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Abstract Pigmented rice has been associated with stress-resistant traits, such as resistance to 

abiotic and biotic stresses, but the genes network that is responsible for such traits remains 

limited. Hence, this study aims to identify stress-related genes in the pigmented rice using 

computational approaches. The gene co-expression network was constructed using Pearson 

Correlation Coefficient (PCC) ≥ 0.9 among differentially expressed genes (DEGs) of trancriptomes 

between pigmented and non-pigmented rice. The gene co-expression network was clustered 

using Markov Cluster algorithm (MCL) to identify the functional modules and the hub genes for 

each module were determined. The functional analyses were performed to each module to 

determine the related gene ontology (GO) and pathway. Protein-protein interaction (PPI) from 

STRING database was used to validate the functional analyses. A total of 721 DEGs were used to 

construct the gene co-expression network of pigmented and non-pigmented rice varieties. Of 

these, 614 DEGs with 15,259 edges were identified by PCC. Using MCL, 10 clusters were 

identified in the gene co-expression network of pigmented and non-pigmented rice varieties. 

Three clusters were enriched with seven GO terms (i.e., response to stress, response to stimulus, 

transcription factor activity) that are related to stress-resistant traits, indicating the highly 

correlated genes were the stress-related genes. Interestingly, nine hub genes were found to be 

related to drought tolerance, disease resistance and hormone biosynthesis. Validation of hub 

genes using STRING database revealed that 48 hub genes were also connected in the PPI 

network, suggesting their potential as candidate proteins in stress-related traits. This study 

demonstrated that the molecular interaction network and the network clustering approach are 

efficient in identifying the stress-related genes, which could provide new insights in understanding 

plant responses to abiotic and biotic stresses. 

Keywords: Clustering gene co-expression network, MCL, pigmented rice, stress-resistant. 
 

 
 

Introduction 
 

Pigmented rice (i.e., black and red rice) is highly nutritious than white rice. In addition, the secondary 
metabolites (i.e. flavonoid, anthocyanin, proanthocyanidin) are more abundant in black and red rice than 
in white rice [1]. Previous study has identified black and red rice with resistance or tolerance against 
abiotic and biotic stress traits [2]. This finding was due to the accumulation of secondary metabolites (i.e. 
flavonoid, anthocyanin, proanthocyanidin) that have been reported to respond to abiotic and biotic stress 
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conditions [3]. 

 

In plants, responses to abiotic and biotic stresses are complex traits that are regulated by multiple genes 
that interact with each other in a network [4]. Abiotic stresses in rice include drought, salinity, heat 
tolerance and submergence, while biotic stresses in rice are pest (i.e., brown planthopper) and pathogen 
(i.e., bacterial leaf blight) infections. To date, abiotic and biotic stresses have contributed to the decline 
in crops production [5]. Hence, many crop improvement programmes focus on developing stress-
resistant and tolerant varieties [4]. Many genes with various functions have been identified to be involved 
in response to abiotic and biotic stresses. For instance, abiotic stress is regulated by transcription factor 
families, such as abscisic acid (ABA) [6], WRKY [7] and bHLH [8]. In biotic stress, a crop needs salicylic 
acid and secondary metabolites to protect them from pathogens attack [9], [10]. However, the stress-
related genes in pigmented rice are not well-studied. In addition, the stress-related gene has never been 
fully characterised in terms of biological functions and molecular mechanisms, particularly in black and 
red rice. A previous study has performed the gene co-expression network analysis of different pigmented 
rice cultivars. However, their goal focuses on transcriptional factors that regulate flavonoid biosynthesis 
by interacting with photosynthesis, sugars synthesis and peroxidase pathways [2]. Hence, we performed 
the gene co-expression network analysis in this study to search for candidate stress-related genes in 
Malaysian pigmented rice varieties. 

 

The development of a high-throughput sequencing platform has resulted in a massive increase in 
transcriptomic data. The transcriptomic data provide essential biological information to understand the 
biological functions and molecular mechanisms of complex traits in crops [11]. The gene co-expression 
network analysis based on large scale transcriptomics data has been widely performed for the screening 
and identification of genes that might be involved in stress-resistant trait [12]–[14]. This approach reveals 
the correlations between gene expression levels across different samples that show similar expression 
patterns tend to cluster together and are likely to be involved in the same biological process, molecular 
function, and regulatory process [15], [16]. Previous studies have performed the gene co-expression 
network analysis to annotate the uncharacterised gene functions in rice [17], to prioritise candidate genes 
for a wide variety of traits [18], [19], to correlate genes and phenotypic expression [20] and to construct 
regulatory network [21], [22]. In addition, the gene co-expression network analysis considers all samples 
together and establish connections among genes, which is the number of connections of a node in a 
network is known as the degree of connectivity. The highly connected nodes or genes is known as hub 
gene. The hub genes might be potential or informative [23] and might serve as a valuable biomarker for 
plant diseases [24]. 

 

Several studies demonstrated the utilisation of gene co-expression networks to mine the stress-related 
genes in heat, cold, and drought rice varieties [25]–[28]. For instance, three modules of tightly co-
expressed genes were associated with signalling and heat stress response in rice [25]. Furthermore, the 
gene co-expression network helps in unravelling the regulatory mechanism of cold stress in specific 
modules and hub genes related to cold stress in rice [28]. While [27] showed that the interplay of 
pathways between the metabolism of chlorophyll and flavonoid and the signalling pathways of MAPK, 
IAA and SA is involved in stress tolerance response. Interestingly, integration of the gene co-expression 
networks with protein-protein interactions and pathway-level data has been performed to understand 
better the drought-responsive processes in drought-tolerance rice genotypes [26]. The above studies 
emphasised that the gene co-expression network approach has been widely used to identify and 
prioritise stress-related genes in rice. 

 

Clustering is a technique that has been used to divide or partition the networks into several clusters or 
modules. The functional clusters or modules will be associated with biological processes, molecular 
functions and cellular components and pathways using gene ontology (GO) and biological pathway 
enrichment analyses. The clustering approach has been widely applied to gene co-expression networks 
for extracting densely connected genes [17], to classify metabolites that belong to metabolic pathways 
[17] and to characterise the genes into specific biological functions [29]. In general, clustering helps to 
summarise the information by reducing the dimensionality from thousands of genes to a small cluster. 
Several clustering algorithms have been performed in biological analysis, such as MCODE [29], MCL 
[12], dpClus, clusterMaker2 [30] and CytoCluster [31]. 

 

This study highlights the computational approach to identify and prioritise potential genes that are related 
to stress-related traits. The gene co-expression network was constructed with 721 significantly 
differentially expressed genes (DEGs) that were obtained from transcriptomics analysis of pigmented 
and non-pigmented rice varieties. A total of 10 clusters were detected using the MCL algorithm. The 
biological information of each cluster was assessed using GO and KEGG pathway enrichment analyses. 
In addition, predicted novel genes were annotated with putative functions. The aims of our study were to 
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characterise co-expression clusters in rice using the clustering approach and GO enrichment analysis 
and to identify significant genes that are potentially involved in stress-related traits. This effort will 
accelerate the discovery of stress-related genes in rice. Hence, it will contribute to improving the 
resistance and tolerance of rice using genome-editing and molecular breeding approaches. 

 

 

Materials and Methods 
 

Expression data  
The transcriptomes data of four pigmented (Bali, Pulut Hitam 9, MRM 16, MRQ 100) and two non-
pigmented (MR 297, MRQ 76) rice varieties were obtained from previous studies [32], [33]. Pulut Hitam 
9 and Bali are black rice, while MRM 16 and MRG 100 are red rice. In addition, Pulut Hitam 9, MRQ 100 
and MRQ 76 are sticky rice. The uniqueness of MRQ 76, when compared to these five varieties, is its 
aromatic characteristic. MR 297 is resistant to blast disease and high yield when compared to these five 
varieties. All the cleaned-reads in the FASTQ format can be retrieved from the European Nucleotide 
Archive (http://www.ebi.ac.uk/ena/browse/home) under accession number PRJEB34340. 

 

Identification of expressed genes and gene co-expression 
network analysis  
DEGs (p-value < 0.05) were used as input data for the gene co-expression network analysis. R package 
(corr) was used to calculate the Pearson Correlation Coefficient (PCC) value for 721 DEGs. PCC is 
widely used to measure the strength of the linear relationship between the expression profiles of two 
genes [34]. In addition, PCC is one of the most convenient measures for biologist because it is easy to 
calculate [35] and is among the most performant for RNA-seq based co-expression studies [36]. 

 

In this study, 0.90 was chosen as the PCC cut-off by following the relationship between network density 
and the correlation coefficient as described by [15]. According to [15], the network density decreased as 
the cut-off value increased. The Network Analyzer plugin [37]  in Cytoscape version 3.8 [38] was used 
to calculate the network density of gene co-expression network. The density of a gene co-expression 
network D was defined as a ratio of the actual number of links to all possible links of the non-singleton 
nodes [39]. We can compute the network density as undirected graphs: 

 

D=    2*E 

         V(V-1) 

 

E: number of edges/number of actual links  

V: number of vertices/number of possible links of the non singletone nodes 

 
Clustering and hub gene analysis  
The Markov Cluster (MCL) algorithm was used to cluster the functional modules in the gene networks 
with an inflation (I) value of 1.5 (command line: mcl rice -I 1.5 -abc). We evaluated the cluster 
performance using varied I from 1.0 to. 2.0. In this study, I=1.5 produced clusters with gene ontology 
terms that biologically meaningful information. To identify the hub gene, the degree of connection among 
the co-expressed genes was calculated using NetworkAnalyzer plugin in Cytoscape version 3.8. The top 
20% of co-expressed genes in the 10 clusters were identified as hub genes. The clusters were visualised 
using Cytoscape version 3.8. The functional category of hub genes was performed using STRING 
functional enrichment plugin in Cytoscape. 

 

Gene ontology and pathway analysis  
The gene ontology (GO) and KEGG pathway enrichment analysis was performed using Fisher’s exact 
test and FDR less than 0.05 (p-value < 0.05 & FDR < 0.05) in the OmicsBox programme version 2.1 
(http://www.biobam.com/omicsbox). Fisher’s exact test was applied to identify the significantly enriched 
GO categories and KEGG pathway in the network clusters. 

 

Validation of interaction using STRING database 

STRING [40] database was used to validate the interaction between hub genes at the protein level. The 
parameters used were maximum interactor > 2 and confidence score cut-off = 0.4. 
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Figure 1. Flow chart of workflow for gene co-expression network analysis of pigmented and non-
pigmented rice varieties 

 

Results and Discussion 
 

Selection of differentially expressed genes (DEGs) and 
construction of gene co-expression network 
More than 10 million reads per sample were generated in this study [33]. A cut-off of 10 million reads per 
sample for RNA-seq has been suggested for sufficient sample size in the construction of gene co-
expression network  [41]. To reduce the noise in the gene co-expression network, we removed the low 
expressed genes [42] and select the DEGs (p-value < 0.05 and FDR < 0.05) for further analysis. A total 
of 721 (DEGs) (p-value < 0.05 and FDR < 0.05) from existing transcriptome analysis of pigmented and 
non-pigmented rice varieties were selected for this study (Supplementary Table 1). The EggNog analysis 
was performed to assign the 721 DEGs into EuKaryotic Orthologous Genes (KOG) categories. Out of 
721 DEGs, 511 DEGs were annotated into 20 KOG categories (Supplementary Table 2). The highest 
number of DEGs was in the categories of ‘Post-translational modification, protein turnover, chaperones’ 
(66), followed by ‘Transcription’ (48) and ‘Signal transduction mechanism’ (44) categories (Figure 2).  

 

 
Figure 2. Distribution of 511 differentially expressed genes (DEGs) in EuKaryotic Orthologous Genes 
(KOG) categories 
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The DEGs in the ‘signal transduction mechanisms’ category indicate that the DEGs under this category 
are likely to be involved in stress-related traits, such as blast disease [43] and salinity tolerance [13]. The 
signal transduction mechanism also plays role in the phytohormone pathway, which positively induces 
various abiotic and biotic stresses [44]. For instance, in abiotic stress conditions, the up-regulated genes 
are responsive to abscisic acid (ABA), auxin, jasmonic acid (JA), and salicylic acid (SA). While in the 
biotics stress condition, the up-regulated genes are responsive to the same hormones, including 
cytokinin and ethylene. ABA, JA, and SA signallings regulate response to abiotic stresses [6]. JA and 
SA are positive regulators, and ABA tends to be a negative regulator of resistance to the pathogens [6]. 

 

The Pearson correlation coefficient (PCC) was used to calculate the correlation value (r) for all pair-wise 
combinations of 721 DEGs. A total of 614 DEGs were identified in the gene co-expression network of 
pigmented and non-pigmented rice. The remaining DEGs (98) were not included in the co-expressed 
genes, possibly due to the correlation value less than 0.1 (PCC < 0.1). The range of PCC values was 
from 0.1 to 1.0. As the PCC cut-off increased, the number of edges decreased and increased again as 
the PCC value larger than 0.70 (PCC > 0.70) (Table 1). 

 
                                       Table 1. Summary of nodes and edges in different range of PCC values 

 

PCC value Nodes Edges 

0.10-0.19 614 12,257 

0.20-0.29 614 6608 

0.30-0.39 614 6867 

0.40-0.49 614 7237 

0.50-0.59 614 7972 

0.60-0.69 614 9519 

0.70-0.79 614 11,610 

0.80-0.89 614 14,158 

0.90-0.99 613 15,259 

 

Figure 3 shows the network density was at its minimum cut-off value of 0.2 and then increased as the 
cut-off value was greater than 0.5 and the highest at 0.9. Gene network properties, such as high density 
will be adopted as general biological network criterions for the rational selection of a cut-off in the network 
construction [45]. Higher density indicates higher associations in the network, which implies lower 
resilience to changes. We found that the network density decreased as the cut-off value increased, but 
the network density was shown to increase as the cut-off was greater than 0.90 (Figure 3). Hence, 0.9 
was used as the cut-off in this study. The increase in network density was attributed to a high correlation 
value that connected to an increasing number of edges, indicating that biologically significant co-
expression is expected to be found above the correlation value. The network contained 613 nodes and 
15,259 edges at the PCC value cut-off of 0.9 (PCC > 0.9) (Supplementary Table 3).  

 

 
Figure 3. Network density at different correlation cut-off values 
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Clusters identification and clusters related to biological functions 
Using the MCL algorithm (inflation=1.5), 10 co-expression clusters were identified in the gene co-
expression network of pigmented and non-pigmented rice (Figure 4 and Supplementary Table 4). We 
observed that the MCL I parameter of 1.5 produced the best clustering clusters with significance gene 
ontology terms. Previous studies have performed the MCL to evaluate the cluster performance with 
varied I parameter and select the the significant values based on biological enrichment analysis [12], 
[46]. Clusters with less than ten genes were removed because they are often biologically meaningless 
[47]. The MCL algorithm finds cluster structure in graphs by a mathematical bootstrapping procedure 
[48]. 

 

The 10 co-expression clusters ranged from two to 238 genes in the pigmented rice co-expressed network 
(Table 2). Genes belonging in the same cluster are likely to encode proteins with related functions or 
pathways [47]. The potential biological function of the identified clusters was assessed using GO terms. 
Out of 10 clusters, only four clusters showed significant GO terms with p-value < 0.05 (Figure 3 and 
Supplementary Table 5). None of the significant GO terms was found in Cluster 6, Cluster 7, Cluster 8, 
Cluster 9 and Cluster 10 (Figure 4).  

 

 

Figure 4. Ten clusters were identified using MCL algorithm. Different nodes colours represent different 
clusters 

 

All the clusters were assessed using GO and KEGG pathway enrichment analysis. The primary goal of 
this analysis was to provide an insight into the biological processes that are related to pigmented and 
non-pigmented rice varieties and to prioritise the potential stress-related genes using the gene co-
expression network and clustering approaches. 

 

Cluster 1 is the largest in the co-expression network of pigmented and non-pigmented rice varieties, 
consisting of 238 genes (Table 2). The associated GO terms were response to stress (GO:0006950), 
response to stimulus (GO:0050896) and carbohydrate metabolic process (GO:0005975). The GO terms 
indicate that the represented genes are likely to be involved in stress-related traits. However, only one 
gene was up-regulated while 234 genes were down-regulated, indicating that these genes may serve as 
a negative regulator in rice response to stress conditions. A similar GO term (stress response) also was 
observed in Cluster 3. Out of 53 genes in Cluster 3, 90 genes were up-regulated while one of them was 
down-regulated. These two clusters suggest that genes in Cluster 1 and Cluster 3 may serve as key 
positive and negative players in rice response to stress conditions. The link of GO terms between Cluster 
1 and Cluster 3 may represent robust interaction between these biological processes. 

 

 

 

 

 

 

 

 

 



  

 
12 

Zainal-Abidin et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 19 (2023) 6-18 

Table 2. Summary of 10 clusters in the gene co-expression network of Malaysian rice varieties, 
associated genes, as well as up and down-regulated genes in three treatments (BR, BW and RW) 

 

Genes in Cluster 2 are enriched for GO terms related to binding (GO:0005488), transcription regulator 
activity (GO:0140110) and DNA binding transcription factor activity (GO:0003700). Cluster 2 contains 
155 genes, of which 137 were up-regulated, and five were down-regulated (Table 2). This finding 
indicates that these genes were positive regulators in transcription factor activity. GO terms such as 
protein binding (GO:0005515), and folding (GO:0006457) was enriched in Cluster 4, while GO terms 
such as acetyltransferase activity (GO:0016407) and protein maturation (GO:0051604) were enriched in 
Cluster 5 (Figure 4).  

 

The GO enrichment analysis of 10 co-expression clusters suggests these genes are mainly involved in 
response to stress, metabolic process, transcription factor activity and protein binding. Cluster 4 and 
Cluster 5 appeared to be involved in distinctive functions. In contrast, Cluster 1, Cluster 2 and Cluster 3 
appeared to be involved in similar functions. These findings may reflect the interconnectedness among 
the clusters due to the presence of similar gene functions in the clusters. Our clustering results suggest 
transcriptional coordination between genes in Cluster 2, which is involved in transcription regulator and 
DNA binding transcription factor activities. Genes that were associated with response to stress and 
response to stimulus were not consistently up- and down-regulated in Cluster 1 and Cluster 3. This 
pattern was observed in Cluster 1 and Cluster 3, in which more up-regulated genes were associated with 
response to stress in Cluster 3, while less up-regulated genes in Cluster 1. This finding suggests that 
Cluster 1 and Cluster 3 were a negative and positive players, respectively, in response to stress. 

 

Pathway enrichment analysis showed DEGs in Cluster 1 were associated with the KEGG pathways, 
such as amino sugar and nucleotide sugar metabolism (ko00520), flavonoid biosynthesis (ko00941), 
biosynthesis of siderophore group (ko01053) and benzoate degradation (ko00362). Cluster 4 shows 
DEGs were enriched in linoleic acid metabolism (ko00591) and folate biosynthesis (ko00790), while 
DEGs in Cluster 7 were enriched in glyoxylate and dicarboxylate metabolism (ko00630), carbon fixation 
pathways in prokaryotes (ko00720) and citrate cycle (ko00020). The list of KEGG pathways enriched in 
Cluster 1, Cluster 4 and Cluster 7 are listed in Supplementary Table 6. Pathway enrichment analysis in 
Cluster 1, Cluster 4 and Cluster 7 showed pathways related to the biosynthesis of secondary metabolites 
(flavonoid biosynthesis) and cofactor and vitamin metabolism (folate biosynthesis). The secondary 
metabolites, cofactor and vitamin metabolism have been associated with resistance to pathogen and 
defence mechanisms [49]–[51]. 

 

Hub genes identification  
The highly connected gene is known as the hub gene. The hub gene within the networks plays an 
essential role in regulating and organising the biological function and mechanism. In this study, the top 
20% degrees of connectivity were classified as hub genes. Previous study has reported that a gene was 
selected as a hub if it is connected to 10%, 20% or 30% of other genes in the whole network [52]. In 
addition, the 20% of hub genes in this study showed more genes with interesting biological information 
associated with the stress-related traits (Supplementary Table 7). A total of 119 hub genes with a degree 
of connectivity of more than 160 were identified in the gene co-expression network of pigmented rice 
varieties (Supplementary Table 7). Out of 119 hub genes, 111 were in Cluster 1, while eight were in 
Cluster 2.  

 

A total of nine hub genes were associated with drought tolerance (Os01g065100, Os01g0727500, 
Os03g0820500, Os12g0150200, Os12g0555000), disease resistance (Os05g0476700), chalkiness 

Clusters 

 

Number of genes Up-regulated 

genes 

Down-regulated 

genes 

Up & Down - 

regulated 

C1 238 1 234 3 

C2 155 137 5 13 

C3 93 90 1 2 

C4 53 3 44 6 

C5 29 0 22 7 

C6 15 1 14 0 

C7 13 0 13 0 

C8 11 0 11 0 

C9 4 3 1 0 

C10 2 0 0 2 
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(Os05g0156900), hormone biosynthesis (Os01g0944700) and cold tolerance (Os05g0476700) traits. A 
total of six hub genes overlapped with quantitative trait loci (QTL) associated with physiological trait 
(CSA), morphological trait (gh1, chalk5) and resistance to abiotic and biotic stresses (OsWRKY28, YK1, 
OsHI-XIP). Eight (Os01g065100, Os01g0727500, Os03g0820500, Os12g0150200, Os12g0555000, 
Os05g0476700 and Os01g0944700,) candidate hub genes were associated with stress-related traits, 
which was identified in drought tolerance mechanism, disease resistance, hormone biosynthesis and 
cold tolerance. Interestingly, co-localisation of hub genes with QTLs revealed that five genes (gh1, 
chalk5, OsWRKY28, YK1, OsHI-XIP) are likely to have a functional impact on phenotypic expression. 
The chalk5 or chalkiness 5 was found to control rice grain chalkiness by increasing chalkiness by 
disturbing pH homeostasis [53]. While gh1 or OsCHI plays an essential role in flavonoid metabolism 
during the colouration of rice hulls [54]. Both gh1 and chalk5 were highly expressed in pigmented rice, 
indicating their essential roles in controlling pigmented rice's chalkiness and pigmentation process, 
respectively. In addition, DEG analysis of hub genes in three distinct rice groups, namely, BR, BW, and 
RW, mainly found that the top 20 hub genes were highly expressed in BR and BW groups 
(Supplementary Figure 1). These findings revealed that most hub genes showed stronger expressed 
patterns in pigmented rice compared to non-pigmented rice. 

 

Ten transcription factors (TFs) were found as hub genes in Cluster 1 and Cluster 2, in which the degree 
of connectivity range was from 162 to 252. The TF families were bHLH, C2H2, CH3, GRAS, MYB, NF-
YC and WRKY (Figure 5). The highly connected genes were observed on Cluster 1 and Cluster 2. 
Interestingly, OsWRKY24 has been known as a blast disease responsive transcription factor, which 
positively regulates rice disease resistance [43]. This finding is consistent with the MR 297 (non-
pigmented) variety which is resistant to blast disease caused by Pyricularia oryzae [55]. 

 

 
Figure 5. Hub gene of gene co-expression network in rice. Green colour represents hub gene. Pink 
colour represents non-hub genes but interacts with hub genes. The blue font denotes transcription factor 
families which found as hub genes. The hub genes were from Cluster 1 and Cluster 2  

 

We also investigated the DEG encoding transcription factors in three distinct rice groups, namely, BR 
(black rice and red rice), BW (black rice and white rice), RW (red rice and white rice). Analysis of hub 
genes highlights ten TFs from different TF families, such as bHLH, C2H2, CH3, GRAS, MYB, NF-YC 
and WRKY. The involvement of these hub genes in Cluster 1 and Cluster 2 may increase their chance 
of master regulatory in each cluster. TFs in the WRKY family have been identified in abiotic stress, such 
as drought tolerance [7]. TFs in the MYB family have been known involved in salt and cold tolerance in 
rice [56]. In addition, TFs such as WRKY, MYB and bHLH regulate the genes that are responsible for 
secondary metabolite biosynthesis in plants during stress conditions [50]. 

 

Three TFs (CSA, Os01g0580400 and Os08g0491700) were highly expressed in BR and BW groups 
(Supplementary Figure 2). CSA is a TF from the MYB family, which was predicted as a regulator for 
genes involved in sugar partitioning in flowers, such as starch synthase WAXY. Os01g0580400 is a TF 
from the NF-YC family. Previous study has reported the role of NF-YC as DNA binding in the regulation 
of embryogenesis, flowering time, seed germination and stress tolerance [57]. Os08g0491700 is a TF 
from family C3H, and as putative zinc finger has been involved in growth, development and stress 
response [56]. In the gene co-expression network, TF hub genes are likely candidates for regulatory 
function. TF provides a clue for the co-regulation of gene subsets in similar biological processes.  
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Validation of hub genes using protein-protein interaction (PPI) 
network in STRING database 
The potential hub genes were evaluated with a protein-protein interaction (PPI) network, obtained from 
STRING database. The STRING database uses six major sources of interaction, including 
neighbourhood, fusion, co-occurance, co-expression, experimental database and text mining, to define 
the interaction between proteins using a probabilistic confidence score [40]. The combined score of all 
these available resources was used to estimate the interaction strength between proteins. It provides 
assessment and integration of protein-protein interactions. All the hub genes and their interactors were 
mapped to STRING, and only genes with a high interaction score of more than 0.4 (I > 0.4) were selected. 
A total of 47 hub proteins and 78 non-hub proteins denote as nodes 202 edges were found in STRING 
database (Figure 6). Pathway enrichment analysis revealed that flavonoid biosynthesis, 
phenylpropanoid biosynthesis, terpenoid biosynthesis and MAPK signalling pathway-plant were 
enriched in the PPI network (Figure 6). Four metabolism pathways (i.e. glutathione metabolism, amino 
sugar and nucleotide metabolism, ascorbate and alderate metabolism) were enriched in the PPI network 
(Figure 6).  

 

Figure 6. Pathway analysis of hub genes and their interactors. Each node represents a gene. Red nodes 
in a big circle indicate hub genes, and red diamonds indicate connections. Different colors for each node 
represents pathway name 

 

Predicted PPI networks from the STRING database support the interaction network for 47 hub genes 
and 78 non-hub genes, suggesting the potential hub proteins as the regulator in flavonoid biosynthesis, 
terpenoid biosynthesis and mitogen-activated protein kinase (MAPK) signalling pathway. The secondary 
metabolites such as flavonoid and terpenoid have been associated with stress and defence response 
mechanisms in plants [50]. Flavonoid and terpenoid provide colour and scent properties to plants, which 
has repellent and attractive effects on insects and herbivores [50]. The MAPK signalling pathway serves 
a central role in the intracelluar signal transduction pathways and regulates infection and virulence in 
plants [51]. Several hub proteins related to the biosynthesis of secondary metabolites (i.e. flavonoid and 
terpenoid biosynthesis) also have shown that they were highly correlated in the interaction network, 
indicating these proteins are represented by pigmented rice. 

 

Although the breeding programme of Malaysian rice varieties has been extensively performed, the 
molecular networks underlying pigmented and non-pigmented rice varieties have been lacking. Hence, 
this study is valuable for unravelling the hidden molecular information and providing significant 
information resources for further application in rice breeding programme. In addition, the potential genes 
highlighted in this study can also be used as a reference to identify the essential genes in response to 
stress traits, such as abiotic and biotic stresses. 
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Conclusions 
 

Gene co-expression network and MCL have been shown to be essential approaches for prioritising of 
candidate stress-related genes. Through this approach, we screened DEGs for identifying and prioritising 
the stress-related genes using gene co-expression network and clustering approaches, as well as 
protein-protein interaction network from the STRING database. Fifteen potential stress-related genes 
and transcription factors (i.e., Os01g065100, Os01g0727500, Os03g0820500, Os12g0150200, 
Os12g0555000, Os05g0476700, OsWRKY28, YK1, OsHI-XIP) from the three significant clusters that 
were enriched with GO terms and pathways related to stress-related traits could be prioritised for further 
research, such as functional genomics and gene editing. The stress-related genes also were highly 
expressed in pigmented rice varieties, indicating pigmented rice can be candidate varieties to be 
introduced in rice breeding for stress-resistant or tolerant traits. Ultimately, this work has enriched 
molecular information of Malaysian pigmented and non-pigmented rice varieties, which will benefit future 
work in areas of improving rice stress-resistant or tolerant traits. 
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Supplementary Figure 1. Heat map of top hub genes that were differentially expressed in black 

vs red, black vs white and red vs white rice varieties 

 

 
 

Supplementary Figure 2. Heat map of differentially expressed transcription factors in BR (black 

rice and red rice), BW (black rice and white rice), RW (red rice and white rice) 
 


