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Abstract We present a method of determining integral solutions to the equation 𝑥! + 16 ∙ 7" = 𝑦!#, 
where 𝑥, 𝑦, 𝑏, 𝑟 ∈ ℤ$. We observe that the results can be classified into several categories. Under each 
category, a general formula is obtained using the geometric progression method. We then provide the 
bound for the number of non-negative integral solutions associated with each 𝑏. Lastly, the general 
formula for each of the categories is obtained and presented to determine the respective values of 𝑥 and 
𝑦#. We also highlight two special cases where different formulae are needed to represent their integral 
solutions. 
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Introduction 
 
A Diophantine equation is an equation in which only integer solutions are allowed. The main objective of 
studying Diophantine equations is to determine whether a solution exists. If it does exist, how many 
solutions are there and can one provide a general form to represent the solutions. Note that Fermat’s 
Last Theorem has been one of the most popular problems since 1637, and the proof was published 
successfully by Wiles (1995) in the 20%& century. 
 
A considerable amount of literature related to Diophantine equations has been published over the years. 
The Diophantine equation 

𝑥! + 𝐶 = 𝑦', (1) 
where 𝑥, 𝑦 ≥ 1 and 𝑛 ≥ 3 was investigated since 1850. A survey of Eq. (1) can be found in Abu Muriefah 
& Bugeaud (2006). Lebesgue (1850) first proved that there exist no non-trivial solutions for 𝐶 = 1. The 
problem was then extended by replacing the value of 𝐶 using many other values (Ko, 1965; Cohn, 1993; 
Mignotte & Weger, 1996). In recent years, Eq. (1) has been studied in different forms by replacing the 
constant 𝐶 with a power of a fixed prime 𝑝(. For 𝑝 = 2, Cohn (1992) showed that if 𝑘 is odd and 𝑛 = 3, 
there are exactly three families of solutions. However, the situation becomes more complex when 𝑘 is 
even (Cohn, 1999). Arif and Abu Muriefah (1998) then investigated the case when 𝑝 = 3 and 𝑘 is odd, 
and showed that there is exactly one family of solutions. The case when 𝑝 = 3 and 𝑘 is even was solved 
by Luca (2000) under the assumption that gcd(𝑥, 𝑦) = 1. 
 
Later, Eq. (1) was also extended by replacing 𝐶 with two fixed primes that have arbitrary non-negative 
exponents. By assuming that 𝑥 and 𝑦 are coprime, Luca (2002) solved the case for 𝐶 = 2)3", where 𝑎 
and 𝑏 are both non-negative integers. The case when 𝐶 = 2)5" was solved by Luca and Togbe (2008) 
six years later. Equation (1) was then investigated by replacing 𝐶 = 2)7". When 𝑛 is even, Yow (2011) 
found that there exist infinitely many solutions to the equation. The generalisations for the cases when 
𝑎 = 2 and 𝑎 = 3 can be found in Yow et al. (2013) and Sapar et al. (2021), respectively. 
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In this article, we aim to determine general formulae that give integral solutions to the equation 𝑥! + 16 ∙
7" = 𝑦!#. The main result is as follows: 
 
Theorem 𝟏.  Let 𝑏, 𝑟, 𝑡 ∈ ℤ$. The generators A𝑥",+ , 𝑦",+# B of solutions to the equation 𝑥! + 16 ∙ 7" = 𝑦!# 
have the following forms: 
when 𝑖 = 3𝑡 − 2, 

𝑥",+ = 7
!
"+,

!
" E2! ∙ 7",

#
"+$

#
" − 1F,    

𝑦",+#  = 7
!
"+,

!
" E2! ∙ 7",

#
"+$

#
" + 1F,                                           

when 𝑖 = 3𝑡 − 1, 
𝑥",+ = 7

!
"+,

#
" E2 ∙ 7",

#
"+$

$
" − 2F,   

𝑦",+#  = 7
!
"+,

#
" E2 ∙ 7",

#
"+$

$
" + 2F,                                           

when 𝑖 = 3𝑡, 
𝑥",+ = 7

-
.+,- G7",

!
.+$! − 2!H,  

𝑦",+#  = 7
-
.+,- G7",

!
.+$! + 2!H,  

where	𝑖 is the 𝑖%& set of non-negative integral solutions associated with each 𝑏. 
 
The details of the proof are given in the following section. We also determine the bound for the number 
of non-negative integral solutions associated with each 𝑏, discussing two special cases of the equation. 
 
Proof of the Main Theorem 
 
In this section, we give the details of the proof of Theorem 1. We first have the following definition and 
lemma. 
 
Definition 𝟏. Let 𝑏, 𝑟 ∈ ℤ$. The pair of integers (𝑥, 𝑦#) is a generator of solutions to the equation 𝑥! +
16 ∙ 7" = 𝑦!#. 
 
Lemma 𝟐 (Yow et al., 𝟐𝟎𝟏𝟑). Let 𝑎, 𝑏, 𝑟 ∈ ℤ$ and 𝑟 > 1. The generators of solutions to the equation 
𝑥! + 2) ∙ 7" = 𝑦!# are given by 

𝑥 = 2),/,- ∙ 7",0 − 2/,- ∙ 70 ,  
𝑦# = 2),/,- ∙ 7",0 + 2/,- ∙ 70 ,  

or 
𝑥 = 2),/,- ∙ 70 − 2/,- ∙ 7",0 ,   
𝑦# = 2),/,- ∙ 70 + 2/,- ∙ 7",0 ,  

where 0 < 𝑝 < 𝑎 and 0 ≤ 𝑞 ≤ 𝑏.                  □ 
 
We now prove Theorem 1 by determining the generators of solutions to the equation 𝑥! + 16 ∙ 7" = 𝑦!# 
under three scenarios. 
 
Proof of Theorem 1. Let 𝑏, 𝑟 ∈ ℤ$ and 𝑖 be the 𝑖%& set of non-negative integral solutions associated with 
each 𝑏. 
 
By substituting 𝑎 = 4 into the generators in Lemma 2, we obtain 

𝑥 = 2.,/ ∙ 7",0 − 2/,- ∙ 70 , (2) 
𝑦# = 2.,/ ∙ 7",0 + 2/,- ∙ 70 , (3) 

where	0 < 𝑝 < 4 and 0 ≤ 𝑞 ≤ 𝑏. Note that if we fix the value of 𝑏 and substitute all possible values of 𝑝 
and 𝑞 into Eq. (2), the value of 𝑥 could either be positive or negative. Since we are only interested in 
non-negative integral solutions, we omit all the generators that contain a negative 𝑥 value from now 
onwards. 
 
Recall that the value of 𝑖 represents the 𝑖%& set of solutions. By substituting the relevant values for each 
variable into Eqs. (2) and (3), and listing down all the non-negative integral solutions in descending order, 
we obtain the following sets of solutions. 
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When 𝑏 = 1, 
 
 
 
 
 

 
When 𝑏 = 2, 

𝒊 𝒙𝒃,𝒊 𝒚𝒃,𝒊𝒓  
1 195 = 27(7) + 6 197 = 29(7) − 6 
2 96 = 12(7) + 12 100 = 16(7) − 12 
3 45 = 3(7) + 24 53 = 11(7) − 24 
4 21 = 3(7) 35 = 5(7) 
5 0 28 = 4(7) 

 
When 𝑏 = 3, 

𝒊 𝒙𝒃,𝒊 𝒚𝒃,𝒊𝒓  
1 1371 = 27(7!) + 6(7) + 6 1373 = 29(7!) − 6(7) − 6 
2 684 = 12(7!) + 12(7) + 12 688 = 16(7!) − 12(7) − 12 
3 339 = 3(7!) + 24(7) + 24 347 = 11(7!) − 24(7) − 24 
4 189 = 27(7) 203 = 29(7) 
5 84 = 12(7) 112 = 16(7)  
6 21 = 3(7) 77 = 11(7) 

By using the same approach, other values of 𝑥",+ and 𝑦",+#  are obtained as follows. 
When 𝑏 = 4, 
 𝑥4,- = 9603 = 27(7.) + 6(7!) + 6(7) + 6  
 𝑦4,-# = 9605 = 29(7.) − 6(7!) − 6(7) − 6  
 𝑥4,! = 4800 = 12(7.) + 12(7!) + 12(7) + 12  
 𝑦4,!# = 4804 = 16(7.) − 12(7!) − 12(7) − 12  
 𝑥4,. = 2397 = 3(7.) + 24(7!) + 24(7) + 24  
 𝑦4,.# = 2405 = 11(7.) − 24(7!) − 24(7) − 24  
 𝑥4,4 = 1365 = 27(7!) + 6(7)  
 𝑦4,4# = 1379 = 29(7!) − 6(7)  
 𝑥4,5 = 672 = 12(7!) + 12(7)  
 𝑦4,5# = 700 = 16(7!) − 12(7)  
 𝑥4,6 = 315 = 3(7!) + 24(7)  
 𝑦4,6# = 371 = 11(7!) − 24(7)  
 𝑥4,7 = 147 = 3(7!)  
 𝑦4,7# = 245 = 5(7!)  
 𝑥4,8 = 0  
 𝑦4,8# = 196 = 4(7!) 
When 𝑏 = 5, 
 𝑥5,- = 67227 = 27(74) + 6(7.) + 6(7!) + 6(7) + 6  
 𝑦5,-# = 67229 = 29(74) − 6(7.) − 6(7!) − 6(7) − 6  
 𝑥5,! = 33612 = 12(74) + 12(7.) + 12(7!) + 12(7) + 12  
 𝑦5,!# = 33616 = 16(74) − 12(7.) − 12(7!) − 12(7) − 12  
 𝑥5,. = 16803 = 3(74) + 24(7.) + 24(7!) + 24(7) + 24   
 𝑦5,.# = 16811 = 11(74) − 24(7.) − 24(7!) − 24(7) − 24  
 𝑥5,4 = 9597 = 27(7.) + 6(7!) + 6(7)   
 𝑦5,4# = 9611 = 29(7.) − 6(7!) − 6(7)  
 𝑥5,5 = 4788 = 12(7.) + 12(7!) + 12(7)   
 𝑦5,5# = 4816 = 16(7.) − 12(7!) − 12(7)  
 𝑥5,6 = 2373 = 3(7.) + 24(7!) + 24(7)   
 𝑦5,6# = 2429 = 11(7.) − 24(7!) − 24(7)  
 𝑥5,7 = 1323 = 27(7!)  
 𝑦5,7# = 1421 = 29(7!)  
 𝑥5,8 = 588 = 12(7!)  

𝒊 𝒙𝒃,𝒊 𝒚𝒃,𝒊𝒓  
1 27 29 
2 12 16 
3 3 11 
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 𝑦5,8# = 784 = 16(7!)  
 𝑥5,9 = 147 = 3(7!)  
 𝑦5,9# = 539 = 11(7!)  
When 𝑏 = 6, 
 𝑥6,- = 470595 = 27(75) + 6(74) + 6(7.) + 6(7!) + 6(7) + 6  
 𝑦6,-# = 470597 = 29(75) − 6(74) − 6(7.) − 6(7!) − 6(7) − 6  
 𝑥6,! = 235296 = 12(75) + 12(74) + 12(7.) + 12(7!) + 12(7) + 12  
 𝑦6,!# = 235300 = 16(75) − 12(74) − 12(7.) − 12(7!) − 12(7) − 12  
 𝑥6,. = 117645 = 3(75) + 24(74) + 24(7.) + 24(7!) + 24(7) + 24   
 𝑦6,.# = 117653 = 11(75) − 24(74) − 24(7.) − 24(7!) − 24(7) − 24  
 𝑥6,4 = 67221 = 27(74) + 6(7.) + 6(7!) + 6(7)   
 𝑦6,4# = 67235 = 29(74) − 6(7.) − 6(7!) − 6(7)  
 𝑥6,5 = 33600 = 12(74) + 12(7.) + 12(7!) + 12(7)  
 𝑦6,5# = 33628 = 16(74) − 12(7.) − 12(7!) − 12(7)  
 𝑥6,6 = 16779 = 3(74) + 24(7.) + 24(7!) + 24(7)   
 𝑦6,6# = 16835 = 11(74) − 24(7.) − 24(7!) − 24(7)  
 𝑥6,7 = 9555 = 27(7.) + 6(7!)  
 𝑦6,7# = 9653 = 29(7.) − 6(7!)  
 𝑥6,8 = 4704 = 12(7.) + 12(7!)   
 𝑦6,8# = 4900 = 16(7.) − 12(7!)  
 𝑥6,9 = 2205 = 3(7.) + 24(7!)   
 𝑦6,9# = 2597 = 11(7.) − 24(7!)  
 𝑥6,-: = 1029 = 3(7.)   
 𝑦6,-:# = 1715 = 5(7.)  
 𝑥6,-- = 0   
 𝑦6,--# = 1372 = 4(7.)  
 
For simplicity, we omit the sets of solutions when 𝑏 > 6. We now provide the general forms of generators 
𝑥",+ and 𝑦",+#  to the equation 𝑥! + 16 ∙ 7" = 𝑦!#. Using the above empirical results, we group the 
generators based on the value of 𝑖. Hence, we have 

𝑥-,- = 27  
 𝑥!,- = 27(7) + 6 
 𝑥.,- = 27(7!) + 6(7) + 6  
 𝑥4,- = 27(7.) + 6(7!) + 6(7) + 6  
 𝑥5,- = 27(74) + 6(7.) + 6(7!) + 6(7) + 6  
 ⋮  
 𝑥",- = 27(7",-) + 6(7",!) +⋯+ 6(7) + 6  
 
 𝑦-,-# = 29 
 𝑦!,-# = 29(7) − 6 
 𝑦.,-# = 29(7!) − 6(7) − 6 
 𝑦4,-# = 29(7.) − 6(7!) − 6(7) − 6 
 𝑦5,-# = 29(74) − 6(7.) − 6(7!) − 6(7) − 6 
 ⋮  
 𝑦",-# = 29(7",-) − 6(7",!) −⋯− 6(7) − 6 
 
Note that 𝑥",- and 𝑦",-#  are obtained by applying the mathematical induction on 𝑏, given as follows: 

i. 𝑥",-: The base case follows since 𝑥-,- = 27. Suppose the result holds for 𝑘 > 1. We deduce that 
the result holds for 𝑘 + 1. 

𝑥($-,- = 7𝑥(,- + 6	  
 = 7(27(7(,-) + 6(7(,!) + 6(7(,.) +⋯+ 6(7) + 6) + 6   
 = 27A7(($-),-B + 6A7(($-),!B + 6A7(($-),.B +⋯+ 6(7) + 6.  

Therefore, the result is true. 
 

ii. 𝑦",-# : The base case follows since 𝑦-,-# = 29. Suppose the result holds for 𝑘 > 1. We now deduce 
that the result holds for 𝑘 + 1. 

𝑦($-,-#  = 7𝑦(,-# − 6   



 

 
493 

Al-Matar and Tadj | Malaysian Journal of Fundamental and Applied Sciences, Vol. 18 (2022) 489-496 

 = 7(29(7(,-) − 6(7(,!) − 6(7(,.) −⋯− 6(7) − 6) − 6   
 = 29A7(($-),-B − 6A7(($-),!B − 6A7(($-),.B −⋯− 6(7) − 6.  

Therefore, the result is also true. 
 
Thus, for each 𝑖, we obtain the following equations: 
 𝑥",- = 27(7",-) + 6(7",!) +⋯+ 6(7) + 6  
 𝑥",! = 12(7",-) + 12(7",!) +⋯+ 12(7) + 12  
 𝑥",. = 3(7",-) + 24(7",!) +⋯+ 24(7) + 24  
 𝑥",4 = 27(7",!) + 6(7",.) +⋯+ 6(7)  
 𝑥",5 = 12(7",!) + 12(7",.) +⋯+ 12(7)  
 𝑥",6 = 3(7",!) + 24(7",.) +⋯+ 24(7)  
 𝑥",7 = 27(7",.) + 6(7",4) +⋯+ 6(7!)  
 𝑥",8 = 12(7",.) + 12(7",4) +⋯+ 12(7!)  
 𝑥",9 = 3(7",.) + 24(7",4) +⋯+ 24(7!)  
 𝑥",-: = 27(7",4) + 6(7",5) +⋯+ 6(7.)  
 𝑥",-- = 12(7",4) + 12(7",5) +⋯+ 12(7.)  
 𝑥",-! = 3(7",4) + 24(7",5) +⋯+ 24(7.)  
 ⋮ 
 
 𝑦",-# = 29(7",-) − 6(7",!) −⋯− 6(7) − 6  
 𝑦",!# = 16(7",-) − 12(7",!) −⋯− 12(7) − 12  
 𝑦",.# = 11(7",-) − 24(7",!) −⋯− 24(7) − 24  
 𝑦",4# = 29(7",!) − 6(7",.) −⋯− 6(7)  
 𝑦",5# = 16(7",!) − 12(7",.) −⋯− 12(7)  
 𝑦",6# = 11(7",!) − 24(7",.) −⋯− 24(7)  
 𝑦",7# = 29(7",.) − 6(7",4) −⋯− 6(7!)  
 𝑦",8# = 16(7",.) − 12(7",4) −⋯− 12(7!)  
 𝑦",9# = 11(7",.) − 24(7",4) −⋯− 24(7!)  
 𝑦",-:# = 29(7",4) − 6(7",5) −⋯− 6(7.)  
 𝑦",--# = 16(7",4) − 12(7",5) −⋯− 12(7.)  
 𝑦",-!# = 11(7",4) − 24(7",5) −⋯− 24(7.)  
 ⋮ 
 
By observation, it is clear that the above equations can be classified into three categories according to 
the value of 𝑖, that is, when 𝑖 = 3𝑡 − 2, 𝑖 = 3𝑡 − 1 and 𝑖 = 3𝑡, where 𝑡 ∈ ℤ$. In order to obtain the general 
forms for 𝑥",+ and 𝑦",+#  in each category, we apply the induction on 𝑖. 
 
We first consider the case when 𝑖 = 3𝑡 − 2. Let 

𝑥",+ = 
27 G7",=

-
.+$

!
.>H + 6 G7",=

-
.+$

!
.>,-H + 6 G7",=

-
.+$

!
.>,!H +⋯+ 6G7=

-
.+$

!
.>H + 

6G7=
-
.+$

!
.>,-H.	

 
For the base case, suppose 𝑖 = 1. It is clear that the result is true. Assume that the result holds for 𝑖 =
𝑘 > 1, it can be seen that 
𝑥",($. = 7,- ∙ 𝑥",( − 6G7

%
",

!
"H − 6 G7

%
",

$
"H 	

 
= 

27 G7",=
!
"($

#
">,-H + 6G7",=

!
"($

#
">,!H + 6G7",=

!
"($

#
">,.H +⋯+ 6G7=

!
"($

#
">$-H +

6G7=
!
"($

#
">H + 6G7=

!
"($

#
">,-H + 6G7=

!
"($

#
">,!H − 6 G7

%
",

!
"H − 6G7

%
",

$
"H  

 
= 

27 G7",=
!
"($

#
">,-H + 6G7",=

!
"($

#
">,!H + 6G7",=

!
"($

#
">,.H +⋯+ 6G7=

!
"($

#
">$-H +

6G7=
!
"($

#
">H  

 
= 

27 G7",=
!
"
(($.)$#">H + 6 G7",=

!
"
(($.)$#">,-H + 6 G7",=

!
"
(($.)$#">,!H +⋯+

6G7=
!
"(($.)$

#
">H + 6G7=

!
"(($.)$

#
">,-H. 
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Therefore, the result is also true for 𝑖 = 𝑘 + 3. Hence, we have 

𝑥",+ = 
27 G7",=

!
"+$

#
">H + 6G7",=

!
"+$

#
">,-H + 6 G7",=

!
"+$

#
">,!H +⋯+ 6G7=

!
"+$

#
">H +

6G7=
!
"+$

#
">,-H. 	

 
Next, we let 

𝑦",+#  = 
27 G7",=

!
"+$

#
">H − 6G7",=

!
"+$

#
">,-H − 6 G7",=

!
"+$

#
">,!H −⋯− 6G7=

!
"+$

#
">H −

6G7=
!
"+$

#
">,-H. 	

 
For the base case, suppose 𝑖 = 1. It is clear that the result is true. Assume that the result is also true for 
𝑖 = 𝑘 > 1, it can be seen that 
𝑦",($.#  = 7,- ∙ 𝑦",(# + 6G7

%
",

!
"H + 6G7

%
",

$
"H 	

 
= 

27 G7",=
!
"($

#
">,-H − 6G7",=

!
"($

#
">,!H − 6G7",=

!
"($

#
">,.H −⋯− 6G7=

!
"($

#
">$-H −

6G7=
!
"($

#
">H − 6G7=

!
"($

#
">,-H − 6G7=

!
"($

#
">,!H + 6 G7

%
",

!
"H + 6G7

%
",

$
"H  

 
= 

27 G7",=
!
"($

#
">,-H − 6G7",=

!
"($

#
">,!H − 6G7",=

!
"($

#
">,.H −⋯− 6G7=

!
"($

#
">$-H −

6G7=
!
"($

#
">H  

 
= 

27 G7",=
!
"
(($.)$#">H − 6 G7",=

!
"
(($.)$#">,-H − 6 G7",=

!
"
(($.)$#">,!H −⋯−

6G7=
!
"
(($.)$#">H − 6G7=

!
"(($.)$

#
">,-H. 

 
Therefore, the result is also true for 𝑖 = 𝑘 + 3. Hence, we have 

𝑦",+#  = 
27 G7",=

!
"+$

#
">H − 6G7",=

!
"+$

#
">,-H − 6 G7",=

!
"+$

#
">,!H −⋯− 6G7=

!
"+$

#
">H −

6G7=
!
"+$

#
">,-H. 	

 
By omitting the first term in both 𝑥",+ and 𝑦",+# , they can then be simplified further by using the method of 

geometric progression. Let the common ratio 𝑣 = 7,-, the initial value 𝑎 = 7",=
!
"+$

#
">,- and the number of 

terms 𝑛 = 𝑏 − !
.
𝑖 − -

.
, we obtain 

𝑥",+ = 27 G7",=
-
.+$

!
.>H + 6 Y

7",=
-
.+$

!
.>,- G1 − 7,=",

!
.+,

-
.>H

1 − 7,- Z  

 = 7
!
"+,

!
" E2! ∙ 7",

#
"+$

#
" − 1F, (4) 

𝑦",+#  = 29 G7",=
-
.+$

!
.>H − 6 Y

7",=
-
.+$

!
.>,- G1 − 7,=",

!
.+,

-
.>H

1 − 7,- Z  

 = 7
!
"+,

!
" E2! ∙ 7",

#
"+$

#
" + 1F. (5) 

 
Using a similar approach, the general forms for 𝑥",+ and 𝑦",+#  for the two remaining cases can also be 
obtained, as follows: 
When 𝑖 = 3𝑡 − 1, 

𝑥",+ = 7
!
"+,

#
" E2 ∙ 7",

#
"+$

$
" − 2F, (6) 

𝑦",+#  = 7
!
"+,

#
" E2 ∙ 7",

#
"+$

$
" + 2F. (7) 

 
When 𝑖 = 3𝑡, 

𝑥",+ = 7
!
"+,- E7",

#
"+$! − 2!F, (8) 

𝑦",+#  = 7
!
"+,- E7",

#
"+$! + 2!F. (9) 
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This completes the proof.                   □ 
 
The Range of 𝒊 
 
We now determine the range of 𝑖 in 𝑥",+ and 𝑦",+#  for each 𝑏. We also give the generators of solutions to 
the equation 𝑥! + 16 ∙ 7" = 𝑦!# for some specific 𝑖. 
 
Lemma 𝟑. Let 𝑏, 𝑟, 𝑡 ∈ ℤ$. The ranges of 𝑖 associated with each 𝑏 in the equation 𝑥! + 16 ∙ 7" = 𝑦!# are 

[
0 < 𝑖 ≤

3
2
(𝑏 + 1), 𝑤ℎ𝑒𝑛	𝑏	𝑖𝑠	𝑜𝑑𝑑,

0 < 𝑖 ≤
3
2𝑏 + 2, 𝑤ℎ𝑒𝑛	𝑏	𝑖𝑠	𝑒𝑣𝑒𝑛.

 

 
Proof. We consider three cases (when 𝑖 = 3𝑡 − 2, 𝑖 = 3𝑡 − 1 and 𝑖 = 3𝑡) to determine the ranges of 𝑖, 
corresponding to the three general forms we obtained in Theorem 1. 
 
First, when 𝑖 = 3𝑡 − 2, we have 𝑥",+ = 7

!
"+,

!
" E2! ∙ 7",

#
"+$

#
" − 1F, based on Eq. (4). Since 𝑥",+ is non-

negative, we have 

4 ∙ 7",
!
.+$

!
. > 1 	

7",
!
.+$

!
. > -

4
  

log 7",
!
.+$

!
. > log -

4
  

𝑏 −
2
3 𝑖 +

2
3 > −0.7124  

								𝑖 < !
.
𝑏 + 2.0686. 

 
This implies that 𝑖 < d!. 𝑏 + 2.0686e. Therefore, 𝑖 ≤ .

!
(𝑏 + 1) when 𝑏 is odd and 𝑖 ≤ .

!
𝑏 + 2 when 𝑏 is even. 

 
By some appropriate modifications to the above method, we then obtain the same ranges for the two 
remaining cases, when 𝑏 is odd and even. Therefore, the result follows.              □ 
 
By Lemma 3, we can see that 𝑖 ≤ .

!
𝑏 + 2 when 𝑏 is even. When 0 < 𝑖 < .

!
𝑏 + 1, we have Eqs. (4) to (9) 

as the generators of 𝑥",+ and 𝑦",+# . When 𝑖 = .
!
𝑏 + 2 and 𝑖 = .

!
𝑏 + 1, the generators 𝑥",+ and 𝑦",+#  attain 

different forms. The following two theorems discuss the generators in such cases. 
 
Theorem 𝟒. Let	𝑖 = .

!
𝑏 + 2, 𝑏 be an even number and 𝑟 be any positive integer. Then, 𝑥",+ = 0 and 𝑦",+# =

4 ∙ 7
!
#" are the generators of solutions to the equation 𝑥! + 16 ∙ 7" = 𝑦!#. 

 
Proof. Suppose 𝑏 = 2ℎ, where ℎ is an integer. Then, we have 𝑖 = .

!
(2ℎ) + 2 = 3ℎ + 2. The set 

{𝑖 = 3ℎ + 2	|ℎ ∈ ℤ} is a subset of {𝑖 = 3𝑡 − 1	|𝑡 ∈ ℤ}. Hence, we consider Eq. (6) in Theorem 1, that is 
 𝑥",+ = 7

!
"+,

#
" E2 ∙ 7",

#
"+$

$
" − 2F. 

By substituting 𝑖 = .
!
𝑏 + 2, we obtain 

 𝑥",+ = 7
!
"=
"
#"$!>,

#
" G2 ∙ 7",

#
"=
"
#"$!>$

$
" − 2H = 7

!
#"(2 − 2). 

Thus, 
 𝑥",+ = 0. 
 
Now, we consider Eq. (7) in Theorem 1, that is 
 𝑦",+# = 7

!
"+,

#
" E2 ∙ 7",

#
"+$

$
" + 2F. 

By substituting 𝑖 = .
!
𝑏 + 2, we obtain 

 𝑦",+# = 7
!
"=
"
#"$!>,

#
" G2 ∙ 7",

#
"=
"
#"$!>$

$
" + 2H = 4 ∙ 7

!
#". 

 
Thus, 𝑥",+ = 0 and 𝑦",+# = 4 ∙ 7

!
#" are the generators of solutions that satisfy the equation 𝑥! + 16 ∙ 7" =
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𝑦!#, when 𝑖 = .
!
𝑏 + 2, 𝑏 is an even number and 𝑟 is any positive integer.              □ 

 
Theorem 𝟓. Let	𝑖 = .

!
𝑏 + 1, 𝑏 be an even number and 𝑟 be any positive integer. Then, 𝑥",+ = 3 ∙ 7

!
#" and 

𝑦",+# = 5 ∙ 7
!
#" are the generators of solutions to the equation 𝑥! + 16 ∙ 7" = 𝑦!#. 

 
Proof. By using a similar approach as in the proof of Theorem 4.               □ 
 
Conclusions 
 
Our results show that there exist three sets of generators of solutions to the equation 𝑥! + 16 ∙ 7" = 𝑦!#, 
according to the values of 𝑖. These generators are all given in Eqs. (4) to (9) in Theorem 1. 
 
Since the value of 𝑖 is associated with the value of 𝑏, we also determine the range of 𝑖 based on the 
parity of 𝑏. We proved that when 𝑏 is an odd number, we have 𝑖 ∈ {1,2,… , .

!
(𝑏 + 1)}. On the other hand, 

we obtain 𝑖 ∈ {1,2,… , .
!
𝑏 + 2} when 𝑏 is an even number. 

 
Note that when 𝑏 is an even number, the generators A𝑥",+ , 𝑦",+# B of solutions in Eqs. (4) to (9) can only be 
applied when the value of 𝑖 ≤ .

!
𝑏. Hence, two other sets of generators are given specifically for the cases 

when 𝑖 = .
!
𝑏 + 2 and 𝑖 = .

!
𝑏 + 1. The two sets of generators are shown in Theorems 4 and 5, and they 

each has a simpler form than the others. It is also clear that these results can be verified further by using 
the sequences (when 𝑏 is even) provided in the proof of Theorem 1. 
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