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Tyrosinase enzyme is grouped into the monophenol 
monooxygenase (EC 1.14.18.1) class of enzymes. It has 
been known for some time that this enzyme is essential for 
melanization. Tyrosinase catalyzes two distinct oxidation 
reactions in phenol treatment.  In cycle 1, tyrosinase 
accomplishes the oxidation of monophenol to O-diphenol. 
 The O-diphenol further oxidizes to O-quinone in cycle 2 
[11].  Molecular oxygen is required in both cycles to 
accomplish the oxidation reaction.  The product, O-quinone 
reacts spontaneously with one another to form insoluble 
oligomer via oligomerization that can be removed by 
filtration [12]. 

Several literature describing the amperometric 
detection of phenol derivatives with tyrosinase–modified 
electrodes have been reported in the last decade [13]. For 
example, a tyrosinase based modified ITO electrode with 
poly (GVPB)-g-MWCNTs and poly (HEMA)-g-MWCNTs 
was fabricated for detection of phenolic compounds in red 
wines [10].  The study revealed that the tyrosinase based 
modified ITO electrode with poly (GVPB)-g-MWCNTs and 
poly (HEMA)-g-MWCNTs were able to sense phenol in the 
concentration range of 0.6-7.0 mM and 0.05-0.35 mM, 
respectively.  Conventional electrodes such as glassy carbon 
(GC) and metal electrode commonly used as substrate 
material for amperometric or voltammetric analyte 
detection reportedly display a series of disadvantages, 
including poor sensitivity and stability, low reproducibility, 
large response times and a high overpotential for electron 
transfer reaction [4].  In this study, tyrosinase was chosen as 
a model enzyme to catalyze the targeted phenol.  Phenol, a 
contaminant usually present in wastewater from industries 
such as textile, coal conversion, petroleum refinery, and 
mining, is lethal to aquatic life at concentrations greater 
than 50 part per billion (ppb) and fatal in human if ingested 
(1 gram of phenol) [14].  In this work, Tyrosinase was 
covalently immobilized onto functionalized MWCNTS via 
carbodiimide chemistry and its bioactivity for phenol 
oxidation was assessed electrochemically using tyrosinase-
fMWCNTs-CPE.  

 
 
2. EXPERIMENTAL  
 
2.1    Materials and methods 

   
The MWCNTs (90% purity, diameter of 10-30 nm) 

were purchased from Sun Innovations Inc, USA. Tyrosinase 
from mushroom Agricus bisporus (E.C.1.14.18.1, 4000 
units/mg) was purchased from Sigma Aldrich.  Other 
reagents such as nitric acid (HNO3), sulphuric acid (H2SO4), 
2- (N-Morpholino) ethanesulfonic acids (MES), 1 –ethyl -3-
(3-dimethylaminopropyl) carbodiimide (EDC), phenol, 
EDTA, K2HPO4 and KH2PO4 were purchased from Fluka 
and Sigma Aldrich and of analytical grade. 

 
 
 
 

2.2 Functionalization and EDC activation of 
MWCNTs 
 
Purified sample of MWCNTs (100 mg) was treated 

with a 40 mL mixture of concentrated sulfuric acid and 
nitric acid (ratio 3 : 1) by stirring for 3 hours at 70ºC 
followed by sonication for another 3 hours.  The sample 
was neutralized, filtered, washed and dried in an oven at 70º 
C.  EDC activation of the acid treated-MWCNTs was done 
as previously described [14] with some modifications. First, 
the acid treated-MWCNTs (15 mg) were resuspended in 
deionized water by sonicating the mixture for 5 minutes.  
Then, 8 mL of a 500 mM MES buffer (pH 6.1) was added 
to the above suspension and mixed. Under fast stirring, 12 
mL of fresh EDC aqueous solution (10 mg/mL) was added 
quickly and the mixture was continuously stirred at room 
temperature for 30 minutes. The suspension was then 
filtered through a 0.45 µm polyamide membrane and rinsed 
thoroughly with 50 mM MES buffer (pH 6.1) to remove 
excess EDC.   
  
2.3  Immobilization of tyrosinase onto 

functionalized MWCNTs 
 
The EDC activated-MWCNTs (1 mg) were dispersed 

in 1.0 mL of 100 µg/mL tyrosinase solution followed by 
shaking at 150 rpm at room temperature for 1 hour. The 
suspension was centrifuged and washed with 50 mM of 
MES buffer (pH 6.1) three times to remove unbound 
tyrosinase. The amount of tyrosinase bounded was 
determined spectrophotomerically using Lowry assay 
(A750).  The amount of tyrosinase bounded onto EDC 
activated-MWCNTs was measured by subtracting the 
amount of enzyme in initial solution from the amount of 
enzyme in final solution (refer Equation 1).   
 
 
 
 
 
 
where A = enzyme concentration (µg/mL) in initial solution    
                 (soluble tyrosinase) X volume of initial solution. 
           B = enzyme concentration (µg/mL) in final solution  
                 (washing  tyrosinase) X volume of final solution. 

 
 
The overall covalent immobilization of tyrosinase onto f-
MWCNTs is illustrated in Figure 1.  
 
 
 
 
 
 
 
 
 

μ݃ ݂݋ ݁݉ݕݖ݊݁ ݀݊ݑ݋ܾ
݉݃ ݕݎ݀ ݐݓ ݂݋  ݏܶܰܥܹܯ

= ܣ െ ܤ
ݏܶܰܥܹܯ ݂݋ ݐݓ ݕݎ݀ ݃݉

Eq 1 
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Figure 1: Schematic representation of overall covalent 
immobilization of tyrosinase onto f MWCNTs. 
 
2.4 Characterization fMWCNTs and tyrosinase 
immobilized fMWCNTs 

 
Sample of commercial MWCNTs, f-MWCNTs (acid 

treated-MWCNTs and EDC activated-MWCNTs, 
respectively) and tyrosinase immobilized-f MWCNTs were 
characterized by Field Emission Scanning Electron 
Microscope (FESEM) (JEOL 230, Japan) at a magnification 
range of 10,000X to 50,000X.  These samples were 
analyzed with carbon tape without further coating.  Fourier 
Transform Infrared (FT-IR) spectra of these samples were 
recorded in transmission mode in the spectral range of 
4000-400 cm-1 using potassium bromide (KBr) disc method. 
A Perkin-Elmer FT-IR spectrophotometer was used. The 
EDC activated-MWCNTs and tyrosinase immobilized-f 
MWCNTs were both characterized with (Electron 
Dispersion X-Ray) EDX-equipped FESEM (JEOL 230, 
Japan) to analyze elemental composition of the samples.  
 
2.5 Electrode Preparation 

 
Graphite powder, tyrosinase-immobilized fMWCNTs 

and paraffin oil were mixed in an appropriate weight ratio 
and mortared to form a homogenous paste. The resulting 
pastes were packed into the well of the working electrode to 
a suitable depth. The tyrosinase-fMWCNTs-carbon paste 
electrode (tyrosinase-fMWCNTs-CPE) was therefore 
formed. The surface exposed to the solution was polished 
on a weighing paper to give a smooth finish before use. The 
body of the working electrode was a Teflon tube (3mm 
diameter) tightly packed with the tyrosinase-fMWCNTs-
carbon paste. The electrical contact was provided by a 
copper wire. 
 
2.6 Electrochemical measurements 
 

The catalytic activity of the immobilized tyrosinase 
was determined electrochemically upon addition of 
increasing concentrations of phenol.  Cyclic 
voltammograms were recorded using a Mini- and 
Microelectrode System UMµE incorporated with Polar pro 

software in a three electrode cell system.  A silver/ silver 
chloride, Ag| AgCl was used as the reference electrode 
whist Platinum was used as the counter electrode.  The 
working electrode used was the tyrosinase-fMWCNTs-CPE 
prepared as previously described.  All experiments were 
carried out at room temperature in 25 mL of 0.1 M 
phosphate buffer solution (pH 6.0) with the addition of 
phenol under magnetic stirring and buffer was used as 
blank. The cyclic voltammograms of tyrosinase-
fMWCNTs-CPE were obtained between +14000 to -14000 
mV at a scan rate of 100 mV/s.   
 
 
3. RESULTS & DISCUSSION 
 
3.1 Characterization fMWCNTs and tyrosinase 

immobilized fMWCNTs 
 
The FT-IR spectra of commercial MWCNTs, acid 

treated-MWCNTs, EDC activated-MWCNTs and tyrosinase 
immobilized-f MWCNTs as well as EDC are shown in 
Figure 2(a) – (c).   For both the commercial and acid 
treated- MWCNTs, the presence of hydroxyl groups (-OH) 
on the surface are consistent with the peaks observed at 
3423 cm -1 and 1066 cm-1  (Fig. 2a) resulting  from either 
ambient atmospheric moisture or oxidation during the 
purification of MWCNTs [17].   From the spectra of acid 
treated- MWCNTs, three new peaks appeared at 1166 cm-1, 
1550 cm -1 and 1385 cm-1. Peak 1166 cm-1 corresponds to 
the C-OH stretching vibration of the carboxylic groups        
-COOH whereas peaks 1550 cm -1 and 1385 cm-1   are 
attributed to carboxylate anion –COO- on acid treated- 
MWCNTs.  The presence of –COO- is due to OH bending 
deformation in –COOH [18]. All these observations 
indicate that the surface of the MWCNTs has been 
functionalized by acid treatment and hence the formation of 
–OH and –COOH groups on MWCNTs. 

The acid treated- MWCNTs were further subjected to 
treatment with EDC in order to enable covalent attachment 
of proteins. The FT-IR spectra of EDC activated- MWCNTs 
is presented in Figure 2(b). From the figure, peaks 1550 cm-

1 and 1385 cm-1 (-COO-) and 1166 cm-1 (C-OH) are no 
longer observed after EDC activation of fMWCNTs.  
Interestingly, two new peaks appeared at 1631 cm-1 and 
1479 cm-1; 1631 cm-1 corresponding to C=N (acylisourea) 
and C=C (CNT backbone), and 1479 cm-1 (corresponding to 
N-H bending for amine salt in diimide activated amidated 
MWCNT).  Furthermore, the peak assigned backbone (-
N=C=N-) of cross-linker, EDC at 2123 cm-1 was not 
evident in the EDC activated- MWCNTs.  These 
observations indicated that the carboxyl groups on the acid 
treated- MWCNTs had been chemically modified with EDC 
to create reactive groups on the surface. The functional 
groups -COOH on the surface of acid treated- MWCNTs 
require activation before they were able to bond proteins 
covalently. The carbonyl groups present on the acid treated- 
MWCNTs were activated by EDC to form an O- 
acylisourea intermediate followed by a nucleophilic  
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The surface morphologies of commercial MWCNTs, 
acid treated-MWCNTs, EDC activated-MWCNTs and 
tyrosinase immobilized-f MWCNTS were observed using 
FESEM. The morphology of commercial MWCNTs 
appeared as smooth and structured walls as shown in Figure 
3a.  After acid treatment, the bundle-liked MWCNTs 
appeared dispersed and white impurities were also 
noticeable on the surface (Figure 3b).  The introduction of 
functional groups has been reported to improve the 
dispersion of MWCNTs [20]. The smooth wall of the 
nanotubes also became less smooth and slightly bent due to 
the side attachment of the carboxylic groups during acid 
oxidation.   The noticeable impurities may be due to 
improper washing during the treatment.  Further washing of 
the fMWCNTs with distilled water and acetone after acid 
treatment can be done to ensure complete removal of these 
impurities. After EDC-activation, the ‘loose’ structure of 
fMWCNTs appeared to clump together accompanied by 
swelling of the CNTs as shown in Figure 3c. In comparison, 
FESEM micrograph of the tyrosinase immobilized 
fMWCNTs showed the presence of foreign particles on 
fMWCNTs suspected to be tyrosinase woven 
onto/enveloping the fMWCNTs threads (Figure 3d). More 
interestingly, this characteristic was not apparent in the acid 
treated and EDC activated-MWCNTs. Moreover, the 
presence of tyrosinase on the fMWCNTs was also 
confirmed by the EDX analysis (Table 1).  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2   Electrochemical measurements 
 

The Lowry assay was performed to determine the 
amount of tyrosinase that leached from the fMWCNTs after 
immobilization. The concentrations of unbound and soluble 
tyrosinase were determined via Lowry assay as previously 
described. It was found that 65 µg of tyrosinase was 
covalently attached to 1 mg of EDC activated-MWCNTs 
representing 65% immobilization efficiency. However, in 
order to be used for phenol sensing, the immobilized 
tyrosinase must possess catalytic activity and this was 
ascertained by electrochemical measurements where the 
tyrosinase immobilized-f MWCNTs was used as a working 
electrode to detect phenol.  In a typical three-electrode 
electrochemical system, tyrosinase-fMWCNTs–CPE was 

Table 1: Elemental composition of EDC activated-MWCNTs 
and tyrosinase immobilized-f MWCNTs via oxygen by 
stoichiometric (Normalized) process option by EDX analysis. 
 

Elemental Elemental weight (%) 

EDC activated-
MWCNTs 

Tyrosinase 
immobilized-f 

MWCNTs 
Carbon, C 26.15 22.71 

Nitrogen, N 0.66 nd 

Sulfur, S 0.66 6.34 

Copper, Cu nd 0.77 

Oxygen, O 72.53 70.18 

Total 100 100 

 
 
 

 
 
Figure 2(c): FTIR Spectra of tyrosinase immobilized-f-MWCNTs (Ι) and EDC activated-MWCNTs (II). 

I 

II 

1639 cm-1, Amide 
carbonyl 

1382 cm-1, C-N vibration 
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used as the working electrode, platinum was used as counter 
electrode and a Ag| AgCl electrode acted as reference. 
Cyclic voltammetric experiments were carried out at 25 ºC 
and in pH 6.0, phosphate buffer solution (0.1 M). After 
adding phenol to the buffer solution, the cyclic 
voltammogram reflected an increased reduction current at 
about -200 mV (Figure 4).  This peak represents the 
production of catechol from the enzymatic reaction in 
phosphate solution.  Table 2 shows the limiting reduction 
currents at two different phenol concentrations (74 nA and 
441 nA for 0.10 mmol/L and 0.30 mmol/L of phenol, 
respectively).  Under the catalysis of the tyrosinase on the 
electrode surface, the phenol was oxidized by the dissolving 
oxygen to form O-quinone and then reduced into catechol in 
the following steps :  

 
Phenol + tyrosinase (O2)                catechol       Eq. 2

    
Catechol + tyrosinase (O2)             O-quinone + H2O     Eq. 3
   
O-quinone + 2H+ + 2 e-                  catechol                      Eq. 4 

         (at electrode) 
 

The appearance of the reduction current therefore indicates 
that the immobilization process retained the catalytic 
activity of the immobilized tyrosinase in the modified 
carbon paste working electrode.   
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
  
 
                                                                                                                
 
 

                                                                        
 

 
Figure 3: FESEM images of commercial MWCNTs (a), acid 
treated-MWCNTs (b), EDC activated-MWCNTs (c) and 
tyrosinase immobilized-f MWCNTs (d) with magnification 
50,000 X. 

 

 
 
Figure 4: Cyclic voltammograms of tyrosinase-fMWCNTs-CPE in 0.1 M phosphate buffer with 0.1 mmol/L 
(b) and 0.3 mmol/L (c) phenol, respectively at scan rate 100 mV/s  whilst (a) represents blank (0.1 M 
phosphate buffer without phenol). 

a 

b 

c 
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4. CONCLUSION  
 

This work has demonstrated the attachment of 
tyrosinase onto functionalized MWCNTs via covalent 
bonding by carbodiimide chemistry.  An enzyme loading of 
0.65 µg per mg of support was achieved within just 1 hour.    
Electrochemical measurements using tyrosinase-f 
MWCNTs-CPE also implied that immobilized tyrosinase                                                                                                 
is linked to the fMWCNTs surface with bioactivity for   
phenol oxidation 
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