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ABSTRACT 
 
In manufacturing process, it is very important to control and monitor the stability of a process such that a high quality product will be produced. The 
most common statistical tool used for monitoring the stability of a process is the control chart. In recent applications of control charting methods, there is 
a need to construct a control chart that is able to represent the behaviour of a multivariate process since in many manufacturing processes; quality of a 
product is determined by the joint-level of several quality characteristics. For this reason, in this paper, a new control chart is introduced for monitoring 
the stability of multivariate process in terms of the process variability. The proposed method is based on charting each of the eigenvalues of a covariance 
matrix. To show the efficiency of the proposed method, we conduct a simulation study and compare the performance of the proposed method with the 
existing method. A real example will be presented to illustrate the advantage of our proposed method. 
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1. INTRODUCTION 

 
Control chart is the most magnificent statistical and 

graphical tool in process control and monitoring. In 
multivariate data environment where the quality 
characteristic, p is greater than 1, p > 1 and these quality 
characteristics are correlated, the univariate control chart is 
no longer sufficient to represent shift in a process [1,2,3]. 
This is due to an increase of probability of false positive 
alarm,α . In statistical process control (SPC) methodology, 
the process monitoring via control charting method works 
like a series of hypothesis testing where

 
α  is refer to the 

probability of rejecting null hypothesis, 0H  while actually 

0H  is true.  In here, 0H
 
represent that a process has not 

shifted or the process remains in-control. In contrast, the 
alternative hypothesis, 1H

 
for which we are interested in 

investigating the occurrence of process shift. Thus, process 
monitoring is equivalent to conducting a repeated 
hypothesis testing on the process parameters of interest 
[1,3]. In multivariate process, there are two important 
population parameters to be monitored. One is the process 
target given by the mean vector μ  and the second is the 
process variability which characterized by the covariance 
matrix, pp×∑ .  
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In general, an efficient and effective control chart is 

a control chart that is able to detect a process shift quickly 
so that the production process will be stopped as soon as 
possible when out-of-control signal is occurred in order to 
take corrective actions [4]. In addition, a control chart with 
less sensitive in detecting out-of-control signal when 
actually the process is in-control will be desired [5]. When 
the process is in-control, α (also called as Type I error) 
should be small. If α  is large, it would increase the cost of 
inspection since the product is actually ‘good’ but the 
process is stopped due to the false out-of-control signal. On 
the other hand, β  or Type II error is the probability of 
failing to reject 0H  while actually the process has shifted. 
If β

 
is large it would be crucial importance to take careful 

corrective actions since a large amount of ‘bad’ product are 
passed during the inspection process instead of making the 
true decision to quickly detect the process shift and stop the 
process. 

In SPC there are two different phases, phase I and 
phase II stage. According to [1,6], phase I is used as a 
retrospective study where in this phase, the unknown 
process parameters, μ and∑

 
are being estimated. Moreover, 

in this phase the appropriate control limits are calculated in 
order to establish an in-control state. Once we achieved in-
control state, consequently for phase II study, our focus is in 
monitoring the future observations.  

In this paper, we introduced a new control charting 
method for monitoring multivariate process variability for 
phase II stage. This paper is organized as follows; in section  
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2, we recalled one of the existing control chart based on 
vector variance (VV) statistic. The proposed control 
charting method is discussed in section 3. In section 4, a 
simulation experiment is presented to investigate the 
performance of proposed chart compared with VV chart 
based on chart’s average run length (ARL). To show the 
advantage of our proposed method, a real industrial 
example is illustrated in section 5. Finally, a conclusion 
based on simulation results is discussed. 
 
 
2. VECTOR VARIANCE CHART 
 

   Assume that a historical data set (HDS) is available 

from a process during phase I stage.  Let ( )Tijkij X=X be 

the p x 1 observations vector which represent the jth 
observation measure on kth quality characteristic  of 
corresponding ith subgroup of size n for j = 1,2,...,n,            

k = 1,2,…,p and i = 1,2,…,m . Suppose ( )Tijkij X=X  

follows a p-variate normal distribution, ( )Σ,μpN  and the 

observations vectors are independent and identically 
distributed (i.i.d). In our study, the subgroup m is of each 
size n > 1. In multivariate setting, process variability is 
characterized by a p x p positive definite covariance matrix 
Σ  [7]. When the process is in-control state, the HDS which 
consist of sij 'X are used to estimate the in-control process 

parameters denoted by 0μ  and 0Σ  respectively such that 

( )00 Σ,~' μX pij Ns .  

In this study, we focused on the occurrence of shift 
in a process covariance matrix in phase II stage for which 

( )fpij Ns Σ,~' 0μY . Let the ith subgroup sample covariance 

matrix is denoted by iS  and is estimated from HDS, hence 

iS is given by:  

( )( )Tiij

n
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−
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When m subgroups are obtained and the sample mean 
vector iX is calculated for each subgroup, thus the average 

of all sample mean vectors is denoted by X  while the 

average of all sample covariance matrices is given by S . 

These statistics X  and S  could be written in the form of: 
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respectively. 
We first provide an overview of the most widely 

used generalized variance (GV) chart. GV chart is proposed 
by [1]. This chart is based on plotting the ith future sample 

GV, fS  developed by [8]. The control limits of this chart 

are constructed using the first and second moment of fS . 

The limitation of GV lies on its property of determinant of a 
matrix. If GV = 0, that is in this case there exist a linear 
combination of at least one variable to another variables or 
there is a variable with zero variance [9]. Due to the 
limitation of GV, [9] proposed a new statistical measure for 
monitoring multivariate process variability. If sample GV is 

defined by fS , VV is calculated from the sum of all 

diagonal elements of 2
fS , ( )2

fSTr . For geometric 

interpretation of VV, [10] discussed the details. Unlike GV 
chart, VV chart is more sensitive to small shift. 

Based on the asymptotic distribution of sample VV 
and for m subgroups of each size n available in phase I 
stage, S  is calculated from phase I and with probability of 
false alarm 0027.0=α , the UCL and LCL for VV chart is 
given by (see [11] for details explanation): 

 

1
ˆ3ˆ

−
+=

n
nUCL ηθ     

1
ˆ3ˆ

−
−=

n
nLCL ηθ  

where 








−
+
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2

1
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n
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and 
( )42 8ˆ STr=η  

 
When LCL is negative, we set LCL to zero. Thus, the 
process is said to be out-of-control when there is a point 
plots outside the control limits above.  

  It can be shown that both GV and VV statistics are 
function of real and independent eigenvalues. If GV is the 
product of all eigenvalues, VV is the sum of squares of all 
eigenvalues. From the development of GV chart by [1] in 
1985 and the new measure of process variability based on 
VV in 2008 by [9], and later on, [11] proposed to 
simultaneously used GV and VV in order to describe a 
better understanding of changes in covariance structure. 
[1,12,13] discussed the limitation of GV statistic as a 
measure of multivariate process variability. They showed  
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that two sample covariance matrices may give the same GV 
but the correlation structures of both matrices are different. 
Similarly, two sample covariance matrices may give the 
same VV but different GV. Thus, based on these 
limitations, we proposed to monitor each eigenvalues of a 
covariance matrix in order to further investigate the 
behaviour of shift in covariance structure. 
 
 
3. PROPOSED CHART 
 

  Let [ ]TSSSS
p

λλλ ,...,,
21

=λ  be the vector of eigenvalues 

of S . Suppose 
ij

λ̂ for j = 1,2, …,p and i = 1,2, …,m  is the  

jth eigenvalue of ith future covariance matrix fΣ  and jλ̂  
for all j are real and independent of each other [14]. The 
probabilistic distribution of jλ̂  will be used in order to 
determine the control limits for the proposed chart such that 

p
j

jj
UCLLCLP αλ λλ =<<− )ˆ(1 ˆˆ  where 0027.0=α . We 

employed the conventional univariate Shewhart control 
limits in order to compute the control limits. Recall that fΣ  

is a positive definite matrix and jλ̂  of fΣ  are assumed 
distinct (see theorem 8.3.3 [14]), the asymptotic distribution 
of jλ̂  is said to be :   
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for j = 1, 2,.., p and 0Σ
jλ is the jth eigenvalue of 0Σ . It 

should be noted that in our study 0Σ  is estimated by S . 
Thus, the associated control limits with 0027.0=α  for an 
individual eigenvalue chart are given by: 
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for  j = 1, 2, …, p , n is the sample size of ith future 

subgroup and ( ) 2   where p
v vZL α=Φ=  and ( ).Φ is the 

cumulative distribution function of the standard normal 
distribution. According to the control limits above, a 
process is said to be out-of-control when at least one of jλ̂   
gives an out of control signal.  

4. PERFORMANCE ANALYSIS 
 
When constructing a control chart, the aspect of how 

quick is the chart signal when actual change is occurred 
will be crucial importance. In addition, this chart should be 
less sensitive to the probability of false positive alarm α  
and false negative alarm β . As discussed in section 1, 
process monitoring is equivalent to conducting a repeated 
hypothesis testing. The average run length (ARL) is used to 
measure the performance of proposed chart. When the 
process is in-control state, the in-control ARL is denoted by 

0ARL  where
α
1

0 =ARL  .  On the other hand, when the 

process is in out-of-control state or there is an occurrence of 
shift in process covariance matrix or changes in covariance 
structure, the out-of-control ARL is denoted by 1ARL  and 

is given by
β−

=
1

1
1ARL  . Thus, from the above definition, 

the power of a control chart is depend on how small is it’s 
1ARL  and how large is it’s 0ARL . A large 0ARL  will be 

required so that the probability of false positive alarm is 
nearly small, that is the process is declare out-of-control 
when in fact that the process has not shifted. In contrast, a 
small 1ARL  is desired since we want to detect the 
occurrence of shift in the process covariance matrix as soon 
as the process has shifted.    
 In order to show the performance of our proposed 
method, a simulation study is conducted using MATLAB 
R2010b to compare the performance of VV chart and the 
proposed chart based on 1ARL . In this paper we presented 

1ARL  for only the largest eigenvalue (LEV) chart. For this 
experiment, we generated random data from in-control 
process ( )pp IN ,0  where m = 100 of each size 30=n  with   
p = 2 and p = 3 in order to calculate the control limits. The 
run length is then computed based on the number of 
subgroups required before the first out-of-control signal is 
occurred. In this experiment, 1ARL  is calculated from the 
average of 1000 simulated run lengths. In order to provide a 
meaningful comparison, we set the control limits for all 
charts so that 2500 ≈ARL .  
 It should be noted that the simulated 0ARL  will be 
different than that theoretical value 3700 ≈ARL

 
for 

0027.0=α  when parameters are estimated and there are 
limited number of observations available for setting the 
control limits. We consider three types of shift for fΣ  in 
order to measure the performance of proposed chart 
compared with VV chart. The types of shift considered in 
our experiment are similar to the one presented in [9]. 

Suppose in-control covariance matrix:  
 

 pI=









= 2
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2
1
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The types of shift in fΣ  in order to calculate 1ARL are: 
 

1. The shift in 2
1σ  where 








=

10
0

Σ
k

f  

2. The shift in 2
1σ  and 2

2σ where 







=

k
k

f 0
0

Σ  

 

3. The covariance shift where 







=

1
1

Σ
ρ

ρ
f  

The results of our experiments for above types of 
shift for fΣ are presented in Table 1.0, Table 2.0 and Table 
3.0 respectively. For the first type of shift, we learned that 

1ARL for LEV chart is smaller than 1ARL  for VV chart. 
However, in Table 2.0, when variance shifts in all 
variables, 1ARL  for VV chart is smaller than 1ARL  for 
LEV chart. Interestingly, in Table 3.0, 1ARL for LEV chart 
outperform than that 1ARL  for VV chart. The experiment 
results for p = 3 are not reported in here and are equivalent 
to the results when p = 2. 
 

 
Table 1  1ARL (VV) and 1ARL (LEV) for shift in first variable 

 
k VV LEV 

1.1 141.49 134.72 
1.2 57.62 47.09 
1.3 34.31 27.01 
1.4 15.29 14.74 
1.6 6.58 5.733 
1.8 3.51 3.23 
2 2.20 1.84 

  
Table 2   1ARL (VV) and 1ARL (LEV) for shift in both variables 

 
k VV LEV 

1.1 53.97 101.42 
1.2 15.86 22.11 
1.3 8.50 13.17 
1.4 4.38 6.29 
1.6 1.92 2.32 
1.8 1.39 1.61 
2 1.14 1.29 

 
 

Table 3 1ARL (VV) and 1ARL (LEV) for covariance shift  
 

ρ  VV LEV 
0.1 210.38 172.42 
0.2 117.81 86.15 
0.3 63.91 31.56 
0.4 37.27 14.96 
0.5 22.70 12.10 
0.6 13.78 7.45 
0.7 9.77 4.83 
0.8 7.51 3.33 
0.9 4.82 2.65 

 
 

 
5. AN EXAMPLE 

 
An example of proposed method applied to a real 

industrial problem in order to monitor a flange production is 
presented in this section. By using HDS for m = 20, n = 5 
and p = 3 for which the characteristics are thickness at the  

 
 
nozzle, thickness at the wall and thickness at the base, S  is 
given by: 

      















=

2675.00503.00467.0
0503.03020.01122.0
0467.01122.05643.0

S
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It should be noted that S  is the average of all covariance 
matrices issued from HDS. The associated vector of 
eigenvalues of S  is given by: 
 

( )T2280.02892.06165.0=λ  
For phase II stage, 10 new subgroups of equal size 

are collected in order to monitor the shift in covariance 
structure. In Table 4.0, we presented the values of VV and 
the largest eigenvalue (LEV) of the future sample 
covariance matrices fS  for  f = 1,2, …,10. To construct the 
control limits for our proposed chart, we first determine the 
value of ( ) vZL Φ= as discussed in section 3.  Hence, for   

m = 10, n = 5 and p = 3, the upper and lower control limits 
of proposed chart are UCL = 1.2610 and LCL = 0. Next, for 

VV chart, we obtained the values of  




 2

STr  and 




 4

STr  

where the values are given by 0.5157 and 0.1542 
respectively. Here, 7735.00 =ω  and 2332.12 =η . 
Consequently, the control limits for VV chart are            
UCL = 2.6359 and LCL = 0.  By using the control limits 
above for both control charts and results in Table 4.0, we 
then plotted the corresponding control charts                  
given by Figure 1.0 and Figure 2.0 respectively.

 
 

Table 4  The values of VV and the largest eigenvalue for 
each new subgroup 

 
m VV LEV 
1 0.2376 0.48609 
2 0.0783 0.25272 
3 0.1963 0.42979 
4 0.6397 0.77145 
5 0.3701 0.58618 
6 0.0407 0.19852 
7 0.0438 0.20861 
8 0.1856 0.41425 
9 1.8894 1.35460 
10 0.1770 0.41204 

 
 

 

  
Fig. 1   VV chart Fig. 2  1̂λ chart 

 
 
In Figure 2.0, there is an out-of-control signal occurred at 
the 9th subgroup. However, the signal is not able to detect 
by using VV chart. This example illustrates the 
effectiveness of proposed control chart compared with the 
VV chart for detecting the changes in process variability. 
This finding is in line with our simulation experiment for 
which 1ARL for LEV chart outperform than 1ARL  for VV 
chart when the quality characteristics are correlated for 
which this is our main reason in choosing multivariate 
control chart. 

    
6. CONCLUSION  
 
 In this paper, we presented a multivariate Shewhart 
control chart for monitoring multivariate process variability. 
The proposed method is promising since the statistic is 
independent of each other. The simulation experiments 
indicate that LEV chart and VV chart could describe a 
different behaviour of covariance structure. We learn that 
the covariance shift of a covariance matrix could be best 
explained by our proposed chart. 
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