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Abstract  The present study investigates the mathematical model of free convection boundary 
layer flow from a vertical truncated cone immersed in Cu/water nanofluid and Al2O3-Cu/water 
hybrid nanofluid. The governing non-linear equations are first transformed to a more convenient 
set of partial differential equations before being solved numerically using the Keller-box method. 
The numerical values for the reduced Nusselt number and the reduced skin friction coefficient are 
obtained and illustrated graphically as well as temperature profiles and velocity profiles. Effects of 
the alumina Al2O3 and copper Cu nanoparticle volume fraction for hybrid nanofluid are analyzed 
and discussed. It is found that the high-density and highly thermal conductivity nanoparticles like 
copper contributed more in skin friction and convective heat transfer capabilities. The appropriate 
nanoparticles combination in hybrid nanofluid may reduce the friction between fluid and surface 
but yet still gave the heat transfer capabilities comparable to metal nanofluid. 
 

Keywords: Free convection, full-cone, hybrid nanofluid, truncated cone. 
 

 
 

Introduction 
 
Recent engineering applications saw the thirst use of nanofluid as a heat transfer medium for example 
as radiator coolant, tyre production, brake fluid, liquid submerged cooling as well as in electrical devices 
[1]. Nanofluid has better performance in thermal conductivity, viscosity, thermal diffusivity and convective 
heat transfer compared to based fluids like water and oil. A study has found that the 5% CuO/water 
nanofluid has a 60% of thermal conductivity higher compared to base fluid [2-4]. Highly performance 
demand for heat transfer capabilities has pushed the seek for better heat transfer medium along with 
nanofluid.   
 
Metal nanoparticles like copper Cu and silver Ag are known to have better performance in heat transfer 
compared to oxide nanoparticles, thanks to the metal nanoparticle’s higher thermal conductivity. 
Unfortunately, the metal nanomaterial is expensive, dense and not economical in mass production as 
well as contributed to high fluid-surface friction. The hybrid nanofluid is introduced to blend the gap 
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between the price and the performance of the nanofluid [5].  
 
Considering the convective flow on a circular cone, these applications are found in many industrial and 
engineering devices such as the solder tip, the conical heater as well as the secondary pulley in 
continuous variable transmission (CVT) in a modern car. The continuous changing in gear ratio in CVT 
needs low friction and efficiency in heat transfer between the V-belt and the pulley. This required an 
excellent lubricant specifically blended from the nanofluid with low dense particle but high thermal 
conductivity.  
 
Many investigations regarding the heat transfer towards cone have been done in the past decade, 
pioneered by  Na and Chiou [6-7] who consider the laminar natural convection over a slender horizontal 
and vertical frustum of a cone. The numerical values for surface temperature for various Prandtl number 
from a truncated cone to full-cone is analyzed. It is concluded that the surface temperature decreases 
as the Prandtl number increases. Kumari et al. [8] then consider the mixed convection boundary layer 
flow. Pop and Na [9] then enriched this study with wavy cone. The analysis on circular cone then have 
been extended with magnetic effect, radiation effects, pressure work effect, suction/blowing effect [10-
12] as well as investigation embedded in nanofluid by Ahmed and Mahdy [13], Chamkha et al. [14], 
Pătrulescu et al. [15] and Mahdy [16].  
 
Recent studies on fluid flow included the works by Khan et al. [17-18] and Ellahi et al. [19] who 
investigated the nanofluid containing gyrotactic microorganisms and micropolar nanofluid, respectively 
while Rao et al. [20] observed the natural convection of carbon nanotubes–water nanofluid flow inside a 
vertical truncated wavy cone. 
 
Motivated by the above literature, the present study investigates numerically the free convection 
boundary layer flow and heat transfer from a vertical truncated cone in a hybrid nanofluid. The approach 
from a numerical analysis is are considers cheap, fast and provided the theoretical knowledge for the 
hybrid nanofluid, therefore proposing an early idea about the fluid flow and heat transfer characteristics. 
The study of free convection of hybrid nanofluid on a vertical truncated cone so far is never been done 
before, so the reported results in this study are new. 
 

 
 

Figure 1. Physical model of the coordinate system. 
 
 
Mathematical Formulations 
 
Consider a steady, two-dimensional free convection flow and heat transfer of a hybrid nanofluid about 
an impermeable truncated cone, as shown in Figure 1, where x and y are the Cartesian coordinate with 
the 𝑥- axis measured along the surface of the cone from the origin, and y- axis is the coordinate normal 
to the surface of the cone and is the radius of the truncated cone. The origin of the coordinate system 
is placed at the vertex of the full cone, where  and the constant surface temperature is  
while the temperature of the ambient fluid is  It is assumed that the boundary layer develops at the 
leading edge of the truncated cone  By employing the usual boundary layer approximations, the 
governing equations of the hybrid nanofluid for the continuity, momentum and energy are written as 
[5,13]: 
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                                   (2) 

                                              (3) 

 
subject to the boundary conditions  
 

 at  

 as                                           (4) 
 
where   and  are the velocity components of the hybrid nanofluid along 𝑥- and  𝑦- axes, represents 
the hybrid nanofluid temperature in the boundary layer,  is the gravitation acceleration, is the half 

angle of the full cone,  and  represent the kinematic viscosity, dynamic 

viscosity, density, heat capacity, thermal expansion and thermal conductivity of the hybrid nanofluid, 
which are given in equation (5) as in Devi and Devi [5]. Further, and  represent the volume fractions 
of Al2O3 and Cu nanoparticles, respectively where  indicate the regular fluid. Other 
properties related to base fluid and the nanoparticles are denoted with subscript  and  
 

 
 

 
In this study, initially 0.06 vol. solid nanoparticle of  is added into water based-fluid to form  
Cu/water nanofluid. Next,  0.1 vol. solid nanoparticle of is added into Cu/water nanofluid 
to form the Al2O3-Cu/water hybrid nanofluid namely. The governing equation and boundary conditions 
are in dimensional form, thus need to non-dimensionalised before being solved. It is introduced the non-
dimensional variable  and  and temperature  are defined as [6-7]: 

 

                       (5) 

 

with  is a Grashof number while taken as a stream function which satisfies 

equation (1) such that and thus 

 

                (6) 

     
where  denotes the differentiation with respect to  Employing the variables (5), equations (2) and 
(3) are transformed to the following partial differential equations differential equations: 
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                 (7) 

                     (8) 

 

where is a Prandtl number. The hybrid nanofluid expressions are detailed as follows: 

 

 
 

The boundary conditions become:  

 
as         (9) 

Noticed that if  (truncated cone), equations (7) and (8) reduce to the following ordinary (similarity) 
differential equations 
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while for  (full cone), we have 
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Both the system of equations (10,11) and (12,13) are subjected to the boundary conditions 
 

 
as                                    (14) 

 
The physical quantities of interest are the skin friction coefficient  and the local Nusselt number  
which given by 

             (15) 

The surface shear stress  and the surface heat flux  are given by  

( )23 1 ,
4 1 2

hnf hnf

f hnf f

f ff ff f f f
rbn x q x

n x r b x x
¢æ ö é ù¶ ¶¢¢¢ ¢¢ ¢ ¢ ¢¢+ + - + = -ç ÷ ê ú+ ¶ ¶è ø ë û

1 3 ,
/ Pr 4 1
/

( ) ( )
hnf f

p phnf f

ff
k k

f
C C

x qx
x x x

q q q
r r

æ ö é ù¶ ¶¢+ -ç ÷ ê ú+ ¶ ¶è ø ë û
¢¢ ¢ ¢+ =

( )
Pr

f p f

f

C

k

n r
=

( ) ( )

( ) ( ) ( )

2.5 2.5
1 2 2 1 1 1 2 2

2 1 1 21 2

2 1 1 1 2 2

2 1 1 1

1 ,
(1 ) (1 ) 1 1 ( / ) ( / )

(1 ) (1 ) / /
,

(1 ) (1 )

( )
( ) (1 ) ( ) / (

/
(1 )

hnf

f s f s f

f f fhnf s s

hnf f f s s

hnf p f

f p hnf p s

hnf fk C
k C C

k k

n
n f f f f f r r f r r

rb f f r f rb b f rb b

r b f f r f r f r

r
r f f r rf

=
é ùé ù- - - + - + +ë ûë û

é ù- - + +ë û=
é ù- - + +ë û

=
- +-

( )
( ) ( ) ( ) ( ) ( )

2 1 1 1 2 2

2 1 1 21 2

2 2
,

)

(1 ) (1 )
.

(1 ) (1 ) / /

( ) / ( )p f

hnf p f s sf

p f p p p phnf s f s f

p ps fC

C

C C C C C

C C

r f f r f r f r

r f f r f r f r

f r ré ùë û

é ù- - + +ë û=
é ù- - + +ê úë û

+

1,(0, ) 0, (0, ) 0, (0, )ff
h

x x q x¶
¶

= = =

( , ) ( , )0, 0,f h x h x
h

q¶
¶

® ® .h ®¥

0x =

23 1 0,
4 2

hnf hnf

f f

f ff f
n b

q
n b

¢¢¢ ¢¢ ¢+ - + =

1 3 ,
/ Pr 4
/

0
( ) ( )

hnf f

p phnf f

k k
f

C C
q q

r r
¢¢ ¢+ =

x ® ¥

27 1 0,
4 2

hnf hnf

f f

f ff f
n b

q
n b

¢¢¢ ¢¢ ¢+ - + =

1 7
/ Pr 4
/

0.
( ) ( )

hnf f

p phnf f

k k
f

C C
q q

r r
¢¢ ¢+ =

(0) (0) 0, (0) 1,f f q¢= = =

( ) 0, ( ) 0,f h q h¢ ® ® .h ®¥

fC xNu

2

2 , .
( )

w w
f x

f r f w

xqC Nu
u k T T
t

r ¥

= =
-

wt wq



 

 
261 

Mohamed et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 18 (2022) 257-270 

 

                           (16) 

 
Using variables in equations (5) and (16) give   
 

  (17)

  
Numerical Method 
 
The partial differential equations (7) and (8) subject to boundary conditions (9) are solved numerically 
using the Keller-box method. The algorithm of the Keller-box method is coded into MATLAB software to 
numerically compute. Proposed by Keller [21], this method is an implicit finite difference method with 
Newton’s method for linearization, thus make it suitable for solving non-linear equations at any order. 
This method have been clearly described by Na [22], Cebeci and Cousteix [23] and recently by Mohamed 
[24].  
 
Finite Difference Scheme 
Keller-box method starts with reducing the equations (7) and (8) with boundary conditions (9) to a first-
order system. This is done by introducing the new dependent variables  and 

 so that . The equations (7) and (8) can be written as 
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Next, the net rectangle in the and plane are considered and the net points defined as  
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where  and .  Here  and j are the sequence of numbers that indicate the coordinate 
location, not tensor indices or exponents. The finite difference forms for any points are 
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The approximate of finite difference for equations (18) and (19) are written by considering the mid-point 

 
 by using the central differences. Hence, the following are obtained: 
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                                                    (24) 

                                                     (25) 

while the finite centered differential equation at can be denoted as 	and 
respectively then, the finite difference equations (18) – (19) become 
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Considering the boundary conditions (19), it can be written as  
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Newtons Method 
Newton’s method is used to solve these nonlinear equations (23)-(27). Hence, the following iterates are 
introduced  
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and  
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Recall the boundary conditions (29), which can be satisfied exactly with no iteration. Therefore, in order 
to maintain these correct values in all the iterates,  
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The Block Elimination Technique 
Usually, the three diagonal block structure consists of variable or constants, but 
here in Keller-box method is different because it consists of block matrices. The elements of the matrices 
are defined as follows: 
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To solve the equation (20), assuming that A is nonsingular matrices and it can be factorized as  
 

                                                                (26) 
where 

  and  

 is the identity matrix of order 5 and  and  are 5 5 matrices which elements are determined 
by the following equations: 

                                                                  (27) 

                                                             (28) 
 and                  

   
j = 2, 3, … , J                                         (29) 

       j = 2, 3, … , J-1.                                          (30) 
 
Equation (26) are substituted into equation (20), thus  
 

                                                            (31) 
Let  

                                                               (32) 
then equation (31) becomes   

                                                                (33) 
where 

 

 
and the  are the 5 ´ 1 column matrices. The elements can be solved from equation (33) by 

                                                               (34) 

                                         (35) 
          
The step in which  are calculated is usually referred as the forward sweep. Once the 

elements of W are found, equation (32) then gives the solution  in the so-called backward sweep, in 
which the elements are obtained by the following relations: 
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These calculations are repeated until some convergence criterion is satisfied and calculations are 
stopped when  

                                                                   (38) 

Results and Discussions 
 
The computation focused on the effects of a pertinent parameter which is the Prandtl number  and 
the nanoparticle volume fraction for alumina and copper  The calculation is obtained 
for the truncated cone extending to the end of the cone  Table 1 shows the values of 
thermophysical properties of water and nanoparticles considered. For comparison purposes, Table 2 
shows the comparison values of heat transfer coefficient for based fluid ( ) with previously 
published results. From Table 2, it is found that the results agreed and are in a good agreement, hence 
it is believed that the whole results present in this study are precise in computing numerically.  
 

 
Table 1. Thermophysical properties of water and nanoparticles.  

 
Physical Properties Water (f)   

(kg/m3) 997 3970 8933 
(J/kg·K) 4179 765 385 

k(W/m·K) 0.613 40 400 
(1/K) 2.1x10-4 0.85x10-5 1.67x10-5 

 
 

Table 2. Comparison values of  with previous published results for various values of  when  
 

 
 

 (truncated cone)  (full cone) 
Na and Chiou [6] Chamkha 

[11] 
Present Na and Chiou [6] Chamkha [11] Present 

0.01 0.05742 0.0574 0.0591 0.07493 0.0751 0.0767 
0.7 0.35320 - 0.3533 0.45101 - 0.4511 
1 0.40110 0.4015 0.4009 0.51039 0.5111 0.5104 
7 - - 0.7455 - - 0.9342 
10 0.82690 0.8274 0.8269 1.03397 1.0342 1.0341 
100 1.54930 1.5503 1.5496 1.92197 1.9230 1.9234 

 
 
Figures 2 and 3 show the variation of the reduced skin friction coefficient  and reduced Nusselt 
number  along the non-dimensional streamwise coordinate  for various values of  and 

 respectively. From Figure 2, it was found that values of the  is unique for a truncated cone 
. As  increases, the values of also increase. It is a sign that skin friction increases with 

the length of the cone. Next, the variation of  for Cu/water nanofluid is higher 
than water-based fluid . Adding 0.1 vol. of alumina nanoparticles into Ag/water 
nanofluid to form the Al2O3-Ag/water hybrid nanofluid provided more . It is 
noticed that Cu/water nanofluid provided higher values of compared to all 
fluids tested. This is realistic because the increase of nanoparticle in fluid increased the friction between 
fluid and surface. Further, Cu has a higher density compared to Al2O3 thus contributing to high friction. 
Practically, the hybrid nanofluid tested shows that the skin friction can be reduced by selecting the 
appropriate combination of metal and oxide nanoparticles.    
 
Figure 3 shows almost similar trends to Figure 2. It is noticed that the is increasing along . 
The Cu/water nanofluid score highest values in  followed closely by the 
Al2O3-Cu/water hybrid nanofluid compared to water-based fluid and Cu/water 
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nanofluid. It is clearly shown that the hybrid nanofluid which consists of a 
combination of metal and low-cost oxide nanoparticles generate comparable heat transfer capabilities 
with metal nanofluid. 
 

 
Figure 2: Variation of against  for various values of  when  

 
 

 
Figure 3: Variation of against  for various values of  when   

 
 

The temperature profiles  and velocity profiles of a truncated cone  for various values 
of  and  are illustrated in Figures 4 and 5, respectively. In Figure 4, it is shown the increase of 
nanoparticles has increased the thermal boundary layer thickness. The increase of nanoparticles 
enhanced thermal conductivity in fluid thus raising the thermal diffusivity and increasing the thermal 
boundary layer thickness. From Figure 5, the increase of nanoparticles enhanced the velocity while 
reducing the velocity boundary layer thicknesses. The increase in nanoparticles raised the fluid 
momentum which translates to the increase in fluid velocity. This is not surprising for the nanofluid with 
denser nanoparticles like copper Cu in Cu/water  nanofluid. The higher density 
nanofluid or hybrid nanofluid highly decelerates compared to a less dense water-based fluid, thus leading 
to a reduction in velocity boundary layer thickness. 
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Figure 4: Temperature profiles  against  for various values of  when   

 
 
Lastly, Figures 6 and 7 illustrate the temperature profiles  and velocity profiles for various 
values of respectively. Both figures gave information that the thermal and velocity boundary layer 
thicknesses for the truncated cone  is greater than the full cone  Further, it is observed 
that the increase of  results in the increase in both thermal and velocity boundary layer thicknesses. 
This situation led to the increase of temperature gradient and velocity gradient, respectively thus 
supporting the increase in  and found in Figures 2 and 3.  
 

 

 
Figure 5: Velocity profiles  against  for various values of  when   
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Figure 6: Temperature profiles  against for various values of   when   

 
 

 
Figure 7: Velocity profiles  against   for various values of  when  

 
 
Conclusions 
 
The present paper solved numerically the mathematical model of free convection boundary layer flow 
from a vertical truncated cone embedded in a hybrid nanofluid. The effects of Prandtl number  alumina 
Al2O3 and copper Cu nanoparticles volume fraction for hybrid nanofluid are analyzed and 
discussed. 
 
In summary, the increase in streamwise function enhanced both skin friction coefficient and the Nusselt 
number while the fluid velocity and a thermal boundary layer thickness decreased. This situation clearly 
indicates that the truncated cone has a lower skin friction coefficient and the Nusselt number compared 
to a full cone.  
 
Further, it is observed that the increase of nanoparticle volume fraction in the fluid has increased the skin 
friction coefficient, the Nusselt number, the thermal boundary layer thickness and the fluid velocity. The 
high-density and highly thermal conductivity nanoparticles like copper contributed more to skin friction 
and convective heat transfer capabilities. In summary, it is suggested that the appropriate nanoparticles 
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combination in hybrid nanofluid may reduce the friction between fluid and surface but yet still gave the 
heat transfer capabilities comparable to metal nanofluid.  
 
Conflicts of Interest 
 
The author(s) declare(s) that there is no conflict of interest regarding the publication of this paper. 
 

Acknowledgment 
 
Authors are grateful to acknowledge the IIUM-UMP-UiTM Sustainable Research Collaboration Grant 
2020 (SRCG) for providing the financial support under grant No. IIUM/504/G/14/3/1/1/SRCG20-0004 
(University reference RDU200712). 

 

References 
 

[1] Wong, K. V. and De Leon, O. (2010). Applications of Nanofluids: Current and Future Advances in Mechanical 
Engineering, 2010 1-11. 

[2] Eastman, J., Choi, U., Li, S., Thompson, L. and Lee, S. 1997. Enhanced thermal conductivity through the 
development of nanofluids. Materials Research Society proceedings, Pittsburgh. Cambridge Univ Press. 

[3] Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A. (2001). Anomalously thermal 
conductivity enhancement in nanotube suspensions Applied Physics Letters, 79 2252-2254. 

[4] Kakaç, S. and Pramuanjaroenkij, A. (2009). Review of convective heat transfer enhancement with nanofluids 
International Journal of Heat and Mass Transfer, 52(13–14), 3187-3196. 

[5] Devi, S. S. U. and Devi, S. P. A. (2017). Heat transfer enhancement of Cu - Al2O3/water hybrid nanofluid flow 
over a stretching sheet Journal of the Nigerian Mathematical Society, 36(2), 419-433. 

[6] Na, T.-Y. and Chiou, J. (1979). Laminar natural convection over a frustum of a cone Applied Scientific 
Research, 35(5-6), 409-421. 

[7] Na, T. and Chiou, J. (1979). Laminar natural convection over a slender vertical frustum of a cone Wärme-und 
Stoffübertragung, 12(2), 83-87. 

[8] Kumari, M., Pop, I. and Nath, G. (1989). Mixed convection along a vertical cone International Communications 
in Heat and Mass Transfer, 16(2), 247-255. 

[9] Pop, I. and Na (1999). Natural convection over a vertical wavy frustum of a cone International Journal of Non-
Linear Mechanics, 34 925-934. 

[10] Yih, K. (1999). Effect of radiation on natural convection about a truncated cone International Journal of Heat 
and Mass Transfer, 42(23), 4299-4305. 

[11] Chamkha, A. J. (2001). Coupled heat and mass transfer by natural convection about a truncated cone in the 
presence of magnetic field and radiation effects Numerical Heat Transfer: Part A: Applications, 39(5), 511-530. 

[12] Alim, M., Alam, M. M. and Chowdhury, M. M. (2006). Pressure work effect on natural convection flow from a 
vertical circular cone with suction and non-uniform surface temperature Journal of Mechanical Engineering, 
36 6-11. 

[13] Ahmed, S. E. and Mahdy, A. (2012). Natural convection flow and heat transfer enhancement of a nanofluid 
past a truncated cone with magnetic field effect World Journal of Mechanics, 2(05), 272-279. 

[14] Chamkha, A., Abbasbandy, S., Rashad, A. M. and Vajravelu, K. (2013). Radiation effects on mixed convection 
about a cone embedded in a porous medium filled with a nanofluid Meccanica, 48(2), 275-285. 

[15] Pătrulescu, F., Groşan, T. and Pop, I. (2014). Mixed convection boundary layer flow from a vertical truncated 
cone in a nanofluid International Journal of Numerical Methods for Heat & Fluid Flow, 24 1175-1190. 

[16] Mahdy, A. (2016). Natural convection boundary layer flow due to gyrotactic microorganisms about a vertical 
cone in porous media saturated by a nanofluid Journal of the Brazilian Society of Mechanical Sciences and 
Engineering, 38(1), 67-76. 

[17] Khan, W. A., Rashad, A., Abdou, M. and Tlili, I. (2019). Natural bioconvection flow of a nanofluid containing 
gyrotactic microorganisms about a truncated cone European Journal of Mechanics-B/Fluids, 75 133-142. 

[18] Khan, W. A., Rashad, A., EL-Kabeir, S. and EL-Hakiem, A. (2020). Framing the MHD Micropolar-Nanofluid 
Flow in Natural Convection Heat Transfer over a Radiative Truncated Cone Processes, 8(4), 379. 

[19] Ellahi, R., Zeeshan, A., Waheed, A., Shehzad, N. and Sait, S. M. (2021). Natural convection nanofluid flow 
with heat transfer analysis of carbon nanotubes–water nanofluid inside a vertical truncated wavy cone 
Mathematical Methods in the Applied Sciences, 202 11-19. 

[20] Rao, M. V. S., Gangadhar, K., Chamkha, A. J. and Surekha, P. (2021). Bioconvection in a Convectional 
Nanofluid Flow Containing Gyrotactic Microorganisms over an Isothermal Vertical Cone Embedded in a Porous 
Surface with Chemical Reactive Species Arabian Journal for Science and Engineering, 46(3), 2493-2503. 

[21] Keller, H. B. (1970). A New Difference Scheme for Parabolic Problems. Dalam: Bramble, Numerical Solutions 
of Partial Differential Equations. New York: Academic Press 1970. 

[22] Na, T. Y. (1979). Computational methods in engineering boundary value problems. New York: Academic Press 
1979. 

[23] Cebeci, T. and Cousteix, J. (2005). Modeling and computation of boundary layer flows. Springer 2005. 
[24] Mohamed, M. K. A. (2018). Keller-box method: Partial differential equations in boundary layer flow of nanofluid. 

Pekan: DRB-HICOM University Publisher 2018. 
 


