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Abstract  By employing a prey refuge mechanism, more preys can be protected from predation. 
Prey species are also better protected from predation when they congregate in herds. However, what if 
the prey refuge and herd behavior mechanisms were combined in a system? To investigate this 
phenomenon, we consider two different prey-predator systems with prey refuge capacity. The first 
system is a simple prey-predator with prey refuge, whereas the second system considers prey refuge 
and prey herd behavior mechanisms. Using these models, we explore how different prey refuge 
strategies affect species interactions in both systems. To accomplish this, we use theoretical 
techniques (e.g., computing steady states and performing the stability analysis) and numerical 
bifurcation analysis to demonstrate various dynamical behaviors of these two prey-predator systems. 
Once prey refuge is treated as a bifurcation parameter, we observe the occurrence of supercritical 
Hopf and transcritical bifurcations in both systems. Furthermore, we explore the dynamic effects of 
prey refuge and predator handling time on species population interactions: our findings reveal that 
using both prey refuge and herd behavior as escape strategies; it is possible to dilute the predation 
pressure and ensure species biodiversity. 
Keywords: Prey-predator, prey refuge, group defense, numerical bifurcation analysis, herd behaviour. 

 

 
 

Introduction 
 

In general, understanding the interactions between different species such as prey-predator interactions 
are a central goal in ecology. Prey refuge corresponds to how prey employs escape mechanism in their 
populations to seek protection from the predator’s attack. The refuge process impacts population 
expansion because it reduces the probability of prey death by dispersing predator pressure [1]. 
Therefore, a prey refuge mechanism offers some degree of protection for preys against a predator.  
 
Various researchers, including [1-6], have explored the dynamic effects of prey - predator systems in the 
involvement of refuge. Kar [2] introduced a prey-predator system with a response function of Holling type 
II that includes a constant proportion of prey refuges. They claim that expanding the refuge may lead to 
higher prey intensities and population expansions [2]. Apart from that, Chen and Wang [4] proposed an 
alternative prey-predator system that includes refuge capacity and herd behaviour mechanism in prey 
species. By utilizing prey refuges as a control measure, it is possible to reduce predation rates and 
effectively control predator density to prevent population disappearance and encourage coexistence. 
 
Motivated by these ecological observations, we are particularly interested in the combined influence of 
refuge process and herd behaviour mechanism inspired by the ecological systems of Kar [2] and Chen 
and Wang [4]. We analyze the presence and stability of different steady states, as well as their local 
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stability by using these modelling frameworks. We also perform a detailed bifurcation analysis to 
demonstrate the relevant dynamical behaviors of both systems and highlight the interplay of prey refuge, 
herd behaviour mechanism and predator handling time in shaping community dynamics. 
 

A prey-predator system involving prey refuge 
 

This section investigates a dynamic system of prey and predator with a response function of Holling type 
II that incorporates a refuge capacity in prey species. The system proposed by Kar [2] is defined as 
follows: 

                                                  (1) 

 
where  and represent the prey and predator species, respectively. All parameters  are 
assumed as a positive constant and denote a constant proportion of prey that employs refuge. 

Here  denotes the rate at which prey grows naturally;  is the prey's carrying capacity;  is the 
amount of time a predator spends handling a single prey;  is the rate at which predators attack and 
capture the preys;  is the conversion rate at which each prey is converted into a predator's new-born 
and  is predator death rate. There are at most three steady states in the system (1): 
 
(i) The trivial steady state . This steady state describes the extinction of both prey and 

predator. 
(ii)  A boundary steady state .This steady state indicates the survival of prey and the absence    

of predator. 

(iii)   The interior steady state  where  and       

        . This steady state demonstrates coexistence of  

         both prey and predator. 
 
Next, the Jacobian matrix are employed to conduct stability analysis of these three steady states: 
 

 

 
Then, the stability of each steady state is investigated. For , the Jacobian of the system is 
presented by 
 

 

 
Hence, the eigenvalues of this system are . Since the sign of both eigenvalues is positive 

and negative, it is concluded that  is an unstable saddle node.  
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The eigenvalues of the matrix are . Since both eigenvalues are negative, 

it is concluded that  is locally asymptotically stable when .  

For , we compute the Jacobian 

matrix using the Maple linalg package. And thus, the stability of this steady state is examined in terms of 
a variety of ecologically significant parameters. 
 

A prey-predator system involving prey refuge and herd 
behavior in preys 
 
The prey-predator system is initially presented by Chen and Wang [4]. They assume that preys live in 
herds, and the term with a square root is introduced in prey density. Thus, the following system is defined 
as follows: 
 

                                                      (2) 

 
where all the parameters are described in the previous section. The steady state in the system (2) are: 
 
(i)  The trivial steady state, describes the extinction of both prey and predator. 

(ii)    A boundary steady state,  indicates the survival of prey and the absence of predator. 

(iii)   The interior steady state,   where   and  

        . This steady state demonstrates coexistence of both prey  

         and predator. 
 
The given Jacobian matrix determines the stability analysis of the three steady states. 
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Since the system (2) is not linearizable at point , the stability at  cannot be determined. 

Therefore, the Jacobian matrix becomes indeterminate since the square root term are incorporated in 
the system. Meanwhile, for  and , the eigenvalues cannot be computed analytically 
due to the Jacobian matrix's complexity and the number of parameters. Due to this, the stability analysis 
is described in further detail in [4]. 
 

Results and discussion 
 
Dynamical behaviors of prey refuge and herding mechanism 
This section illustrates the numerical simulation of both systems. We performed some simulations using 
MATLAB and XPPAUT package to investigate systems dynamics as the ecologically significant 
parameter  (prey refuge) is varied. Then, we will demonstrate some phase portraits and time series 
analysis for different parameter values . Table 1 shows the parameter values used for both ecological 
systems (1) and (2). 
 

Table 1. Parameter values used in system (1) and (2). 
 

Parameter Description Value 
 Growth rate of prey 5 
 Carrying capacity of prey 60 
 Proportion of prey refuge system (1): 0.85 (varied) 
 Handling time system (2): 0.4 (varied) 
 Attack rate 0.24 
 Conversion rate 1.2 
 Death rate of predator 0.4 

 
We discovered numerous forms of behavior by using the bifurcation analysis as the bifurcation parameter 

 is varied. Figure 1(a) depicts the prey species' steady state,  versus prey refuge, for system (1). 
At , the Hopf bifurcation was observed. As , the two-species steady states are unstable 

and stable limit cycle (green dots) is born at . However, if as the parameter  increases, as 

, the two-species steady state becomes stable. This scenario will allow species to coexist 

and, as a result, increase species biodiversity. At , a transcritical bifurcation occurs. For 
, the steady state of a single species is stable. This phenomenon indicates that when prey migrates from 
their habitat patches to the refuge, they are no longer vulnerable to predation. Consequently, the prey 
population reached the carrying capacity (maximum population size that a particular area can sustainably 
support). As a result, predators will be unable to survive.  
 
Similar observations are realized in Figure 1(b); the prey species' steady state, which employs herd 
behavior and group defense mechanism,  against prey refuge, . There occur threshold values  

and , which equate to Hopf and transcritical bifurcation points, respectively.  
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As the prey refuge  decreases ( ), stable limit cycles grow in amplitude until they collide with 
extinction steady states in homoclinic bifurcation (blue dots in Figure 1(b)) and hence, the limits cycles 
will completely disappear [7]. Theoretically, the homoclinic bifurcation refers to a destruction or 
disappearance of the limit cycle. In this case, a limit cycle eventually reaches a saddle point and 
transforms into a homoclinic orbit at the bifurcation [8]. Ecologically, this condition may result in the 
absence of prey species, which is followed by the absence of predator species.  
 
Compared to system (1), it is clear that the bifurcation threshold values are shifted to the left (see Figure 
1(a)). This scenario demonstrates that prey populations live in herds and then employ prey refuges, 
which is possible to reduce predator density and predation rates. As a result, this condition will facilitate 
the coexistence of the two species. The stability and bifurcation analysis of systems (1) and (2) also can 
be summarized and classified into Table 2 and 3, respectively. 
 
 

 
 
Figure 1. One-parameter bifurcation diagram as species  against  (prey refuge) is varied. The points of  and  are the 
transcritical bifurcation, while  and  are the Hopf bifurcation points. The red and black curves represent the stable and unstable 
steady states, respectively. The oscillatory solutions are represented by the green dots (i.e., stable limit cycle). The blue dots in (b) are 
the homoclinic bifurcation. 
 
 
 

Table 2. The numerical result of system (1). 
 

Parameter 
values Steady states Eigenvalues 

 
Characteristics 
 

Figure 

   Unstable spiral steady state (stable limit cycle exists) 2 
 Hopf bifurcation point  1(a) 

   Asymptotically stable spiral steady state 3 
 Transcritical bifurcation point  1(a) 

   
Local asymptotically stable steady state 4 
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Table 3. The numerical result of system (2). 
 

Parameter 
values 

 
Steady states 

 
Eigenvalues 

 
Characteristics 
 

 
Figure 

   Unstable spiral steady state (stable limit cycle exists) 5 
 

 Hopf bifurcation point  1(b) 

   Asymptotically stable spiral steady state 6 
 Transcritical bifurcation point  1(b) 

  
 

Local asymptotically stable steady state 7 

 
Each vertical slice of the bifurcation diagram (see Figure 1) for a specific parameter value  (see Tables 
1 and 2) represents a phase portrait and time series diagrams of the dynamical system (1) and (2) in 
Figures 2 - 7.  
 
Using the phase portrait and time series analysis, we observed that various outcomes of species 
dynamics emerge when the prey refuge,  are varied. Figure 2 (a) depicts the phase portrait of both 
species in the presence of a modest population density of prey refuge (e.g., ) in the system (1). 
There is an oscillatory solution (see Figure 2 (b)), in which the population densities of both species begin 
to fluctuate over time. In this situation, the steady state of the coexistence species is unstable, and 
trajectories from any positive initial conditions converge to a stable limit cycle (see Figure 2 (a)). 
 
As seen in Figures 3(a) and 3(b), the coexisting species steady state stabilizes when the rate of prey 
refuge increases (e.g., ). This scenario explained the allowing for more better dispersion in 
terms of prey refuge appears to have a rescuing impact on prey and encourages the coexistence of 
various species. Nevertheless, the high prey refuge densities (e.g., ) may be harmful to 
coexistence since only prey species can survive until they reach their carrying capacity (see Figure 4 (a) 
and (b)). 
 
Figures 5 - 7 show the phase portrait and time series plots of system (2) as the prey employ both refuge 
and herding mechanisms. In this case, we discover relatively similar dynamics to those observed in the 
system (1). However, numerous possible outcomes of species interactions exist, including oscillatory 
patterns (see Figure 5 (a) and (b)), coexistence of both species (see Figure 6 (a) and (b)), and species 
absence (see Figure 7 (a) and (b)) for , , and , respectively. Conversely, when 
refuge intensity in prey species is low (e.g., ), this eventuality results in the termination of stable 
limit cycles. 
 
Our findings reveal that both systems (1) and (2) can exhibit various dynamical behaviors.  As prey 
refuge  varies, several stable attractors may emerge, including limit cycles, single-species steady 
states, and the coexistence of two-species steady states. The following sections illustrate how the 
combined effects of prey refuge, herd behaviour mechanism and predator handling time might impact 
the composition of species communities. To address this concern, two-parameter bifurcation analysis of 
the systems (1) and (2) is performed. 
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(a)                                                                      (b) 

Figure 2. The numerical illustrations for system (1) with  and initial condition . (a) The phase plane, prey  vs. 

predator ,  and (b) the time series plot (  vs. ). 
 
 

 
(a)                                                                         (b) 

Figure 3. The numerical illustrations for system (1) with  and initial condition . (a) The phase plane, prey  

vs. predator ,  and (b) the time series plot (  vs. ). 
 
 

 
(a)                                                                        (b) 

Figure 4. The numerical illustrations for system (1) with and initial condition . (a) The phase plane, prey  

vs. predator ,  and (b) the time series plot (  vs. ). 
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(a)                                                                       (b) 

Figure 5. The numerical illustrations for system (2) with and initial condition . (a) The phase plane, prey  

vs. predator ,  and (b) the time series plot (  vs. ). 
 

 
(a)                                                                       (b) 

Figure 6. The numerical illustrations for system (2) with and initial condition . (a) The phase plane, prey  

vs. predator ,  and (b) the time series plot (  vs. ). 
 

 
(a)                                                                        (b) 

Figure 7. The numerical illustrations for system (2) with and initial condition . (a) The phase plane, prey  

vs. predator ,  and (b) the time series plot (  vs. ). 
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The combined influence of predator handling time and prey refuge  
As illustrated in Figure 8, the two-parameter bifurcation diagram is constructed to investigate the 
combined influence of prey refuge ,  predator handling time  (the amount of time a predator spends 
handling one prey) and herd behaviour mechanism. The stability regions are divided into several parts: 
(i) the blue region denotes the presence of stable limit cycles.; (ii) the green region represents two-
species steady states in which both species coexist.; (iii) the red region represents the steady-state of a 
single species with the exclusion of predator species; (iv) yellow region (see Figure 8(b)) corresponds to 
the absence of stable limit cycles.  
 
Figure 8 shows the two-parameter bifurcation diagram for both systems (1) and (2). The red region 
represents situations in which prey disperses rapidly, and predators have a high handling time rate. This 
situation endangers the survival of both species. It seems there is a single species steady state in this 
area, which results in the existence of prey while predator species are wiped out. As we pass through 
the transcritical bifurcation curve and enter the green region, the steady state for two-species 
coexistence stabilizes, allowing both species to coexist in the ecosystem sustainably. Shifting into the 
blue region as we traverse the Hopf bifurcation curve, the oscillatory behaviors emerge, indicating the 
presence of a stable limit cycle. But then, the stable limit cycle eventually terminates as we reach the 
homoclinic bifurcation curve in Figure 8(b). 

 
 

 
Figure 8. Diagrams of a two-parameter bifurcation analysis for  (predator handling time) against  (prey refuge). (a) System (1) 
employ prey refuge. (b) System (2) incorporates prey refuge and herd mechanism. 
 
 

In comparison, if the predator handling time is kept to a minimum, e.g., , this situation 
enhances a broader range of two-species coexistence green areas in Figure 8(a). However, when prey 
employs the herding mechanism, the green region of coexistence between two species shrinks, as 
illustrated in Figure 8(b). Furthermore, the red region in Figure 8(b) is significantly larger than the 
equivalent region in Figure 8(a). This situation indicates that predator handling time in system (2) is 
longer than in system (1) since the prey employed the herd mechanisms. Ecologically, increasing 
predator handling times may be harmful to species diversity [9]. More possibilities involving species 
exclusion are feasible across an ecological variation of prey refuge [10]. The stable limit cycles with an 
unstable two-species steady-state can lead to instability in the predator-prey ecosystem, possibly 
resulting in local eradication or even a species extinction [11]. However, the stable limit cycles in the 
system (2) become smaller compared to the system (1). This scenario demonstrates that employing herd 
behaviour mechanisms in prey can reduce the likelihood of a species being extirpated. 
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Conclusions 
 
The dynamics of two ecological prey and predator systems are considered to understand better the 
combined effects of prey refuge and herd behaviour mechanisms in determining species population 
dynamics. Correspondingly, system (1) employs prey refuge, while system (2) incorporates prey refuge 
and herd behavior mechanisms. The mathematical softwares MATLAB and XPPAUT are carried out to 
analyze each bifurcation parameter's stability and bifurcation results. 
 
By using one-parameter bifurcation analysis, it is revealed that both systems (1) and (2) undergo 
transcritical and Hopf bifurcation. However, since system (2) employs both prey refuge and herd 
mechanism, a Homoclinic bifurcation occurs. The bifurcation parameter  is then varied, discussed, 
and classified into three parts: low, moderate, and high prey refuge intensities. We discovered 
qualitatively similar dynamics on both systems (1) and (2) based on the dynamical analysis. The low 
intensity of prey refuges will eventually lead to the exclusion of both species. Both systems exhibit two-
species coexistence and, consequently, enhance species biodiversity when prey refuges are moderately 
intense. Finally, the high intensity of prey refuges would eventually allow prey to reach its carrying 
capacity, resulting in the exclusion of predators.  
 
For a two-parameter bifurcation analysis, the combined effects of prey refuge and predator handling time 
are investigated. It can be concluded that the single-species stable region in the system (2) is more 
extensive than in the system (1). Ecologically, when prey employs both refuge and herd strategies, the 
predator would spend much more time handling the prey to attack, kill, and consume it. In fact, 
incorporating both prey refuge and herd mechanisms into the prey population aids in the prey's natural 
survival. This condition, however, could be threatening to species diversity. To summarize, future 
research should emphasize prey refuges in combination with herd behaviour mechanisms in both prey 
and predator populations. 
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