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Abstract  The aim of this research is to create the modeling of roundabouts. First of all, the three- 
arm roundabout is created for validation with the existing model. Then, the model is expanded to the 
four-arm roundabout. In the development of a modern intelligent transportation system, the 
effectiveness of dealing with the non-linear, time-varying and congested traffic flow is imperative in 
achieving traffic control and accuracy. In this paper, the roundabout is modelled as a circuit of 2×2 
junction comprising a main lane and a secondary lane. The rotation of the roundabout is in the 
clockwise direction, as in the case of Malaysia. In mathematical modelling, the traffic flow is created, 
based on one-dimensional hyperbolic conservation laws which are represented by non-linear partial 
differential equations where the unknown variable is a conserved quantity. As a scheme used in the 
computation and analysis, the Godunov method computes the fluxes at the interfaces of each cell in 
order to advance the solution of a Riemann Problem. In addition, the Courant-Friedrichs-Levy (CFL) 
condition is proposed and used to ensure the stability and accuracy of the numerical algorithm where 
the time step is not a constant. The optimization on the roundabout for Total Travel Time and Total 
Waiting Time with several parameters is applied to generate numerous results which will assist in 
assessing the reasonableness of the roundabout. The comparison data of the three-arm roundabout 
with our model and the existing model are discussed. In comparison, our results show similar 
properties with higher readings than in other published papers because our calculations involved all 
arms and roads. In addition, the comparison data between three-arm and four-arm roundabouts are 
reasonable and logical. Lastly, our model is more flexible and realistic, as compared to the existing 
model. 
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Introduction 
 
Nowadays, the increasing congestion of roads in Malaysia is a cause for concern. According to an 
online survey conducted by global carmaker Ford, most Malaysians complained of road congestion 
as it made them spend more time and money on their daily transportation compared to a year ago. 
Data from the Malaysian Road Transport Department (JPJ) show that there are 2.59 million units of 
motor vehicles registered in Malaysia between 2016 and 2020. This figure represents an average 
increase of around 519.000 new vehicles annually in the past 5 years. Among the reasons attributed 
to road congestion, one of them is the construction of junctions and traffic lights. Hence, the situation 
results in a delayed response. Congestion on the road is a continuously growing problem that is said 
to cause degradation in terms of travel time, traffic safety, fuel consumption and environmental 
pollution [1]. 
 
One of the initiatives in reducing the congestion problem involves the introduction of the roundabout.  
Typically, the roundabout could transfer a complicated junction into several T-junctions as well as 
reduce speed [2]. It provides an alternative to the conventional junction by reducing the number of 
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traffic flow junctions. Roundabouts can significantly increase the smoothness of traffic flow through a 
multiple-road junction, both in terms of throughput and safety. 
 
Research to study a simulation scheme for traffic flow is needed, and a comprehensive survey of vehicle 
dynamics within a mathematical framework should be developed. A large number of research studies 
have focused on the area of simulating vehicle interaction and driver behavior to understand how new 
rules and regulations could help relieve heavy road congestion. Given that the advantages of the 
roundabout are clearly defined, we are able to create a modeling of roundabout and study its 
optimization. Firstly, in order to create a four-arm roundabout model, the three-arm roundabout model 
must be created and validated with the existing model. In 2015, Obsu created a three -arm roundabout 
model [3]. However, in the calculation of Total Travel Time and Total Waiting Time, the author only 
considered a single-arm junction with two incoming roads and two outgoing roads. Nevertheless, our 
calculation will involve all the arm junctions with six incoming roads and six outgoing roads. After that, 
we will make a comparison and analysis of our results with Obsu’s findings, as well as with the four-arm 
roundabout. The Total Travel Time and Total Waiting Time are calculated, based on the travelling time 
by drivers and the queue time on buffers, respectively. 
 
Supposedly, there are two types of scales of traffic simulation in terms of a basic understanding for 
simulating traffic, namely, microscopic and macroscopic [4]. For this research, we create the model 
based on macroscopic and hyperbolic conservation laws. The first major step in the macroscopic 
modelling of traffic flow was undertaken by Lighthill and Whitham in 1955, when they indexed the 
comparability of traffic flow on long crowded roads with ‘flood movements in long rivers’. A year later, 
Richards (1956) complemented the idea with the introduction of ‘shock-waves on the highway’, 
completing the so-called Lighthill-Whitham-Richards (LWR) model [3]. This LWR model proposed a fluid 
dynamic model for traffic flow on a single lane using nonlinear partial differential equations. In our 
simulation, the density is a factor. 
 
Our study will use the Godunov method to solve the non-linear partial differential equations in the 
designated traffic-flow field because this method has been widely adopted by many researchers. This is 
based on the 1999 study by Sweby to approximate the solution of hyperbolic conservation laws, since 
this method can be characterized by the exact solution or approximated solution of a Riemann Problem 
within computational cells in order to obtain the numerical fluxes [5].  Moreover, this method has also 
been presented by Sonnendrucker in 2013 to solve the hyperbolic problem [6]. In 2014, the research on 
the optimization on roundabouts conducted by Obsu [3] was presented as a method to solve this 
problem. 
 

Traffic Flow on Roundabouts 
 
In general, most of the roundabouts have four incoming and four outgoing flow directions. In this 
research, the three-arm roundabout is created to compare with Obsu’s model. This model has also been 
expanded to a four-arm roundabout. In fact, the incoming vehicles entering the roundabout can exit at 
any four outgoing roads by making an appropriate turning around the central island of roundabouts in a 
clockwise direction. Hence, several parameters are set, as similar to Obsu’s model, which will help 
monitor the number of cars on the incoming secondary lane, those on the outgoing secondary lane, and 
also the number of cars passing through the arm junction from the incoming main lane and moving 
towards the outgoing main lane. 
 
Traffic Flow Model  
The model of traffic flow is based on the hyperbolic conservation laws that are non-linear partial 
differential equations where the unknown variable is a conserved quantity. Hence, the conservation of 
cars described by a first-order partial differential equation in one-dimensional form 
 

𝜕!𝜌 + 𝜕"𝑓(𝜌) = 0     (1) 
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where 𝜌 = 𝜌(𝑥, 𝑡) is the density of cars, with 𝜌 ∈ [0, 𝜌max], (𝑥, 𝑡) ∈ ℝ!, with 𝑥 is one-dimensional space 
variable and 𝑡 is time variable and 𝜌max is the maximum density of cars on the road, 𝑓(𝜌) is flux function 
and it can be written as 𝑓(𝜌) = 𝜌𝑣(𝜌), where 𝑣(𝑥, 𝑡) is the velocity.  
 
In modeling, the design of traffic flow of cars on the road is usually a one-dimensional travel lane where 
overtaking is not possible. The unit measurement of 𝜌(𝑥, 𝑡) denotes the number of cars per unit length 
in 𝑥 ∈ ℝ at time, 𝑡 ≥ 0. The number of cars in the interval (𝑥", 𝑥!) at time 𝑡 is 
 

∫ 𝜌(𝑥, 𝑡)	𝑑𝑥#!
#"

     (2) 

 
Let 𝑣(𝑥, 𝑡) denote the velocity of cars in 𝑥 at time 𝑡. Hence, the number of cars that will pass through 𝑥 
at time 𝑡 (in unit length) is 𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡). The derivation of an equation for evolution of car density is the 
number of cars in the interval (𝑥", 𝑥!) changes according to the number of cars that enter and leave this 
interval, hence the assumption is made that no cars can be created or destroyed in this interval. 

 
Figure 1. Derivation of the conservation law. 

 
The number of cars in the interval (𝑥", 𝑥!) over a period of time is 
 

#
#! ∫ 𝜌(𝑥, 𝑡)"!

""
𝑑𝑥 = 𝜌(𝑥$, 𝑡)𝑣(𝑥$, 𝑡) − 𝜌(𝑥%, 𝑡)𝑣(𝑥%, 𝑡)  (3) 

 
where the left-hand side of the Equation 3 is 
 

#
#! ∫ 𝜌(𝑥, 𝑡)"!

""
𝑑𝑥 = ∫ &'

&!
"!
""

𝑑𝑥    (4) 

 
This is a global conservation law for vehicles on the road. If 𝜌(𝑥!, 𝑡)𝑣(𝑥!, 𝑡) > 𝜌(𝑥", 𝑡)𝑣(𝑥!, 𝑡), this 
represents more cars moving out from this interval, and yields the decreasing number of cars in the 
interval. 
 
Integrating Equation 3 with respect to time, 𝑡 and assuming that 𝜌 and 𝑣 are regular functions yields 
 

∫ ∫ 𝜕!𝜌(𝑥, 𝑡)
"!
""

𝑑𝑥!!
!"

𝑑𝑡 = ∫ [𝜌(𝑥$, 𝑡)𝑣(𝑥$, 𝑡) − 𝜌(𝑥%, 𝑡)𝑣(𝑥%, 𝑡)]
!!
!"

𝑑𝑡  (5) 

 
By using the fundamental theorem of calculus, the right-hand side of the Equation 5 is 
 

∫ [𝜌(𝑥$, 𝑡)𝑣(𝑥$, 𝑡) − 𝜌(𝑥%, 𝑡)𝑣(𝑥%, 𝑡)]
!!
!"

𝑑𝑡 = −∫ ∫ 𝜕"
"!
""

[𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡)]𝑑𝑥!!
!"

𝑑𝑡  (6) 

 
Since 𝑥", 𝑥! ∈ ℝ, 	𝑡", 𝑡! > 0 are arbitrary, the Equation 5 can be concluded as, 
 

𝜌! + (𝜌𝑣)" = 0	, 𝑥 ∈ ℝ, 𝑡 > 0    (7) 
 
This is a partial differential equation of first-order and can be classified as inviscid Burger’s equation 
which can develop discontinuities or shock waves [7]. 
 
In Equation 7, the expression 𝜌𝑣 can be treated as a flux function, 𝑓(𝜌) = 𝜌𝑣 can be represented by the 
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flux of cars, which is a product of the density and speed of cars. Often, at the first-order approximation, 
the assumption is that 𝑣 is a decreasing function of 𝜌, hence flux is a concave function. This model is 
known in traffic literature as the Lighthill-Whitham-Richards (LWR) model. The main assumption of the 
Lighthill-Whitham-Richards model is that the velocity depends on the density of cars only because 𝑣 is 
a decreasing function of the density [8]. 
 
Roundabout Model  
In this research, a roundabout with four arms is considered as the study where the traffic flow in the 
roundabout is in a clockwise direction, as in Figure 2. 

 

 
 

Figure 2. Sketch of roundabout. 
 
 

                                   
(a) (b) 

 
 

Figure 3. (a) Arm junction of roundabout. (b) Corresponding arm junction. 
 
In Figure 2, the arm junction of roundabout 𝐽$	, 𝑛 = 1, 2, 3, 4 can be interpreted as a 2 × 2 circuit arm 
junction where main lane, 𝐼 and secondary lane, 𝑟 are described by arcs and arm junctions by vertexes. 
Each arm junction is partitioned by an interval [𝐼$, 𝐼$%"], 𝑛 = 1, 2, 3, 4 and the periodic boundary condition 
is 𝐼& = 𝐼". The number of secondary lanes corresponds with the number of arms of the roundabout, and 
it consists of both incoming and outgoing roads. The details of networks are shown in Figure 3. 
 
The traffic flow on the main lane segment is derived from Equation 1. 
 

𝜕!𝜌( + 𝜕"𝑓(𝜌() = 0, (𝑥, 𝑡) ∈ ℝ) × 𝐼(	, 𝑛 = 1, 2, 3, 4   (8) 
 
For the above equation, 𝜌$ = 𝜌$(𝑥, 𝑡) ∈ [0, 𝜌max] is the mean traffic density, 𝜌max is the maximal density 
on road and the flux function 𝑓: [0, 𝜌max] → ℝ% is given by the flux-density relation. 
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𝑓(𝜌) = =
𝜌𝑣*+,																														,	0 ≤ 𝜌 ≤ 𝜌-
.max

'max/'&
(𝜌max − 𝜌)									,	𝜌- ≤ 𝜌 ≤ 𝜌max

   (9) 

 
In Equation 9, 𝑣*+, is the maximal traffic speed, 𝜌- =

.max

/&'(
 is the critical density and 𝑓max = 𝑓(𝜌-) is the 

maximal flux value. For simplicity, some fixed constants are 𝜌max = 1 and 𝑣*+, = 1. 
 

 
 

Figure 4. The rational flux-density relation graph. 
 
To be realistic, the flux of the secondary lane entering the arm junction is assigned with a buffer of infinite 
size and capacity so as to prevent backward moving shocks on the road. In fact, the queue length of 
each buffer on the secondary lane is represented by ordinary differential equations. 
 

#3'(!)
#!

= 𝐹in((𝑡) − 𝛾r1,	𝑛(𝑡), 𝑡 ∈ ℝ), 𝑛 = 1, 2, 3, 4    (10) 

 
For the lane equation, 𝑙$(𝑡) ∈ [0,+∞] is the queue length,	𝐹in$(𝑡) is the flux entering the secondary lane 
and 𝛾r1, $(𝑡) is the flux exiting the secondary lane and entering the roundabout. For simplicity, the 
outgoing lane on the secondary lane accepts all the fluxes coming out from the roundabout. 
 
The Cauchy problem on the arm junction is, 
 

⎩
⎪
⎨

⎪
⎧𝜕!𝜌( + 𝜕"𝑓

(𝜌() = 0,					(𝑥, 𝑡) ∈ ℝ) × 𝐼(
#3'(!)
#!

= 𝐹in((𝑡) − 𝛾r1,	𝑛(𝑡),					𝑡 ∈ ℝ)

𝜌((𝑥, 0) = 𝜌(,=(𝑥),					on	𝐼(
𝑙((0) = 𝑙(,=

	    (11) 

 
for 𝑛 = 1, 2, 3, 4 where 𝜌$,3(𝑥) refers to the initial densities and 𝑙$,3 will be the initial length. 
 
Furthermore, some flux conditions on the secondary lane will be taken into account with the Cauchy 
problem above. They are demand 𝑑(𝐹in$, 𝑙$) on the incoming secondary lanes, the demand function 𝛿(𝜌$) 
on the incoming main lanes, and the supply function 𝜎(𝜌$) on the outgoing main lanes at each arm 
junction. 
 

𝑑(𝐹in(, 𝑙() = H
𝛾r1,	𝑛max 																																,	𝑙((𝑡) > 0
minK𝐹in((𝑡), 𝛾r1,	𝑛maxL								, 𝑙((𝑡) = 0

    (12) 

 

𝛿(𝜌() = N𝑓
(𝜌()								, 0 ≤ 𝜌( < 𝜌-
𝑓max										, 𝜌- ≤ 𝜌( ≤ 1    (13) 
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𝜎(𝜌() = N
𝑓max										, 0 ≤ 𝜌( ≤ 𝜌-
𝑓(𝜌()								, 𝜌- < 𝜌( ≤ 1    (14) 

 
for 𝑛 = 1, 2, 3, 4 where 𝛾r1,	$max  is the maximal flow on the incoming secondary lanes 𝑟",$. In addition, 𝛽 ∈
[0, 1] is the supply ratio of the outgoing secondary lanes 𝑟!,$ and its flux 
 

𝛾r2,	𝑛(𝑡) = 𝛽(𝑓K𝜌((0−, 𝑡)L, 𝑛 = 1, 2, 3, 4    (15) 
 
The flux on the arm junction can be classified by both the incoming and outgoing flux. The flux of the 
outgoing main lane is subjected to 
 

𝑓K𝜌()$(0+, 𝑡)L = min R(1 − 𝛽()𝛿K𝜌((0−, 𝑡)L + 𝑑K𝐹in((𝑡), 𝑙((𝑡)L, 𝜎K𝜌()$(0+, 𝑡)LS	 (16) 

 
Meanwhile, the flux from the incoming main lane is subjected to 
 

𝑓K𝜌((0−, 𝑡)L = 𝑓K𝑝()$(0+, 𝑡)L + 𝛾?%,((𝑡) − 𝛾?$,((𝑡)    (17) 
 
where 𝑛 = 1, 2, 3, 4. 
 
Riemann Problem and Riemann Solver at Arm Junction  
The Riemann problem at arm junction is the Cauchy problem in Equation 11 where the initial conditions 
are given by 𝜌$,3(𝑥) = 𝜌$,3	on 𝐼$ for 𝑛 = 1, 2, 3	and 4 in which each arm junction has an incoming road 
and an outgoing road. Some constants can be fixed likely	 𝜌$,3 ∈ [0, 1], 𝑙$,3 ∈ [0,∞),𝐹in𝑛 ∈ (0,∞) and 
priority factor 𝑃$ ∈ (0, 1). Riemann Solver is constructed as follows: 
 
• Define Γ"$

7 = 𝑓J𝜌$(0−, 𝑡)L, Γ!$
7 = 𝑓J𝜌$%"(0+, 𝑡)L, Γr"$

7 = 𝛾r1(𝑡). 
• Consider the space JΓr"$

7 , Γ"$
7 L and the sets  
𝜑" = N0, 𝛿J𝜌$,7LO, 𝜑r1 = [0, 𝑑(𝐹in$(𝑡), 𝑙$(𝑡))]. 

• Trace the lines J1 − 𝛽𝑛LΓ"$
7 +	Γr"$

7 = Γ!$
7 	and Γ"$

7 = 8)
(":8))<":𝛽𝑛=

Γr"$
7 . 

• Consider the region  
Ω = QJΓr"$

7 , Γ"$
7 L ∈ 𝜑" × 𝜑r1 ∶ 	 J1 − 𝛽𝑛LΓ"$

7 +	Γr"$
7 ∈ N0, Γ!$

7 OS. 
Riemann Solver at two situations depends on the value of Γ!: 
 
• Demand-limited case: Γ!$

7 = J1 − 𝛽𝑛L𝛿J𝜌$,7L + 𝑑(𝐹in
$(𝑡), 𝑙$(𝑡))	

Set Γ"$
7 = 𝛿J𝜌$,7L	and	Γr"$

7 = 𝑑(𝐹in$(𝑡), 𝑙$(𝑡))	in Figure 5 (a). 
• Supply-limited case: Γ!$

7 = 𝜎J𝜌$%",7L 

Set 𝑄 which is the point of intersection of J1 − 𝛽𝑛LΓ"$
7 +	Γr"$

7 = Γ!$
7  and Γ"$

7 = 8)
(":8))<":𝛽𝑛=

Γr"$
7 . If 𝑄 ∈ Ω, 

set JΓ>"$
7 , Γ"$

7 L = Q in Figure 5(b). Otherwise, 𝑄 ∉ Ω, set JΓ>"$
7 , Γ"$

7 L = S where 𝑆 is the point of segment 

Ω ∩ JΓ>"$
7 , Γ"$

7 L ∶ 	 J1 − 𝛽𝑛LΓ"$
7 +	Γr"$

7 = Γ!$
7  closest to the line Γ"$

7 = 8)
(":8))<":𝛽𝑛=

Γr"$
7  in Figure 5(c). 
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                                         (a)                                                            (b)    
                                             

            
               (c) 

 
Figure 5. (a) Demand-limited case. (b) Supply-limited case – intersection inside Ω. (c) Supply-limited 
case – intersection outside Ω. 
 

Network Topology 
 
The roundabout with four arms is modeled by four main roads, namely, 𝐼", 𝐼!	, 𝐼? and 𝐼@. Each main road 
is divided by 𝑖 node points and form (𝑖 + 1) intervals. It has a secondary lane on each arm junction with 
an incoming road and an outgoing road. The overall traffic flow runs on a single lane and unsignalized. 
In other words, there will be no overtaking of cars. From this topology, it can be shown that all the arm 
junctions of the roundabout can be represented by a circuit of 2 × 2 junction. 
 
Numerical Scheme 
According to the topology, a numerical grid is in 𝐽$ ≤ 𝑥 ≤ 𝐽$%" and 0 ≤ 𝑡 ≤ 𝑇 using the following notation: 
 
• ∆# is the space grid size. 
• ∆𝑡A is the inconstant time grid size. 
• J𝑥B , 𝑡AL = J𝑖∆#, 𝑡A:" + ∆𝑡AL for 𝑖 ∈ ℤ and 𝑗 ∈ ℕ are the gird points. 
 
Godunov Method  
We used the Godunov method to compute the flux at each cell interface because this method explores 
piecewise constant solutions as the solution is propagating at a finite speed and can be computed exactly 
by solving a Riemann problem. 
 
The finding of the solution is designed in rectangle mesh where 𝐽$ ≤ 𝑥 ≤ 𝐽$%" and 0 ≤ 𝑡 ≤ 𝑇 . In fact, 
the grid is defined as 

𝑥A = 𝐽( + V𝑖 +
1
2X ℎ,			𝑖 = 1, 2, 3, … ,𝑀 



 

 
350 

Hoong and Hoe | Malaysian Journal of Fundamental and Applied Sciences, Vol. 18 (2022) 343-366 

𝑡B = (𝑗 − 1)𝑘,			𝑗 = 1, 2, 3, … ,𝑁 + 1 
 

Each sub-interval is distributed as [𝐽$, 𝐽$ + ℎ], [𝐽$ + ℎ, 𝐽$ + 2ℎ],… , [𝐽$%" − ℎ, 𝐽$%"	] cells. The points 𝑥B are 

the midpoints of these cells, and the 𝑖th cell is f𝑥B −
C
!
, 𝑥B +

C
!g and is given by 𝐶B,A = i𝑥B:"!C,A

, 𝑥B%"!C,A
j at 

time 𝑡A. The Godunov scheme is a first-order scheme that is characterized as an exact solution to the 
Riemann problem. 
 

 
 

Figure 6. The mesh grids. 
 
Instead of directly approximating 𝜌 at each of the grid points, the approximation of the average of 𝜌 
over each cell is 
 

𝑢A,B =
$
C ∫ 𝜌K𝑥, 𝑡BL

"
)*+!

"
),+!

𝑑𝑥     (18) 

 
The average cell change over one-time step can be obtained by replacing the Equation 5 as in 
 

𝑥$ = 𝑥
A/$%C

, 𝑥% = 𝑥
A)$%C

, 𝑡$ = 𝑡B , 𝑡% = 𝑡B)$	

 
Hence, 
 

∫ 𝜌K𝑥, 𝑡B)$L
"
)*"!+

"
),"!+

𝑑𝑥 − ∫ 𝜌K𝑥, 𝑡BL
"
)*"!+

"
),"!+

𝑑𝑥 = ∫ 𝑓 `𝜌 V𝑥A/"!C
, 𝑡Xa − 𝑓 `𝜌 V𝑥A)"!C

, 𝑡Xa!-*"
!-

𝑑𝑡		       (19)	

 
Divide Equation 19 by ℎ, 
 

𝑢A,B)$ − 𝑢A,B =
1
ℎb 𝑓 `𝜌 V𝑥A/$%C

, 𝑡Xa
!-*"

!-
𝑑𝑡 −

1
ℎb 𝑓 `𝜌 V𝑥A)$%C

, 𝑡Xa
!-*"

!-
𝑑𝑡	

𝑢A,B)$ = 𝑢A,B −
D
C
c𝑓 `𝜌 V𝑥A)"!C

, 𝑗Xa − 𝑓 `𝜌 V𝑥A/"!C
, 𝑗Xad  (20) 

 
The intersection of waves between two neighboring cells takes place from the determination of ∆𝑡A by 
the CFL (Courant-Friedrichs-Lewy) condition. 
 

∆𝑡B 	max h𝜆
A)"!C
B h ≤ $

%
∆𝑥,	where	𝑖 ∈ ℤ		and	𝑗 ∈ ℕ   (21) 
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In Equation 21, 𝜆
B%"!C
A  is the wave speed at the interface 𝑥B%"!C

 at time 𝑡A and is defined as 𝑓′(𝑢). Based 

on the condition in Equation 21, the scheme can be written as 
 

𝑢A
B)$ = 𝑢A

B − ∆!-

∆"
R𝐺K𝑢A

B , 𝑢A)$
B L − 𝐺K𝑢A/$

B , 𝑢A
BLS   (22) 

 
where the 𝐺J𝑢B

A , 𝑢B%"
A L = 𝐺

B%"!

A  is the Godunov numerical flux given by 

 

𝐺(𝓍,𝓎) =

⎩
⎪
⎨

⎪
⎧minK𝑓(𝓍), 𝑓(𝓎)L												if	𝓍 ≤ 𝓎
𝑓(𝓍)																								if	𝓎 < 𝓍 < 𝜌-
𝑓max																									if		𝓎 < 𝜌- < 𝓍
𝑓(𝓎)																							if	𝜌- < 𝓎 < 𝑥

   (23) 

 
However, the conditions at arm junction, for the incoming main lane, are 
 

𝑢A
B)$ = 𝑢A

B − ∆!-

∆"
RΓ$(

B − 𝐺K𝑢A/$
B , 𝑢A

BLS   (24) 

 
and for the outgoing main lane, 
 

𝑢A
B)$ = 𝑢A

B − ∆!-

∆"
K𝐺K𝑢A

B , 𝑢A)$
B L − Γ%(

B L   (25) 

 
where Γ" and Γ! are the maximized fluxes computed in the Riemann Problem and Riemann Solver at 
Arm Junction section. 
 
Lane 
The buffer modeled in Equation 10 is the entrance at the junction of the roundabout. At each time step 
𝑡A = 𝑡A:" + ∆𝑡A, the new queue value length for 𝑡A%"𝑖 is computed according to the two possible cases 
with Euler first-order integration [9]. 
 
• If 𝐹inJ𝑡AL < Γr"$

A  
 

𝑙(
B)$ = H𝑙

B + K𝐹in(𝑡B) − Γr$(
B L∆𝑡B 			for	𝑡B)$ < 𝑡,̅

0																										otherwise,
   (26) 

 
• If 𝐹inJ𝑡AL > Γr"$

A  
 

𝑙(
B)$ = 𝑙B + K𝐹in(𝑡B) − Γr$(

B L∆𝑡B    (27) 
In Equations 26 and 27, Γr"$

A  is the maximized flux computed in the Riemann Problem and Riemann 
Solver at Arm Junction section and 𝐹inJ𝑡AL is the flux entering the entrance of the roundabout at time 𝑡A 
given by 

𝐹in(𝑡B) =
$
∆!- ∫ 𝐹in(𝑡)

!-*"

!- 𝑑𝑡    (28) 

 
and 𝑡̅ is the empty buffer time. Calculate it for each time step ∆𝑡A. 
 

𝑡̅ = − 3-

FinG!-H/Ir"'
- + 𝑡B     (29) 
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Numerical Simulations Setting 
 
In conducting the simulation, some parameters must be taken into account to yield more realistic results 
which have been introduced in the “Traffic Flow on Roundabouts’ section where 𝐹in ∈ [0, 1], 𝛽 ∈ [0, 1] 
and 𝑃 ∈ [0,1]. For validation purposes, the initial conditions are set as in Obsu’s paper, and it is very 
likely that at the initial time, all the roads and the buffers are empty, 𝜌$,3 = 0, 𝐹in$ ≠ 0 and 𝑙$,3 = 0 where 
𝑛 = 1, 2, 3 and 4. These are very realistic. Also, some constants are 𝑓max = 0.66, 𝜌- = 0.66	and 𝛾r1

max =
0.65. Lastly, the total time and space step are 𝑇 = 50 and ∆𝑥 = 0.1, respectively. In our simulation, we 
set the various settings; for instance, the circumference of the roundabout is set to three unit lengths and 
four unit lengths. In addition, the setting of 𝐹in$, 𝑃$ and 𝛽$ on each arm is distinct. 
 

Optimization on Roundabout  
 
In order to study the reasonableness and logic of the roundabout model, the calculations of Total Travel 
Time (𝑇𝑇𝑇) on the road network and Total Waiting Time (𝑇𝑊𝑇) at the entrance of the secondary road 
have to be calculated. The Total Travel Time and Total Waiting Time of the three-arm roundabout are 
compared with Obsu’s results. As mentioned in the introduction of this paper, the calculation is based 
on a single-arm junction with two incoming roads and two outgoing ones. Meanwhile, our calculation of 
a three-arm junction with three main lanes and three secondary lanes is as follows: 
 

𝑇𝑇𝑇 = ∑ ∫ ∫ 𝜌(𝑥, 𝑡)J
K'

𝑑𝑥L
= 𝑑𝑡J

(M$ + ∑ ∫ 𝑙((𝑡)
L
= 𝑑𝑡J

(M$ + 𝑇 ∙ ∑ ∫ 𝜌(𝑥, 𝑇)J
K'

𝑑𝑥J
(M$ + 𝑇 ∙ ∑ 𝑙((𝑇)J

(M$

                (30) 
 

𝑇𝑊𝑇 = ∑ ∫ 𝑙((𝑡)
L
= 𝑑𝑡J

(M$ + 𝑇 ∙ ∑ 𝑙((𝑇)J
(M$     (31) 

 
In addition, the efficiency of Total Travel Time and Total Waiting Time can be calculated by 
 

𝑇𝑇𝑇J$,N$
J%,N% = GLLL1!

2!/LLL1"
2"H

LLL1"
2"          (32) 

 

𝑇𝑊𝑇J$,N$
J%,N% = GLOL1!

2!/LOL1"
2"H

LOL1"
2"          (33) 

 
where 𝑁 is the number of arms and 𝐿 refers to the circumference of the roundabout. 

 

Results and Discussions 
 
Validation 
The numerous simulation results of Total Travel Time and Total Waiting Time on whole three-arm 
roundabouts are computed with the different values of 𝐹in, 𝛽	and 𝑃 , as shown on Figures 7 and 8. The 
results of Total Travel Time and Total Waiting Time versus 𝐹in are plotted with respect to 𝛽. The results 
can be compared with Obsu’s paper, where the shape and properties are similar. However, the readings 
are higher than those in Obsu’s results. This is because our simulation is based on three-arm junctions 
with six incoming roads and six outgoing roads on the roundabout while Obsu’s study is simulated on an 
arm junction with two incoming roads and two outgoing roads. 

 
Four-arm Roundabout 
After the three-arm roundabout results have been validated, we extended our model to the four-arm 
roundabout. We plotted the Total Travel Time and Total Waiting Time results of the four-arm roundabout 
with three-unit and four-unit circumferences, as reflected in Figures 9 to 12. The results of three-arm and 
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four -arm roundabouts with the same three-unit circumference show that both Total Travel Time and 
Total Waiting Time readings have slightly increased because more cars entered the four-arm roundabout 
and it has a heavy density. On the contrary, when comparing the four-arm roundabout with three-unit 
and four-unit circumferences, it is found that the Total Travel Time reading has increased because of the 
increase in the travel distance. However, the Total Waiting Time reading has decreased because it has 
more spaces, and with a lower density.  
 
Figure 13 shows the plot of Total Travel Time and Total Waiting Time of the four-arm roundabout with a 
four-unit circumference. In this case, the entry fluxes on the secondary lane are applied as 𝐹in" = 0.3, 𝐹in! =
0.8, 𝐹in? = 0.7 and 𝐹in@ = 0.5. From this figure, it can be seen that the plot decreased as the 𝛽  and 𝑃 values 
increased. This is because the rates of exiting the roundabout and crossing the arm junction are 
increased, given the greater smoothness of traffic flow on the roundabout. 

 
 

 
 

 
 

    
 

Figure 7.  Plot of Total Travel Time versus 𝐹in with various values of 𝛽 for the three-arm roundabout with a 3-unit circumference. 
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Figure 8.  Plot of Total Waiting Time versus 𝐹in with various values of 𝛽 for the three-arm roundabout with a 3-unit circumference. 
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Figure 9.  Plot of Total Travel Time versus 𝐹in with various values of 𝛽 for the four-arm roundabout with a 3-unit circumference. 
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Figure 10.  Plot of Total Waiting Time versus 𝐹in with various values of 𝛽 for the four-arm roundabout with a 3-unit circumference. 
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Figure 11.  Plot of Total Travel Time versus 𝐹in with various values of 𝛽 for the four-arm roundabout with a 4-unit circumference. 
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Figure 12.  Plot of Total Waiting Time versus 𝐹in with various values of 𝛽 for four-arm roundabout with a 4-unit circumference. 
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Figure 13.  Plot of Total Travel Time and Total Waiting Time versus 𝛽 for the four-arm roundabout with a 4-unit circumference where 
𝐹in
" = 0.3, 𝐹in

! = 0.8, 𝐹in
? = 0.7 and 𝐹in

@ = 0.5. 
 

Queue Length 
In addition, Figures 14 to 16 present the queue length on the incoming road of the secondary lane. Based 
on these figures, the queue length increased as the 𝑃 value increased. The 𝑃 value indicates the 
permissible rate for the flux crossing the arm junction. Hence, it reduced the flow from the secondary 
lane entering the roundabout. In this phenomenon, the 𝛽 plays a very important role too, because when 
the rate of exiting the roundabout flow is increased, the heavy traffic on the main lane of the roundabout 
will reduce slightly, hence enabling an easier and greater traffic stream from the secondary lane to enter 
the roundabout. Thus, the queue length on the secondary lane is decreased. 

 

 
 

 
 
Figure 14.  Plot of Queue Length for the four-arm roundabout with a 4-unit circumference where 𝐹in

" = 0.3, 𝐹in
! = 0.8, 𝐹in

? = 0.7 and 𝐹in
@ =

0.5 for 𝛽 = 0.2 and various values of 𝑃. 



 

 
360 

Hoong and Hoe | Malaysian Journal of Fundamental and Applied Sciences, Vol. 18 (2022) 343-366 

 
 

 
 
Figure 15.  Plot of Queue Length for the four-arm roundabout with a 4-unit circumference where 𝐹in

" = 0.3, 𝐹in
! = 0.8, 𝐹in

? = 0.7 and 𝐹in
@ =

0.5 for 𝛽 = 0.5 and various values of 𝑃. 
 

 
 

 
 
Figure 16.  Plot of Queue Length for the four-arm roundabout with a 4-unit circumference where 𝐹in" = 0.3, 𝐹in! = 0.8, 𝐹in? = 0.7 and 𝐹in@ =
0.5 for 𝛽 = 0.7 and various values of 𝑃. 
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Density 
Meanwhile, the different density plots of each road on the main lane are represented by Figures 17 to 
19 for the three different values of 𝛽 = 0.2, 0.5, 0.7 corresponded with 𝑃 = 0.2, 0.4, 0.6, 0.8.  Figure, 17 
clearly demonstrates that when the crossing arm junction rate, 𝑃 increased, the density on the 
roundabout became lower and traffic smoother. When the roundabout exiting rate 𝛽 increased, the 
density on roundabout is also reduced, as shown in Figure 19. 

 
 
 

 
 
Figure 17.  Plot of Density for the four-arm roundabout with a 4-unit circumference where 𝐹in" = 0.3, 𝐹in! = 0.8, 𝐹in? = 0.7 and 𝐹in@ = 0.5 for 
𝛽 = 0.2 and various values of 𝑃. 
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Figure 18.  Plot of Density for the four-arm roundabout with a 4-unit circumference where 𝐹in" = 0.3, 𝐹in! = 0.8, 𝐹in? = 0.7 and 𝐹in@ = 0.5 for 
𝛽 = 0.5 and various values of 𝑃. 
 
 

 
 

 
 

Figure 19.  Plot of Density for the four-arm roundabout with a 4-unit circumference where 𝐹in" = 0.3, 𝐹in! = 0.8, 𝐹in? = 0.7 and 𝐹in@ = 0.5 for 
𝛽 = 0.7 and various values of 𝑃. 
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Flexibility of Roundabout 
Lastly, the Figure 20 shows the density and queue length plots for the different 𝐹in, 𝛽 and 𝑃 on each arm 
junction. In Figure 20 (a), the density in between the length of one unit and two units is higher because 
the flux applied on the second arm is the highest value 𝐹in! = 0.8 among the four arms. On the other 
hand, the density in between the length of zero unit and one unit is the lowest because the flux applied 
on first arm 𝐹in" = 0.3 is the smallest value. Moreover, the roundabout exiting rate on the second arm is 
high, 𝛽! = 0.7. In Figure 20 (b), the queue length on the third arm is the longest because the flux applied 
on the third arm is 𝐹in? = 0.7; the crossing arm junction flux rate 𝑃? = 0.4 and exiting the roundabout on 
the fourth arm has the lowest rate 𝛽@ = 0.2. It prevents the cars on the third arm from entering the 
roundabout, hence leading to an increase in the queue length. Even though the 𝐹in! is the highest rate, 
the roundabout exiting rate is low, 𝑃! = 0.7.  The roundabout exiting rate is high enough on the third arm, 
𝛽? = 0.8. So, the queue on the second arm is not the longest but is the second in place, among the four 
arms. The queue length on the first arm is the shortest because 𝐹in" = 0.3 is the lowest rate, and the 
roundabout exiting rate on the second arm is considered high, 𝛽! = 0.7. 
 

 
                                                (a)                                                                                                      (b) 

 
Figure 20.  Plot of the four-arm roundabout with a 4-unit circumference where 𝐹in" = 0.3, 𝐹in! = 0.8, 𝐹in? = 0.7, 𝐹in@ = 0.5, 𝛽" = 0.3, 𝛽! = 0.7, 
𝛽? = 0.8, 𝛽@ = 0.2, 𝑃" = 0.5, 𝑃! = 0.2, 𝑃? = 0.4, and 𝑃@ = 0.8. (a) Density versus Length. (b) Queue versus Time. 
 

Efficiency 
Tables 1 to 12 describe the efficiency between three-arm roundabout and four-arm roundabout with 
various values of 𝛽 and 𝑃 for the 3-unit circumference and 4-unit circumference. The overall results 
explained the efficiency for the expansion from three-arm roundabout to four-arm roundabout as well 
as the increment of the circumference of roundabout from 3-unit circumference to 4-unit circumference. 

 
 
Table 1.  Efficiency of three arms versus four arms with a 3-unit circumference for 𝛽 = 0.2. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.4 
𝑇𝑇𝑇P,P

Q,P                    𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.7 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

0.1          1.1725%                 0.0000%       1.1725%                  0.0000%              1.1725%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

   29.6191%               35.3086% 
   28.4922%               31.9351% 
   28.3244%               30.8423% 
   28.2969%               30.2923% 
   28.3201%               29.9744% 

    29.6796%                35.3740% 
    28.5464%                31.9997% 
    28.3772%                30.9032% 
    28.3968%                30.3995% 
    28.4007%                30.0616% 

   30.8608%               36.9588% 
   29.6789%               33.3131% 
   29.2894%               31.9052% 
   29.1162%               31.1673% 
   28.9820%               30.6675% 
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Table 2.  Efficiency of three arms vs four arms with a 3-unit circumference for 𝛽 = 0.3. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.4 
𝑇𝑇𝑇P,P

Q,P                    𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.7 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

0.1          0.7227%                 0.0000%       0.7227%                  0.0000%              0.7227%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

   42.0797%               53.0456% 
   29.1821%               32.7498% 
   28.6357%               31.1922% 
   28.6052%               30.6210% 
   28.5964%               30.2644% 

    42.2826%                53.3691% 
    29.1494%                32.7255% 
    28.6093%                31.1713% 
    28.5608%                30.5815% 
    28.5222%                30.1906% 

     3.2033%               42.0071% 
   25.1971%               31.0433% 
   26.9656%               30.0679% 
   27.5328%               29.6345% 
   27.8144%               29.4006% 

 

Table 3.  Efficiency of three arms vs four arms with a 3-unit circumference for 𝛽 = 0.4. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.4 
𝑇𝑇𝑇P,P

Q,P                    𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.7 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

0.1          0.5041%                 0.0000%       0.5041%                  0.0000%              0.5041%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

     0.5039%                 0.0000% 
   30.5075%               34.3622% 
   28.7504%               31.3326% 
   28.4461%               30.4575% 
   28.4090%               30.0725% 

      0.5039%                  0.0000% 
    30.8129%                34.7281% 
    29.0363%                31.6602% 
    28.8465%                30.8997% 
    28.7482%                30.4367% 

     0.5039%                 0.0000% 
   19.2021%               32.0774% 
   25.8137%               30.2442% 
   27.0347%               29.6784% 
   27.5272%               29.4058% 

 
 

Table 4.  Efficiency of three arms vs four arms with a 3-unit circumference for 𝛽 = 0.5. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.4 
𝑇𝑇𝑇P,P

Q,P                    𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.7 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

0.1          0.3745%                 0.0000%       0.3745%                  0.0000%              0.3745%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

     0.3745%                 0.0000% 
     0.3744%                 0.0000% 
   29.3369%               31.9991% 
   28.5924%               30.6228% 
   28.4935%               30.1658% 

      0.3745%                  0.0000% 
      0.3744%                  0.0000% 
    30.1750%                32.9722% 
    29.6640%                31.8123% 
    29.4353%                31.1825% 

     0.3745%                 0.0000% 
     0.3744%                 0.0000% 
   22.9021%               30.5867% 
   26.1905%               29.7433% 
   27.1186%               29.4222% 

 
 

Table 5.  Efficiency of three arms vs four arms with a 3-unit circumference for 𝛽 = 0.6. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.4 
𝑇𝑇𝑇P,P

Q,P                    𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.7 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

0.1          0.2888%                 0.0000%       0.2888%                  0.0000%              0.2888%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

     0.2889%                 0.0000% 
     0.2888%                 0.0000% 
   32.6713%               35.8794% 
   28.9432%               31.0089% 
   28.6559%               30.3424% 

      0.2889%                  0.0000% 
      0.2888%                  0.0000% 
      4.7439%                32.9437% 
    24.4382%                29.8800% 
    26.4653%                29.4419% 

     0.2889%                 0.0000% 
     0.2888%                 0.0000% 
     4.7439%               32.9437% 
   24.4382%               29.8800% 
   26.4653%               29.4419% 

 
 

Table 6.  Efficiency of three arms vs four arms with a 3-unit circumference for 𝛽 = 0.7. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.4 
𝑇𝑇𝑇P,P

Q,P                    𝑇𝑊𝑇P,P
Q,P 

𝑃 = 0.7 
𝑇𝑇𝑇P,P

Q,P                  𝑇𝑊𝑇P,P
Q,P 

0.1          0.2280%                 0.0000%       0.2280%                  0.0000%              0.2280%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

     0.2282%                 0.0000% 
     0.2280%                 0.0000% 
     0.2280%                 0.0000% 
   29.7592%               31.9275% 
   29.1087%               30.8376% 

      0.2282%                  0.0000% 
      0.2280%                  0.0000% 
      0.2280%                  0.0000% 
    18.7505%                30.2723% 
    25.2641%                29.4668% 

     0.2282%                 0.0000% 
     0.2280%                 0.0000% 
     0.2280%                 0.0000% 
   18.7505%               30.2723% 
   25.2641%               29.4668% 
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Table 7.  Efficiency of four arms with a 3-unit circumference vs a 4-unit circumference for 𝛽 = 0.2. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇Q,P

Q,Q                   𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.4 
𝑇𝑇𝑇Q,P

Q,Q                    𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.7 
𝑇𝑇𝑇Q,P

Q,Q                  𝑇𝑊𝑇Q,P
Q,Q 

0.1        31.7881%                 0.0000%     31.7881%                  0.0000%            31.7881%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

    0.1939%                 -4.5261% 
     0.6927%                -2.3045% 
     0.6596%                -1.5664% 
     0.5867%                -1.1897% 
     0.5062%                -0.9714% 

      0.1544%                 -4.5678% 
      0.6529%                 -2.3487% 
      0.6212%                 -1.6055% 
      0.5144%                 -1.2643% 
      0.4471%                 -1.0312% 

    -0.6786%                -5.5981% 
    -0.1516%                -3.2400% 
    -0.0289%                -2.2970% 
    -0.0036%                -1.7982% 
     0.0311%                -1.4543% 

 
 

Table 8.  Efficiency of four arms with a 3-unit circumference vs a 4-unit circumference for 𝛽 = 0.3. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇Q,P

Q,Q                   𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.4 
𝑇𝑇𝑇Q,P

Q,Q                    𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.7 
𝑇𝑇𝑇Q,P

Q,Q                  𝑇𝑊𝑇Q,P
Q,Q 

0.1        32.3766%                 0.0000%     32.3766%                  0.0000%            32.3766%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

    -7.8472%              -14.8841% 
     0.3195%                -2.7337% 
     0.5461%                -1.6936% 
     0.5437%                -1.2337% 
     0.4817%                -0.9981% 

     -7.9717%               -15.0562% 
      0.2351%                 -2.8315% 
      0.4600%                 -1.7873% 
      0.3986%                 -1.3874% 
      0.3633%                 -1.1197% 

   28.9787%                -8.6879% 
     3.5836%                -1.6966% 
     1.7640%                -1.0357% 
     1.1600%                -0.7349% 
     0.8581%                -0.5742% 

 
 

Table 9.  Efficiency of four arms with a 3-unit circumference vs a 4-unit circumference for 𝛽 = 0.4. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇Q,P

Q,Q                   𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.4 
𝑇𝑇𝑇Q,P

Q,Q                    𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.7 
𝑇𝑇𝑇Q,P

Q,Q                  𝑇𝑊𝑇Q,P
Q,Q 

0.1        32.6647%                 0.0000%     32.6647%                  0.0000%            32.6647%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

   32.6648%                 0.0000% 
    -0.7060%                -3.9159% 
     0.3625%                -1.8963% 
     0.4817%                -1.3027% 
     0.4443%                -1.0375% 

    32.6648%                  0.0000% 
     -0.9138%                 -4.1556% 
      0.1591%                 -2.1190% 
      0.1996%                 -1.6050% 
      0.2046%                 -1.2899% 

   32.6648%                 0.0000% 
     9.6514%                -2.3965% 
     2.8619%                -1.1509% 
     1.6241%                -0.7638% 
     1.1233%                -0.5793% 

 
 

Table 10.  Efficiency of four arms with a 3-unit circumference vs a 4-unit circumference for 𝛽 = 0.5. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇Q,P

Q,Q                   𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.4 
𝑇𝑇𝑇Q,P

Q,Q                    𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.7 
𝑇𝑇𝑇Q,P

Q,Q                  𝑇𝑊𝑇Q,P
Q,Q 

0.1        32.8358%                 0.0000%     32.8358%                  0.0000%            32.8358%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

   32.8359%                 0.0000% 
   32.8360%                 0.0000% 
    -0.0488%                -2.3503% 
     0.3778%                -1.4145% 
     0.3836%                -1.1022% 

    32.8359%                  0.0000% 
    32.8360%                  0.0000% 
     -0.6269%                 -2.9998% 
     -0.3720%                 -2.2263% 
     -0.2818%                 -1.8050% 

   32.8359%                 0.0000% 
   32.8360%                 0.0000% 
     5.7139%                -1.3881% 
     2.4252%                -0.8097% 
     1.5038%                -0.5870% 

 
 

Table 11.  Efficiency of four arms with a 3-unit circumference vs a 4-unit circumference for 𝛽 = 0.6. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇Q,P

Q,Q                   𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.4 
𝑇𝑇𝑇Q,P

Q,Q                    𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.7 
𝑇𝑇𝑇Q,P

Q,Q                  𝑇𝑊𝑇Q,P
Q,Q 

0.1        32.9492%                 0.0000%     32.9492%                  0.0000%            32.9492%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

   32.9492%                 0.0000% 
   32.9493%                 0.0000% 
    -2.3122%                -4.8934% 
     0.1308%                -1.6823% 
     0.2703%                -1.2244% 

    32.9492%                  0.0000% 
    32.9493%                  0.0000% 
    26.7273%                 -2.9746% 
      4.1061%                 -0.9053% 
      2.1151%                 -0.5995% 

   32.9492%                 0.0000% 
   32.9493%                 0.0000% 
    26.7273%               -2.9746% 
     4.1061%                -0.9053% 
     2.1151%                -0.5995% 
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Table 12.  Efficiency of four arms with a 3-unit circumference vs 4-unit circumference for 𝛽 = 0.7. 

𝐹in 𝑃 = 0.2 
𝑇𝑇𝑇Q,P

Q,Q                   𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.4 
𝑇𝑇𝑇Q,P

Q,Q                    𝑇𝑊𝑇Q,P
Q,Q 

𝑃 = 0.7 
𝑇𝑇𝑇Q,P

Q,Q                  𝑇𝑊𝑇Q,P
Q,Q 

0.1        33.0300%                 0.0000%     33.0300%                  0.0000%            33.0300%                 0.0000% 
0.2 
0.3 
0.4 
0.5 
0.6 

   33.0299%                 0.0000% 
   33.0300%                 0.0000% 
   33.0299%                 0.0000% 
    -0.4321%                -2.2991% 
    -0.0460%                -1.5641% 

    33.0299%                  0.0000% 
    33.0300%                  0.0000% 
    33.0299%                  0.0000% 
      9.8953%                 -1.1731% 
      3.2509%                 -0.6240% 

   33.0299%                 0.0000% 
   33.0300%                 0.0000% 
   33.0299%                 0.0000% 
     9.8953%                -1.1731% 
     3.2509%                -0.6240% 

 
 

Conclusions  
 
The modeling of the three-arm roundabout, based on macroscopic and hyperbolic conservation laws, is 
created and validated with Obsu’s model. Subsequently, the model is expanded to the four-arm 
roundabout. In our model, there are many adjustable parameters, 𝐹in, 𝛽	and 	𝑃, on each arm of the 
roundabout. Therefore, our model is flexible and is capable of operating like a real phenomenon. As 
mentioned in the results and discussion section, the findings generated in terms of Total Travel Time 
and Total Waiting Time show that the density and queue length are reasonable and logical. Finally, it 
has led us to study the performance and efficiency of the roundabout where the data in Tables 1 to 12 
reflect the efficiency percentage of the roundabout in both the three-arm and four-arm roundabouts with 
several parameters. 
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