tibshirani 1993). Banjanovic & Osborne (2016) recommended that more 
bootstrap samples will improve the estimation and take a modern computer only slightly longer by using 
5000 bootstraps resamples (L. I. Tong, Saminathan, and Chang 2016). The bootstrap method was found 
to be robust to the choice of initial sample data, the number of bootstrap samples, and the different 
bootstrap samples obtained in different runs. The study suggests that numbers for estimation as 4,000 
to 5,000 bootstrap samples, each of 30 or more data (Saha and Kapilesh 2016). Results tend to be more 
consistent when the number of bootstraps increases (Mahmudah et al. 2023). Saha & Kapilesh (2016) 
also suggests that the number of bootstrap samples between 1,000 and 2,000 bootstrap samples, with 
each sample containing at least 25 data in each sample. Study by L. I. Tong et al. (2016), for small 
sample size the data used are n=5,6,…,30.  

 

Assume that the population parameter  is estimated using a random sample. The bootstrap estimate 

of  is expressed by . To get B sets of bootstrap samples, the resampling process is performed B 
times. Note that B should represent how many bootstrap samples will be drawn from the original dataset. 
The bias-corrected bootstrap, bias-corrected accelerated percentile bootstrap CI, standard bootstrap CI, 
as well as percentile bootstrap are the four bootstrap CIs (L. I. Tong, Saminathan, and Chang 2016). 
Figure 2 depicts a schematic representation of steps in bootstrapping (Haukoos and Lewis 2005).  

 
Figure 2. Description of the steps in bootstrapping 

 

 



 

 

34 

Mokhtar et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 30-42 

Parametric and Nonparametric bootstrap method 
A bootstrap method is known in two different forms. Nonparametric bootstrap and parametric bootstrap. 
Nonparametric bootstrapping refers to bootstrapping from the original sample, as opposed to parametric 
bootstrapping, which is bootstrapping from the model that was fitted to the original sample (Puth et al., 
2015). A sample distribution assumption is established before employing the parametric bootstrap 
method. In a normal distribution, for instance, two parameters are required, whereas, in a Poisson 
distribution, only one parameter is required. The statistic is estimated by employing sampling with 
replacement in the nonparametric method, and the statistic's distribution is attempted to be identified. 
Nonparametric bootstrapping where the parameters are resamples with replacement to create many 
bootstrap replicate dataset.  

 

The basic idea behind the parametric bootstrap method is to estimate parameters utilizing the original 
observation data and then sampling after acquiring the appropriate parameter distribution (Fang & 
Zhang, 2013; Onyesom & S.I., 2021). The parametric bootstrap is a method of sampling from a 
parametric probability function that was created by fitting residual terms into an idealised probability 
distribution.  Since it does not necessitate a big data set, when the residual term fits a parametric 
distribution, this approach works well. By sampling error terms from the parametric distribution after the 
distribution parameters have been established, a new data set can be created. After the distribution 
parameters have been determined, the distribution can be used to construct a new data set by sampling 
error terms from the parametric distribution. In parametric bootstrap, the corresponding probability 
distribution parameters would be used for resampling process (Saha & Kapilesh, 2016).  Nevertheless, 
with this procedure, distribution assumptions should be fulfilled (Mesabbah et al., 2015).  

 

On the contrary, the nonparametric bootstrap method works by generating many fresh bootstrap samples 
and resampling the statistics (Fang & Zhang, 2013). Nonparametric sampling is the basic sampling 
technique since it does not involve any distributional assumptions (Puth, Neuhäuser, and Ruxton 2015); 
However, it does necessitate a large data sample to be appropriately relevant. Nonparametric bootstrap 
method suited for limited data sets (Saha and Kapilesh 2016). In this technique, the set of residuals (ε̂it) 
corresponding to the best-fit parameters (θ̂) or the original parameter values (θ̃) is resampled at random 
with replacement to produce each new set of residuals. In the parametric method, no corresponding 
assumption is required (Mesabbah, Rashwan, and Arisha 2015) while in nonparametric bootstrap, equal 
probability is assigned to each observation (Saha and Kapilesh 2016). Table 1 compares two different 
types of bootstrap method (parametric and non-parametric) with traditional counterpart. 

 

Table 1. Comparison two different types of bootstrap method (parametric and non-parametric) with traditional 

 

 Nonparametric 

bootstrap 

Parametric 

bootstrap 

Parametric 

(traditional) 

Assumption Large sample size Know the 

distribution 

Need to fulfil 

assumptions  

Use  Traditional formulas 

not available or too 

difficult 

Traditional formulas 

not available or too 

difficult 

Have population 

data and able to 

use traditional 

formulas 

Sample The observations with 

replacement 

Estimate from true 

distribution 

True population 

Advantages Can be used to 

estimate any 

sampling distribution 

More powerful than 

nonparametric 

bootstrap 

Formulas are 

wide use 

Disadvantages Not suitable for small 

sample sizes 

Can be difficult to 

choose distribution 

Can only 

estimate 

sampling 

distributions 

under tight 

conditions and 

assumptions 
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Bootstrap Method to Obtain a CI 
 

Several methods to calculate CI based on bootstrap method require different assumptions. There is a 
different method of obtaining a CI using bootstrapping. There are normal interval method, percentile 
bootstrap method, basic method, first-order normal approximation method, bias-corrected bootstrap, 
accelerated bias-corrected bootstrap and bootstrap-t. The package that suggests for simulation is Scilab, 
R package, and STATA.  

 

(i) Basic Method  

Puth et al., (2015) indicated that each , an error  is calculated as . It is these that are then 

ordered, and identify the lower and upper limits  and  that enclose the central CI for 

the population parameter is then .  

 

(ii) Normal Interval method  

The bootstrap distribution is used in the normal interval approach to estimate the standard error for 
calculating the traditional CI. The CI is computed by using where is the sample estimate, as 
well as SE, which is known as standard error (Banjanovic and Osborne 2016).  

 

(iii) Percentile bootstrap method  

The percentile bootstrap is the most basic type of bootstrapping, with bootstrap samples sorted from 
smallest to biggest. According to Mesabbah et al. (2015), the quantile of the bootstrap distribution of the 
parameters estimate is utilized in the percentile bootstrap CI technique. Efron proposed the percentile 
bootstrap CI in 1982. The percentile bootstrap interval is simply the interval between the 

 and percentiles of the distribution of θ estimates obtained from resampling, 
where θ denotes a parameter of interest and α is the significance level. Furthermore, the upper and lower 
bounds are the exact percentiles corresponding to the given alpha level. For example, α = 0.05 for 95% 

CIs. The  and  quantiles of the bootstrap distribution are utilized to construct the CI bounds, 
.025 and .975 respectively.  

 

The following is the method to generate a percentile bootstrap CIs of   (an estimator of θ):  

(1) B random bootstrap samples are created,  

(2) each bootstrap sample yields a parameter estimate,  

(3) all B bootstrap parameter estimates are sorted from lowest to highest, and  

(4) the CI is [ lower limit, upper limit] =[ , ], in which  expresses the jth quantile (lower limit), 

as well as  expresses the kth quantile (upper limit); j=[ ×B], k=[(1− )×B].  

For instance, a 95% percentile bootstrap CI having 1,000 bootstrap samples is the interval between the 
975th quantile value and the 25th quantile value of the 1,000 bootstrap parameter estimates (Jung et al. 
2019). However, CI is often biased when small in size (Shao and Tu 1995). Percentile bootstrap tend to 
be inaccurate because the bootstrapping for the sampling distribution is skewed distribution and bias 
(Rousselet, Pernet, and Wilcox 2021).  

 

(iv) First-order normal approximation  

Puth et al., (2015) identified that this method, if  is the standard deviation of the B bootstrap samples 

and  is the mean, then the CI is given by  where  is the z-score for a 

given level of significance , if  then . 

 

(v) Bias-Corrected Bootstrap 

The bootstrap empirical distribution may occasionally be asymmetrical distribution, resulting in a bias in 
the confidence interval (L. I. Tong, Saminathan, and Chang 2016). The percentile bootstrap confidence 
interval is thus corrected (Efron 1981).  

 

First,  is computed using the bootstrap distribution of as follow: 

(1)  

(2)Next,  is computed to measure the bias of bootstrap distribution as follows: 
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 where is the inverse cumulative standard normal distribution.  

(3)The bias-corrected percentiles  and  are computed, respectively, as given in the formulas: 

 

 
where is the cumulative standard normal distribution. Thus, the bias-corrected 

bootstrap confidence interval for  can be computed as . 

 

Although these intervals may never be like the percentile method, the bias-corrected bootstrap employs 
percentiles as the upper and lower CIs. The bias-corrected bootstrap is employed to recalculate the 
endpoints of the CI in place of the percentile method. According to Chen & Fritz (2021), there are six 
different bias corrections: (a) mean, (b–e) Winsorized mean with 10%, 20%, 30%, and 40% trimming in 
each tail, as well as (f) medcouple (robust skewness measure). Therefore, if no bias is present, the bias-
corrected bootstrap will be equivalent (Chen and Fritz 2021).  

 

(vi) Accelerated Bias-Corrected Bootstrap 

The accelerated bias-corrected bootstrap (BCa) approach alters both skewness and bias of the bootstrap 
parameter estimates by incorporating a bias-correction factor as well as an acceleration factor (Efron 
1987; Efron and Tibshirani 1993). The BCa formulae may be found in the equation given as follows.  

 

The bias-correction factor  is calculated as the percentage of bootstrap estimates that are smaller than 

the initial parameter estimate   ,         

 

where  is the inverse function of a standard normal cumulative distribution function (for example, 

 (0.975) = 1.96). Therefore, the bias correction bootstrap percentile CI is as follows:  
in which α1 and α2 are modified quantities of the location of the CI’s endpoints. The endpoints of the CIs 

at a significant level of 100α% are described as follows: , and 

where is the cumulative standard normal distribution (Mesabbah, Rashwan, 
and Arisha 2015).  

 

The drawback of the BCa method is that it is difficult to estimate the parameter because of the 
complicated formula (Hoyle and Cameron 2003). In this scenario, the jackknifing method is used to 
estimate parameters (Hoyle and Cameron 2003). BCa method can be insufficient for a small sample size 
(Good 2005).   

 

(vii) Bootstrap-t  

A bootstrap-t method is termed as the studentised bootstrap or percentile-t bootstrap. Efron and 
Tibshirani suggested the bootstrap-t method in 1993. For various sample sizes, the bootstrap-t method 
surpasses the Student's t-test (Zhao et al. 2021). The construction of the bootstrap-t is similar to the 
constructions of CIs for the expected value based on random variables with normal distribution. The 
percentile bootstrap is recommended for inferences about a 20% trimmed mean, although the bootstrap-
t can yield more exact CIs for the mean, including certain trimmed means (Rousselet, Pernet, and Wilcox 
2021). Bootstrap-t method constructs CIs that are more accurate and less biased than other 
bootstrapping methods since the skewness in distribution was handled poorly by all bootstrapping 
methods except bootstrap-t (Hoyle and Cameron 2003). 

Bootstrap-t method can be used to estimate the distribution of statistic    directly from the data. 
For each set of bootstrap samples, a value of Z can be estimated as follows.  

 
in which  resambles the estimate of  for the bth bootstrap sample as well as  represents the 

estimated standard error of for the bth bootstrap sample. The  percentile of  is estimated as 

the value . According to Barker (2005), the CI is then calculated by using     
Table 2 summarizes seven methods of bootstrap methods. 
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Table 2. Summary table for 95% CI estimation using bootstrap methods (Banjanovic & Osborne; 2016) 

 

Method Formulae Description  

Normal Interval  
 The CI is computed by  where  is 

the sample estimate. 
 

- The bootstrap statistic's distribution is 
approximately symmetrical and normal. 
- An unbiased estimator of the population estimate 
is the sample estimate. 
 

Percentile 
bootstrap  

To compute CI, the estimates at the .025 and .975 
quantiles of the bootstrap distribution were 
employed. 

- The bootstrap statistic's distribution is essentially 
normal. 
- Unbiased estimation of the population estimate is 
provided by the sample estimate. 
 

Basic The CI is calculated using for the 

population parameter then .  

 

- Based on the premise that the bootstrap 
distribution of errors is a decent approximation of the 
actual distribution of sampling errors, this approach 
is then employed. 
 

First-order normal 
approximation The CI is computed via  , in which  

denotes the z-score for a given level of significance 

, if  then . 

 

- This technique makes use of the finding that 
bootstraps frequently resemble a normal 
distribution. 

Bias-Corrected 
Bootstrap 

For a 95% CI, the bias-corrected bootstrap adjusts 
the percentile interval for bias by modifying the 
percentile points to values other than the 25th and 
the 975th quantile values of the 1000 bootstrap 
(Shao and Tu 1995).  
 

-This method assumes that data transformations 
can achieve normality and a constant standard error 
(Efron 1987). 

Accelerated Bias-
Corrected 
Bootstrap 

 
Bootstrap-t  

 

The CI is determined at the .025 and .975 quantiles 
of the corrected distribution after bias (skew) and 
acceleration (nonconstant variance) are corrected 
from the bootstrap distribution. 
 

The CI is calculated using  

-BCa approach alters both skewness and bias of the 
bootstrap parameter estimates by adding an 
acceleration factor in addition to a bias-correction 
factor.  
 
- Bootstrap-t method also known as percentile-t. 

 
Process of bootstrapping 
In bootstrap method, the bootstrap sample is of same size n as original sample. Observations could be 
repeated in bootstrap sample. The procedure is further repeated, B times. A general bootstrapping step 
is as follow (L. I. Tong, Saminathan, and Chang 2016).  

(i) Generate a random sample. This dataset is called the original sample  .  

(ii) Draw n samples, with replacement randomly from the original sample to form one bootstrap sample 

.  

(iii) Generate bootstrap dataset B times (with replacement) from original sample each with size n   

.  

(iv) Compute the parameter from n sample  

(v) Construct CI by using seven bootstrap methods of statistic of interest from the bootstrap samples.  

(vi) Repeat (ii)-(v) N times to obtain set of bootstrap CI. Then, calculate performance of seven bootstrap 
CI evaluated using three indices. 

 

The flowchart of the bootstrapping method is presented in Figure 3. The flowchart illustrates the steps to 
compute the CI using bootstrapping method.  
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Figure 3. Flowchart of bootstrapping method (Saha & Kapilesh, 2016)  

 

 

Performance of bootstrapping methods 
The performance indices are taken after computing the CI estimation. The performance indices were 
utilized to examine the precision and accuracy of the uncertainty for a variety of estimations. There are 
three indices that were utilized to assess the performance of bootstrap CI are coverage performance 
index, interval mean index and interval standard deviation index (Lee Ing Tong et al. 2012; Chou et al. 
2006; L. I. Tong, Saminathan, and Chang 2016). Initially, there is the coverage performance index, which 
shows what percentage of the time the actual emission fits inside the bootstrap CIs. The bootstrap CI 
estimate is more accurate when the performance index value is higher. The percentage of times the CIs 
contain the actual amount of interest is what is meant by coverage. The confidence level of the interval 
should match this coverage. In reality, coverage is deemed sufficient if the maximum coverage is not 
significantly higher than 95%, the lowest coverage is not much lower, and the average coverage is close 
to 95% (Flowers-Cano et al. 2018). Second, the interval mean index. The discrepancy between the upper 
and lower bootstrap CIs is expressed by this index. Accuracy and precision are implied by the smaller 
interval. Finally, the interval standard deviation index. The standard deviation of bootstrap CI interval 
lengths is expressed by this index. A small standard deviation indicates a smaller estimated variation 
and greater bootstrap CI estimates. 

 

Advantages and disadvantages of bootstrapping 
There are a few strengths of calculating CI using the bootstrapping method. Firstly, bootstrapping method 
is use to estimate the CI of uncertainty (e.g., standard deviation) without the assumption of normality of 
residuals (Endo et al., 2015; Klaudia & Łukasz, 2020; L. I. Tong et al., 2016). Compared to traditional 
approaches (i.e., maximum likelihood estimation), the bootstrapping method is more transparent, 
simpler, versatility approach and general. The advantage of bootstrap method is its simplicity because it 
is direct in estimation the standard error and CI. Bootstrapping method does not make strong 
assumptions for the model or the data (Dogan, 2004). The theoretical advantage of the bootstrapping 
method in calculating CIs is that the population is not necessarily normal distribution (Kennedy & 
Schumacher, 1993).  Secondly, the assumptions of the bootstrapping method are less restrictive and 
easier to verify compared to the traditional approach (Rousselet et al., 2021; L. I. Tong et al., 2016). 
When the traditional approach is difficult or impossible to apply, the bootstrapping method can be used. 
Employing the bootstrapping method, a statistician may test the statistical accuracy of complex 
operations by utilizing the computer's capabilities (Barker, 2005). According to Doğan (2017), 
bootstrapping is an efficient technique for computing CIs. In widely utilized statistical computing software 
packages, little extra work is required (Puth et al., 2015). Finally, bootstrapping methods are flexible and 

Generate a random sample. This dataset is called the original sample 

 

Draw n samples, with replacement randomly from the original sample to 
form one bootstrap sample 

 

Generate bootstrap dataset B times (with replacement) from original 

sample each with size n    

 Compute the parameter from n sample 

Construct CI by using seven bootstrap methods of statistic of interest from 

the bootstrap samples 

Calculate performance of seven bootstrap CI evaluated using three 
indices. 
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appropriate for a small sample size (Rahmandad et al., 2013; Zhao et al., 2021). It however provides 
accurate results for large samples, regardless of the underlying population (Barker, 2005).  

 

However, disadvantages of bootstrapping method are the need for powerful computers, it must 
understand the randomness to find the next sample, and large sample sizes must be generated (Dogan, 
2004).  The sample must represent the values found in the population it was drawn from. If the sample 
data distribution does not match the population distribution, the bootstrapping method may introduce an 
additional level of sampling error, resulting in inaccurate statistical estimates. This shows the significance 
of getting good data that accurately represents the characteristics of the sampled group. The software 
packages are not easy to compute, and it is time-consuming. Bootstrapping methods also increase the 
computational costs and implementation challenges (Rahmandad et al., 2013). Zaman (2016) in their 
study described the bootstrap method as a method that includes more computations than typical 
parametric findings and mathematical analysis and is used as a statistical outcome technique.  

 
Conclusions 
 

This paper reviews research on the concept of bootstrapping and bootstrap CI. The goal of this research 
is to comprehend CI utilising various bootstrap techniques. The normal interval method, accelerated 
bias-corrected bootstrap, basic method, first-order normal approximation, bias-corrected bootstrap, 
percentile bootstrap method, as well as bootstrap-t method, were thoroughly discussed in this work. This 
article attempts to introduce the reader to the concepts and methods of bootstrap in statistics, which is 
under a larger umbrella of resampling. The procedure of the bootstrap method has been discussed to 
provide an understanding of application of bootstrap methods in the calculation of CI. Nonparametric 
methodology like bootstrap better suited than approximation normal (Saha and Kapilesh 2016). The 
construction of the bootstrap-t is similar to the constructions of CIs for the expected value based on 
random variables with normal distribution. For conclusions regarding a mean that has been reduced by 
20%, the percentile bootstrap is advised, although the bootstrap-t can yield more exact CIs for the mean, 
including certain trimmed means (Rousselet, Pernet, and Wilcox 2021). Bootstrap-t method constructs 
CIs that are more accurate and less biased than other bootstrapping methods since the skewness in 
distribution was handled poorly by all bootstrapping methods except bootstrap-t (Hoyle and Cameron 
2003). For the confidence coefficient, the most typical 95% confidence interval (α = 0.05) is applied. The 
coverage probability will be precise or close to (1−α), as is known if the data come from a symmetric 
distribution. 

 

Based on Hoyle & Cameron (2003), bootstrap methods are thought to have two primary benefits over 
more conventional ways: (a) they are more robust, coping effectively with data that does not comply with 
standard parametric assumptions, and (b) they are frequently easier to enforce, relying on computer 
power to replace complex derivations. In additional, using bootstrap CI has the benefit of not requiring 
any assumptions about the distribution shape and universality of the approach (Klaudia and Łukasz 
2020). Bootstrapping is a computer-intensive statistical technique that relies significantly on modern 
high-speed digital computers to do massive computations. Three phases can be utilized to generalize 
the bootstrapping method. To begin, resample using replacement samples to construct the bootstrap 
replications. Secondly, for every sample, compute the statistic of interest. Finally, make inferences based 
on the repeated statistic's distribution. To determine the sample mean, standard error, and generate CIs. 
The assumptions of the bootstrap method are the samples must be sufficient. If the sample sizes are too 
small, then the distributions cannot capture (Rousselet, Pernet, and Wilcox 2021). Additionally, for 
regression, hypothesis testing, adaptive estimation, calibration, and bioequivalence approaches, 
bootstrapping methodology is accessible. For the future work, do not use extreme values for bootstrap 
method (Onyesom and S.I. 2021).  
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