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Abstract Analysis of biomagnetic fluid (blood) flow (BFD) is important due to the potential 

biomedical applications that have been proposed such as cell separation for magnetic devices, drug 

delivery using magnetic particles for the treatment of cancer tumours, hyperthermia, and the 

reduction of bleeding during surgeries. In this study, the effects of spatially varying magnetic field on 

a straight channel with an overlapping stenosis is investigated numerically using finite element 

method (FEM). The mathematical model of biomagnetic fluid is constructed based on the coupled 

study of Navier-Stokes equations with the principles of ferrohydrodynamic (FHD). While the flow in a 

constricted artery is considered to be Newtonian, steady, two-dimensional and isothermal. Galerkin 

finite element method is used to discretize the governing equations and then the source code is 

developed by using MATLAB software. The source code is validated, and the results is compared 

with the previous literature. Based on the findings, the introduction of magnetic field alters the 

behaviour of blood flow in the area near the magnetic source. The increment of magnetic field 

intensity near stenosis area causes the recirculation area downstream to become smaller. This could 

be seen from the velocity profile and streamline pattern of constricted artery. 
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Introduction 
 
Cardiovascular complications involve the disorder of the heart and blood vessels [1] and may lead to 

fatalities [2]. Some of the examples of cardiovascular disease are coronary heart disease, 

cerebrovascular disease and peripheral arterial disease. Coronary heart disease occurred due to 

atherosclerosis which is the hardening of arterial wall forming a stenosis or plaque. As a result, it 

causes the constriction in the artery and limit the blood supply demands [3]. Abnormality such as 

stenosis in blood vessels highly influenced the hemodynamic of flow [4]. In recent years, biomagnetic 

fluid flow (BFD) has become an active area of study due to the advancement of its application in 

bioengineering and medicine [5]. Some of the applications in bioengineering and medicine applying 

the concept of magnetic field on the flow of biofluids are the development of magnetic devices such as 

magnetic drug targeting and magnetic cell separation [6]. Blood typically known as the most common 

biofluid due to the special characteristics it possessed [7-10]. It is revealed that the red blood cells able 

to orientate in the presence of magnetic field [11] and the orientation state depends on the state of 

hemoglobin [12]. Blood magnetization properties is affected by the concentration of oxygen where it 

possesses the diamagnetic and paramagnetic properties as they become oxygenated and 

deoxygenated respectively [13].  
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There are several mathematical models proposed for BFD [14]. It is based on the modified Stokes 

principles with the assumption that the fluid behaviour is also a function of magnetization. Based on 

the developed model, it is governed mainly by the principle of magnetohydrodynamics (MHD) and 

ferrohydrodynamic (FHD). Magnetohydrodynamics is a couple study between fluid dynamics and 

electromagnetism comprises of the Navier Stokes and Maxwell’s equations. While for 

ferrohydrodynamic, the presence of magnetic field causes the magnetic fluid to undergo polarization 

and hence induces the magnetization force inside the fluid [15]. 

 

To obtain the numerical solution of the mathematical model, finite element method (FEM) will be used. 

Within few decades, numerical technique has evolved from applications in structural engineering to 

most of computational approach for science and technology areas [16-17]. A finite element Taylor-

Galerkin scheme with operator splitting methods was presented by Formaggia et al. [18]. Moreover, 

Sousa et al. [19] also considered the FEM to solve the Navier-Stokes equations in her study. They 

implement the streamline Petrov Galerkin method in order to eliminate the stability problem. Wei et al. 

[20] used the FEM for cardiac blood flow simulation with echo where it allows data to be assimilated in 

a very flexible manner so that accurate measurements are more closely matched with the numerical 

solution than less accurate data. Zain et al. [21] study on steady state flow of blood in bifurcated artery 

by considering the blood as generalized Newtonian fluid. Simulation is performed by implemented 

Taylor-Galerkin finite element as a mothod of solution. Achab et al. [22] investigate the periodic blood 

flow through a stenotic artery by considering the Cross model and generalised power law as the shear 

thinning characteristic. They introducing the penalty function method following the standard Galerkin 

approach to eliminate the term of pressure that arises in the equation of motion. Bazilevs et al. [23] 

conducted an analysis of isogeometric blood flow by NURBS-based approaches. They constructed a 

realistic geometry by patient-specific vascular geometry and solve the problem by using FEM. They 

conclude that the FEM provide significant benefit for analysis where the mesh allows to refine the 

boundary layer and crucial for obtaining accurate wall quantities such as wall shear stress. FEM is 

proven to provide the researcher with an accurate result after it has been validated with the 

experimental results and it comprises of various types such as Generalized Finite Element method, 

Galerkin method and applied element method.  

 

To the best of the author’s knowledge, there were none of the studies on BFD flow in a straight arterial 

channel in the presence of overlapping stenosis were addressed in the literature. Hence, in the present 

study, the main objective is to develop a model of BFD flow in a straight arterial channel in the presence 

of overlapping stenosis and to solve and investigate it numerically using FEM. This study considered 

the flow to be steady, isothermal, two-dimensional and laminar. The solution of the problem is obtained 

numerically by discretizing the governing equations using finite element Galerkin weighted residual 

method. Mixed formulation of finite element method is used to discretize the problem due to its stability 

and cost effective. MATLAB coding is then developed based on this formulation to obtain the required 

solution.  

 

Mathematical Formulation 
 
The fluid flow model is based on the Newtonian Navier-Stokes equations where the blood flow is 
assumed to be two-dimensional, steady and laminar; a fluid that travels smoothly in regular paths. In 
addition to that, the fluid is flowing under the presence of magnetic field since this study focus on 
biomagnetic fluid flow in a channel artery. The flow is isothermal where temperature changes are 
negligible and the magnetic field involves are based on the force arising due to spatially varying 
magnetic field (magnetic gradient). Thus, the governing equations for this biomagnetic fluid flow 
problem is as stated below 

 ,

2 2

+
02 2

u u p u u H
u v M

x y x xx y
  

     
+ = − + +

    

  
       

 (1) 
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2 2

+
02 2

v v p v v H
u v M

x y y yx y
  

     
+ = − + +

    

  
       

 (2) 

 0.
u v

x y

 
+ =

 
 (3) 

In the above equations, u  and v  are the dimensional velocity, p  is the pressure,   is the density 

of fluid,   is the dynamic viscosity, 
0

  is the magnetic permeability of vacuum, M  is the 

magnetization, ( ),H H Hx y=  is the magnetic field strength and   is the electrical conductivity. The 

terms 
0

H
M

x





 and 

0

H
M

y





 represent the components of magnetic force per unit volume and well 

known for FHD term. Here, 
0

  is the magnetic permeability of vacuum or free space while r  is the 

relative magnetic permeability. The magnetization equations is M H=  where   is magnetic 

susceptibility. For blood, its magnetic susceptibility depends on the oxygenation state of the blood 

which are 
7

6.6 10
−

−   and 
6

3.5 10
−

  for oxygenated and deoxygenated blood respectively. The 

components of magnetic field intensity,
x

H and 
y

H along the x and y  coordinates are given 

according to [6] as 

 

( ) ( )
2 2

,
2

x

y b
H

x a y b





−
=

− + −
 (4) 

 

( ) ( )
2 2

2
y

x a
H

x a y b





−
= −

− + −
. (5) 

 
 

 
 

Figure 1. Geometry of artery for straight rectangular channel with an overlapping stenosis. 
 
 
In this straight rectangular channel problem (see Figure 1), a spatially varying magnetic field is 
generated by placing the magnetic source directly below the bottom wall of stenosis formation at 

( , ) (3.8, 0.01)x y = − . The velocity profile near the entrance is assumed to be fully developed while no-

slip condition is assumed for the upper and lower walls. Traction free condition is set as zero for the 

outflow with the pressure point constraint, 0p =  being implemented at ( , 0)L . The boundary 

conditions for the channel can be expressed mathematically as 
 

Inlet ( ) ( )0,  0  : ,  0,x y h u u y v=   = =  

Upper wall ( )0,  0  : 0,  0,y x L u v=   = =  

Lower wall ( ),  0  : 0,  0.x L y h u v=   = =  (6) 

    
                                            where h is the height of artery and L is the length of artery. 
 
 
 
 



 

 
 

 
621 

Abdullah et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 18 (2022) 618-629 

Galerkin Weighted Residual Method 
 

The differential equations in Equation (1) - (5) together with the boundary conditions as stated in 
Equation (6) are now transform into dimensionless form by substituting the dimensionless variables 
given below. 
 

2

0 0

, , , , , , ,
yx

x y

r r r

HHx y u v p
x y u v p H H

u u H Huh h 
= = = = = = =  

where ( )0 0 , 0H H a= is the reference magnetic field intensity, h is the reference length between two 

plates at the entrance and ru is maximum velocity of the blood at the inlet.  

 
The dimensionless equations for Equations (1) – (3) are obtained as follow 
 

 ,

2 2
1

+
2 2Re

u u p u u H
u v Mn HF

x y x xx y

     
+ = − + +

    

 
  
 

 (7) 

 ,

2 2
1

+
2 2Re

v v p v v H
u v Mn HF

x y y yx y

     
+ = − + +

    

 
  
 

 (8) 

 0.
u v

x y

 
+ =

 
 (9) 

The dimensionless form of the magnetic field intensity, ( ),
x y

H H H=  and the boundary conditions, 

refer Equations (4) – (6) are given as follow  
 

 
( )

( ) ( )
2 2

,x

b b y
H

x a y b

− −
=

− + −
 (10) 

 
( )

( ) ( )
2 2

,y

b x a
H

x a y b

− − −
=

− + −
 (11) 

 

Inlet ( ) ( )0,  0 1  : ,  0,x y u u y v=   = =  

Upper wall ( )0,  0  : 0,  0,L hy x u v=   = =  

Lower wall ( ),  0 1  : 0,  0.L hx y u v=   = =  (12) 

 
 
The non-dimensional parameters entering now into the problem under consideration are 
 

Reynolds number: Re .
h ur


=  (13) 

Magnetic number due FHD 

2

0 0

2
.F

r

H
Mn

u

 


=  (14) 

 
 
Then, the dimensionless equations in Equations (6) – (11) are discretized by using Galerkin weighted 
residual method to obtain a system of algebraic equation. The discretization process is to interpolate 
the velocity function u , v and pressure p  by using the unstructured triangular elements. The variables 

( ), ,i i ie e e
u v p  are approximated for quadratic shape function, ( ),ie

j
N x y  and linear shape function, 
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( ),ie

k
L x y  as 

 

( ) ( )

( ) ( )

( ) ( )  1, 2, 3, ..., 6  and  1, 2, 3

, , ,

, , ,

, , .     

i i i

i i i

i i i

e e e

j j

e e e

j j

e e e

k k
j k

u x y N x y u

v x y N x y v

p x y L x y p = =

=

=

=

 (15) 

 

where 
i

e  denote the finite element at 1, 2,3, ...,i n= . While the weighting function, ( ),w x y  for 

momentum and continuity equations is given respectively by 
 

 
( ) ( )

( ) ( ) 1, 2, 3, ..., 6  and  1, 2, 3

, , ,

, , .      

i

i

e

l l

e

m m
l m

w x y N x y

w x y L x y = =

=

=
 (16) 

 
The next step is to distribute the differentiation by applying the integration by parts for the second order 
derivatives terms along with the divergence theorem. Then, by using the Green’s theorem, the 
boundary conditions (12) associated with the differential equations (6) – (11) which are natural and 
essential boundary condition is induced. The resulting equations obtained are 
 

1

Re

i ii i i i i

i i i

i

e ee e e e e

e e e l l

l l

cx

e

F l

N Nu u p u u
N u v N

x y x x x y y
d B

H
Mn N H

x



     
+ + + +

      
 =


−



   
    
    
 
 
  

  (17) 

1

Re

i ii i i i i

i i i

i

e ee e e e e

e e e l l

l l
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e

F l

N Nv v p v v
N u v N

x y y x x y y
d B

H
Mn N HS

y


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+ + + +
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 =


−



   
    
    
 
 
  

  (18) 

 

where 
cx

B  and 
cy

B  are 

 

 

1
,

Re

1
.

Re

i i

i i

i i

i i

e e

e e

cx l x l y

e e

e e

cy l x l y

u u
B N n N n d

x y

v v
B N n N n d

x y





 
= − + 

 

 
= − + 

 

  
  

  

  
  

  





 (19) 

 
Since traction free condition is considered in this study, the term on the right-hand side of Equations 
(17) and (18) are zero and Equation (19) can be written as 

0, 0.
cx cy

B B= =  

Finally, substitute the approximate solution as defined in Equation (15) to obtain the element equations 
as written in matrix form as below 
 

 

 

 

 

1

1

1

11 13 1

22 23 2

31 32

0

0

0 0

T
e

j

T
e

j

T
e

k

u
k k r

k k v r

k k
p

=

 
    

    
    
        
 

 (20) 

where 
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 
   
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 
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H
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x

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
 ,  2
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F l

H
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y



= 


 . 

 
Equation (20) is called the local element matrix. The matrices need to be assembled into global matrix 
first in order to solve it. Since the equation is nonlinear in nature, the matrix is then solved by using 
Newton-Raphson method.  

 
Model Validation 
 
The source code for the formulation is developed using MATLAB software. Verification against 
benchmark is conducted to ensure the source code is reliable and functioning properly. Note that, 

Lorentz force, N  will not be considered in this formulation. This is because, Lorentz force will not have 

any significant effect on the flow field due to the presence of high magnetic field gradient as in spatially 

varying magentic field. Hence, 0N = . The density and dynamic viscosity of blood is 
-3

1050kgmp =  

and 
3 1 1

3.2 10 kgm s
− − −

=   respectively. The computational domain consists of a square cavity with 

the side lengths of 0.05m . The top lid is moving with a horizontal velocity of 
2 -1

2.438 10 ms
r

u
−

=  in 

the positive x− direction. The magnetic source is applied close to the bottom center of the domain as 

shown in Figure 2. Figure 2 shows contour lines of the spatially varying magnetic field that will be 
considered in this model validation. 
 

 
 

Figure 2. Contour lines of the dimensionless spatially varying magnetic field. 
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Figure 3. Streamlines for Re 400=  for various magnetic field strength between finite difference 

method [24] (left) and current study, Galerkin finite element method (right). 
 
 
The model is validate using previous literature from [24] and the results shows a good agreement for 
both the numerical method used. Figure 3 shows the streamline pattern of lid driven cavity for 
ferrohydrodynamics case as compared between finite difference method by Tzirtzilakis and Xenos [24] 
and Galerkin finite element method from the current study, Abdullah et al. [25]. 

 
Results and Discussion 
 
The developed source code for BFD case which had been validated with the benchmark problem in 
the previous section Model validation is modified to obtain the numerical results for overlapping 
stenosis in a straight artery channel.  
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Figure 4. Mesh of the geometry of artery for straight rectangular channel with an overlapping stenosis. 

 
 

The problem domain and boundary conditions for straight channel is shown in Figure 1. Mesh test is 
conducted to ensure that the results is not mesh dependent. Noted that the maximum point stated in 
Table 1 is refer to the maximum velocity. In finite element formulation, it is compulsory to mesh the 
problem domain. The domain in this study is discretized into unstructured triangular element as shown 
in Figure 4 and the mesh will be set to be denser at the area of magnetic source since the effect of 
magnetic field will be expected to show a characteristics behaviour here. The computed results of the 
discretized domain can be seen in Table 1.  

 
 
Table 1. Mesh test result. 
 

 
 
 
Based on the Figure 5, the result shown that the axial velocity is almost equivalent for each of the 
computed mesh. Thus, it can be concluded that the results are not dependent on the mesh or the total 
number of elements. Hence, Mesh 3 is chosen to get an excellent solution considering more time is 
needed for computation if mesh with too many numbers of element is selected. In this formulation, the 
fluid is considered as blood flowing in artery with the presence of overlapping stenosis. The parameter 

for the blood is the same as presented by Kasiman [5] with the density of 1050 kg/m3 and viscosity of 
3

3.2 10x
−

kgm/ms. The velocity contour and streamline patterns results obtained for the effect of 

different magnetic field on channel with stenosis is presented in Figure 6. 
 

 

Figure 5. The dimensionless axial velocity for different mesh at 1x =  with Re 250=  and 0.
F

Mn =  
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Figure 6. Velocity contour and streamlines pattern for biomagnetic fluid flow with an overlapping 

stenosis for Re 250=  at different magnetic number for 0,  78.75,  157.5
F

Mn =  and 236.25 . 

 
 
The velocity contour and streamline patterns in Figure 6 show that when the magnetic source is 
introduced to the flow, there exist a formation of small vortex near the magnetic source. The magnetic 

intensity is increase from 78.75,  157.5  and 236.25  and it can be seen from the streamline patterns 

that the vortex near magnetic source increase in size as the magnetic intensity is increased. For velocity 
contour, the velocity distribution along the channel shows a significant change as the magnetic source 
is introduced. This can be seen clearly from Figure 7 below for axial velocity profile before the magnetic 

source is introduced, at the magnetic field source and after the magnetic source at 3.0,  3.8x = and 

5.0 respectively.  
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Figure 7. Variation of Axial Velocity at Different Magnetic Field Intensity 0,  78.75,  157.5
F

Mn = and 

236.25  for 3.0,  3.8x =  and 5.0  with Re 250= .  

 
 

Figure 7 shows that x  at 3.0  denoted the variation of axial velocity before magnetic source is 

introduced and at 3.8x =  the magnetic source is located. It can be observed that there is substantial 

change on the velocity profile as the magnetic intensity increased. The velocity flow change from 
negative to positive range which shows the existence of circulation zone as the magnetic field gradient 

is imposed. The effects of the circulation zone can be seen at 5.0x = . Although the change of velocity 

is not significant, it can be still observed that as the magnetic intensity is increased, the velocity profile 
shows slight decrement at the upper wall as compared to flow without magnetic intensity. 
 

The comparison of axial velocity along the channel at 0.01y =  is presented in Figure 8. At the inlet of 

the channel, the axial velocity is increasing continuously as it flows through the first throat of the 
overlapping stenosis. This is due to the action of the fluid to compressed itself in order to flow into the 
constricted channel. Then, velocity continue to drop as it passes through the stenosis until it reaches 

the magnetic source. As the magnetic field is introduced at the second throat of stenosis, at 3.8x =  

the flow reaches its maximum velocity at the highest magnetic intensity of 232.25
F

Mn = . Then, the 

flow drops again after it passes through the magnetic source and after that the flow regain their inlet 
profiles as it moves downstream the channel. Based on Figure 8, it can be concluded that the 
application of magnetic field affected the maximum velocity of the flow since it changes from inside the 
stenosis constriction to the magnetic source location instead. 

 
Conclusions 
 

The geometry of straight channel artery with an overlapping stenosis in the presence of magnetic field 

was solved by introducing Galerkin weighed residual based on finite element method. It can be 

concluded that, when the magnetic field was introduced to the flow, there exist a circulation zone near 

the magnetic source and the circulation increases as the magnetic field intensity is increased. However, 

for the recirculation zones near the stenosis upstream, as the magnetic intensity increase, the 

circulation zones shrink. This indicates that the applications of magnetic field influenced the flow of 

blood. In addition to that, the results also demonstrated the use of FEM in solving complex geometry. 

For future study, author would like to suggest for the improvement on the mathematical model by the 

addition of heat and mass transfer. The inclusion of heat and mass in the study of biomagnetic fluid 

flow is necessary since heat transfer occurs in the natural environment, in engineering equipments and 

in living creature. 
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Figure 8. Variation of Axial Velocity Profile along 0.01y =  at Different Magnetic Field Intensity 

0,  78.75,  157.5
F

Mn =  and 236.25  with Re 250= . 
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