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Abstract A rudimentary Electron Paramagnetic Resonance (EPR) spectrometer is designed 
using a field programmable gate array (FPGA) equipped with two digital-to-analog (DAC) and two 
analog-to-digital (ADC) channels.  The single stage heterodyne setup operates at X band 
frequencies and is used to detect EPR signals from 2,2-diphenyl-1-picrylhydrazyl (DPPH) in a 
loop-gap resonator.  We design the loop gap resonator with 3 loops 2 gaps for high field 
homogeneity and moderate Q-factor. The resonator is coupled capacitively to the coaxial cable 
and is designed to have an unloaded resonant frequency of 8.856 GHz with a Q-factor of 646.0 
when critically coupled. The loaded resonant frequency is reported to be 8.668 GHz with a Q-
factor of 615.8. Using this setup, EPR signal is successfully detected at 311.4 mT and 8.688 GHz 
with an experimental g-factor of 1.9945 ± 0.0012, which is very near to the standard value for 
DPPH. 
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Introduction 
 
Electron Paramagnetic Resonance (EPR) is a study of Zeeman interaction of the unpaired electron. A 
conventional EPR experiment is made up of 3 elements, which are external magnetic field, driven 
magnetic field, and an unpaired electron. External magnetic field splits the electron energy level 
depending on the spin quantum number while driven magnetic field provide a suitable of radio frequency 
(RF) magnetic field to excite the electron. EPR has a very wide field of applications such as protein study 
[1], biological structure study [2], defect detection [3], quantum computing [4], etc. In recent research, 
there was a breakthrough for large-scale spin qubit that is controlled using a global field in which the spin 
qubit states are manipulated by EPR [5]. The wide fields of application of EPR shows that the EPR is 
valuable to continue studying.  
 
In the study of EPR, there are 2 methods: continuous wave (CW) and pulsed. The continuous wave 
method is the method to continuously excite the electron spin using low power driven magnetic field 
while the pulsed method excites the spins ensemble using high power pulse with specific pulses. The 
continuous wave method is the simplest way to study the EPR but the applications are limited [6]. 
Conversely, the pulsed method more complex to study EPR but provides a way to manipulate and study 
the spin state of the electron [7, 8, 9]. Thus, the pulsed method is a more popular method to study the 
EPR. In some cases, the pulsed method still requires a continuous wave to determine the frequency of 
the electron spin[10].  
 
Commercial EPR spectrometers offer multiple frequencies for continuous wave and pulsed method and 
some even have predesigned pulse sequence to decrease the difficulties in determining the electron 
spin state. As EPR is widely used in various fields of study, the versatility of the commercial product is 
limited as the spectrometer is designed for general uses and user friendliness. For example, the pulse 
shape and sequence offered by a moderate-cost commercial product has only basic sequences and 
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square pulse. Square pulses contribute to significant errors in manipulating the electron spin state [11, 
12, 13]. While the pulse accuracy for commercial spectrometer is enough for the majority of the fields, 
some fields such as quantum computing require precise control of the spin state.  
 
For high-cost commercial pulsed EPR spectrometer, the spectrometer is built based on an arbitrary wave 
generator (AWG), which allows user to design their pulse shape and sequences. However, AWG is costly 
especially at high frequencies such as X band and higher. Field programmable gate array (FPGA) is 
considered as the alternative to the AWG due to its flexibility, low cost, and low-profile size. However, 
the suitability of FPGA for signal generation and detection for EPR is still being investigated [14]. Here, 
an FPGA based continuous wave EPR spectrometer in X band by using arbitrary wave generation 
method is proposed while this setup has the potential to modify into pulsed EPR spectrometer to 
generate shaped pulses to manipulate electron spins state.  
 
Materials and methods 
 
In EPR spectroscopy, various frequency ranges are used. Among the frequency ranges used, X band is 
one of the common frequency ranges used in EPR. This frequency range has a variety of component 
choices because the technology for the commercial components is matured. Designing the EPR 
spectrometer in this frequency range reduces difficulties in designing and procuring the microwave 
components. For the microwave source, an FPGA is programmed into an AWG. Compared to a 
conventional AWG, the FPGA is more complex in designing the firmware, which is not as user friendly 
as the AWG. Apart from the FPGA, the resonator is also an important component in an EPR 
spectrometer. The resonator is used to induce a strong microwave magnetic field for B1. Depending on 
the resonator design, the EPR signal strength will be varied. Thus, the design and fabrication of the 
resonator in X band is part of this study.  
 
As such, this study will start with designing and fabrication of the resonator, followed by spectrometer 
design which includes FPGA programming. In the resonator design, a simulation was done before the 
fabrication to estimate the specification of the resonator. A loop gap resonator (3 loop 2 gap) was 
designed because the loop gap resonator has moderate Q-factor, large filling factor, and high field 
homogeneity [15]. The resonance frequency of the resonator can be calculated using Equations (1):. 
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In this equation, 𝜔0 is the expected resonance frequency, 𝐿 is the total inductance, 𝐿0 is the inductance 
of loop (where x = 1, 2, 3), 𝐶	is total capacitance, 𝑛	is the number of the identical loop, 𝜇? is the 
permeability of free space, 𝑟0 is the radius of the loop, 𝑍	is the height of the loop gap resonator, 𝜖4 is 
relative dielectric constant, 𝜖? is the permittivity of free space, 𝑊	is the length of gaps, 𝑚	is the number 
of gaps and 𝑡	is the distance of gap. However, this equation does not include the cavity and coupling 
with the feed line. The simulated resonance frequency deviated from the calculated resonance 
frequency. The resonator design was done and shown in Figure 1. The resonator is capacitively coupled 
to the coaxial cable and the depth of the coaxial cable can change before the experiment to adjust the 
coupling to critical coupling. After the finite-difference time-domain method (FDTD) simulation result 
satisfied the requirements such as resonance frequency, Q-factor, and field homogeneity, the resonator 
was fabricated using the milling method. 
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Figure 1. Design of the resonator and cavity. (a) Top view of the resonator. The resonator is symmetrical up and down, left and right with 
center at 3 mm loop. The holes with 2 mm diameter are thread holes for installation. (b) Front view of the resonator. (c) Overall view of 
the resonator. (d) Top view of the resonator cavity. The cavity design is symmetrical up and down with the center at 3 mm hole. The 
holes with 2 mm and 4 mm diameter are thread holes for installation. The cleavages at the top and bottom are the space to insert the 
feed line once the cavity is assembled. (e) Side view of the resonator cavity. (f) Front view of the resonator. The dotted line is the boundary 
of the empty cavity behind copper shielding. (g) Overall view of the cavity, two identical designs assemble form a complete cavity. 

 
 

The spectrometer design starts with programming the FPGA. The FPGA used was Xilinx Kintex-7 KC705 
with daughter card FMC 150. This FPGA was programmed to generate 0 to 122.5 MHz of signal based 
on arbitrary wave generation method, which the 122.5 MHz is the Nyquist frequency. The spectrometer 
design is shown in Figure 2. The IF signal generated by the FPGA undergo heterodyning and up 
converted to X band RF signal. The RF signal is directed into the resonator and going out to the mixer 
for down conversion into the IF signal. The isolator in the spectrometer is to isolate the power reflected 
from the resonator to the components and damage or reflect from the mixer back to the resonator causing 
noise in the EPR signal. The effective bandwidth of this spectrometer is carefully designed to prevent 
the excitation of electron spin from the lower side band. The IF signal is generated by 16 bit DAC and 
sampled by 14 bit ADC of the FPGA. The IF signal is from 50 to 70 MHz, in a single frequency sweep, 
the spectrometer able to sweep from 3.8 to 10.07 GHz due to the LO frequency is adjustable. However, 
there will be overlapping between the lower side band with upper side band. To prevent any overlapping 
of the lower and upper side band, the frequency range in a single frequency sweep was not exceed by 
60 MHz frequency. By using this frequency range and lower bound of 50 MHz of IF signal, a 60 MHz 
frequency gap is present between the upper limit frequency of the lower side band and the lower limit of 
the upper side band. By referring to Figure 3 (c), the 60 MHz frequency gap is enough for the lower side 
band not to excite the electron spin due to the induced magnetic field at the sample area is weak. In 
other words, the lower side band away from the resonant frequency of the resonator increases the 
reflected power from the input of the resonator, which filters out the lower side band while allows only 
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the upper side band signal to pass through and excites the electron spins. Before the start of the 
experiment, the spectrometer was loop back directly without using the resonator to check the signal 
purity. 

 
 

 
 

 
Figure 2. The setup for FPGA based EPR spectrometer. (1) Mini-circuit frequency mixer TB-MCA1-12GL+ where intermediate frequency 
(IF) is the input signal from FPGA, local oscillator (LO) is the input signal from microwave synthesizer and RF is the output signal. (2) 
Qorvo LNA QPA2609. (3) UIY isolator UIYCI1220A. (4) Mini-circuit DC block BLK-18-S+. (5) Mini-circuit power splitter TB-811+. The 
FPGA that is used are Xilinx FPGA Kintex-7 KC705 and daughter card FMC 150 with 16 bit DAC and 14 bit ADC. Microwave synthesizer 
is National Intrument FSL-0010. 
 
 

In the continuous wave EPR experiment, the frequency sweep in the external magnetic field in on 
resonance condition and compared to the off resonance condition. If any EPR occurs, absorption will be 
observed, the absorption will be reflected in the lower amplitude of the continuous wave detected in the 
resonance condition compared to the off resonance condition. The magnetic field for resonance condition 
is estimated using Equation 2: 
 
																																																																				ℎ𝜔 = g𝜇H𝐵,                                                                  (2)   

  
 

 
where h is the Plank’s constant, g is the g-factor of the sample (for this experiment, it is DPPH), 𝜇H is 
the Bohr magneton, B is the external magnetic field strength, 𝜔 is the electron spins resonant 
frequency, which is the same as the resonant frequency of the resonator. 
 
 

Results and Discussion 
This part discusses the result of testing on resonator fabricated. Next, the resonator specifications such 
as resonant frequency and Q-factor are determined. After the resonator was shown it was working 
properly, the performances of the FPGA based spectrometer are discussed. Finally, the result of 
continuous wave EPR experiment by using the FPGA based spectrometer is presented. 
 
 
Performance of the Fabricated Resonator 
The FDTD simulation and experimental results of the resonator in Figure 3 shows that there are 2 peaks 
detected for both loaded and unloaded condition. For simulated unloaded conditions, the first peak at 
8.350 GHz is unwanted mode while 8.860 GHz is the fundamental mode which is the resonance 
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frequency of the resonator. To verify that 8.860 GHz is the fundamental mode, the induced magnetic 
field is simulated. The FDTD simulation shows that the magnetic field is focused in the inner loop which 
is the sample area. This induced magnetic field distribution is the fundamental mode of the resonator 
[16].  

 
 

 

 
 

 
Figure 3. Simulation and experimental results of the resonator. (a) Simulation of s-parameter after applied AR-filter. (b) Experimental 
results of transmission loss passing through the resonator.  

 
 

To save the simulation time, an autoregressive (AR) filter is applied as in Figure 3 (a). The AR filter is 
working by predicting the current simulation output with previous output and current input, this feature is 
commonly applied in electromagnetic simulation software. From Figure 3 (a), the s-parameter graph 
shows that the resonant frequency of the resonator decreases after loaded. This is because the sample 
used is DPPH in powder form. When the resonator is loaded, the glass sample holder is inserted into 
the inner loop of the resonator. Glass is a dielectric material and it increases the effective dielectric 
constant in the sample area, which decreases the resonant frequency. From experimental transmission 
loss of the resonator in Figure 3 (b), 2 peaks are detected for both loaded and unloaded conditions. This 
experimental result is overall agreed with the simulation result. The simulated and actual resonant 
frequencies and Q-factors are sort in Table 1 along with the calculated deviation between simulation and 
experiment. 
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Table 1.  The resonant frequency and Q-factor of the resonator in simulation and experiment. The deviation between experiment and 
simulation is calculated. 

 Simulation Experiment Discrepancy 
Unloaded Resonance Frequency 8.860 GHz 8.852 GHz 8.0 MHz 
Loaded Resonance Frequency 8.720 GHz 8.668 GHz 52.0 MHz 
Unloaded Q-factor 812.7 646.0 166.7 
Loaded Q-factor 794.8 615.8 179.0 

 
 
 
The simulated and actual specifications of the resonator do not deviate much from each other. The 
deviation of resonant frequencies and Q-factors is due to fabrication errors and additional parasitic 
capacitance induced by gaps between the parts of the resonator. For the loaded resonant frequency, 
the actual frequency deviated by 52 MHz which is higher than the deviation of unloaded frequency. This 
is because the dielectric constant of the glass depends type of glass e.g. doping, fabrication method, 
etc. [17]. As such, the dielectric constant used in this simulation might be lower than the actual value. To 
determine the Q-factor, there are 2 methods. The first method is a continuous wave sweep method, this 
method is done by recording the transmission loss when continuous wave with different frequencies 
passing through the resonator. The second method is the ring down method, this method is using a pulse 
far from the resonance frequency to cause a ring down from the resonator. By analyzing the ring down, 
Q-factor is determined from the ring down signal. This method will determine the effective Q-factor which 
is the combination of all resonance modes available in the resonator. Since the resonator is a lumped 
mode microwave structure, it has 2 resonance modes [16]. Thus, the ring down method might not be 
accurate, and continuous wave sweep method is chosen. The actual Q-factor lower than the simulated 
version might be due to the insulating oxide layer on the resonator. The oxide layer increases the 
resistance for surface current, which increases the losses. The gaps in between the assembly of the 
resonator also provide an additional channel of energy relaxation which decreases the Q-factor. 
 
FPGA based EPR spectrometer 
To ensure the EPR signal detected is by the designed frequency, the spectrometer was loop back directly 
at the resonant frequency, 8.869 GHz without the resonator to check the signal purity as shown in Figure 
4. In Figure 4(a), the designed frequency of the IF signal is 59 MHz which is the dominant signal. A side 
band f2 with frequency 68 MHz is detected and it is originated from FPGA. The harmonic of the dominant 
signal is also detected. After the IF signal passing through the mixers for up and down conversion, all 
the frequencies in the IF signal generated undergo 2 stages heterodyning. A total of 22 peaks are 
detected in Figures 4 (b) and (c) which originated from f1, f2, and 2f1. Theoretically, there will be more 
than 22 peaks detected. The detected peaks are less than the theoretical value is because of 2 
possibilities. The first possibility is the signal after first stage heterodyning become very weak and after 
the second stage heterodyning, the signal generated becoming too weak to be detected. The second 
possibility is the interference of multiple sources with the same frequency but different phases. Each 
peak may have multiple sources after heterodyning, those sources have different phases and undergo 
destructive interference and vanish or become too weak to be detected by ADC of FPGA. The calculated 
Spurious-Free Dynamic Range (SFDR) of the FPGA based spectrometer is -13.3 dBc. 
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Figure 4. Signal generated by the FPGA based spectrometer. (a) Signal of CW direct loop-back from FPGA after Fast Fourier Transform. 
(b) Signal of CW loop-back from spectrometer without resonator after Fast Fourier Transform. (c) Display of all peaks detected in (b). 

 
 

The EPR signal was detected by using the spectrometer design as shown in Figure 5. From the graph, 
the EPR signal is maximum at 311.4 mT, 8.688 GHz. The EPR signal strength is increased from 
311.2 mT and achieves a maximum at 311.4 mT then decreases. To verify the signal is the EPR signal, 
a frequency sweep at off resonance condition with the external magnetic field of 258.7 mT. From the 
spectrum, the EPR signal is vanished at off resonance condition, which shows that the EPR signal was 
detected at off resonance condition. The average signal to noise ratio (SNR) is 18 ± 8 under averaging 
of 4 and can improve by an increased number of averaging. The g-factor calculated by using Equation 2 
is 1.9945 ± 0.0012, which deviated by 0.42% to the standard value of 2.003 and 0.23% to Chaudhuri 
[18]. The g-factor verified that this EPR signal is from DPPH but not from other sources. From the results 
above, the spectrometer design and the resonator are working well. 
 

 
 

 
 

 
Figure 5. EPR signal from DPPH using FPGA based EPR spectrometer at different external magnetic fields.  
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Conclusion 
 

EPR has wide fields of application and its worth to study. The commercial products are unable to fit the 
requirements of some fields such as quantum computing. Thus, a FPGA based EPR spectrometer with 
a resonator is designed to carry out a continuous wave EPR experiment with DPPH as sample. The 
FPGA is used to replace the AWG to generate the driven magnetic field. This is because FPGA has low 
cost, low profile size and high flexibility. The frequency generated by the FPGA is up converted into X 
band signal by heterodyning to excite the electron spins. Besides this, the FPGA detects and records 
the down converted signal that exited from the resonator. The resonator is designed, simulated and 
fabricated by using milling. The resonator fabricated has the loaded resonant frequency of 8.668 GHz 
and Q-factor of 615.8 while the unloaded resonance frequency is 8.852 GHz with a Q-factor of 646. The 
design frequency of the FPGA based EPR spectrometer is the dominant frequency which is the 
frequency to excite electron spins with SFDR of -13.3dBc. EPR signal is detected and maximum at 311.4 
mT, 8.688 GHz. The g-factor calculated is 1.9945 ± 0.0012 which is very near to the standard value. 
Therefore, the FPGA based spectrometer and the resonator designed are working for continuous 
experiment. For the future work, the spectrometer will extend to pulsed spectrometer by installing 
suitable pulsed amplifier and attenuator. Various pulsed EPR experiments and qubit operations can be 
done to determine the spin dynamic of the electron spins. 
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