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Abstract It is now evident that high leverage points (HLPs) can induce the multicollinearity 
pattern of a data in fixed effect panel data model. Those observations that are responsible for this 
phenomenon are called high leverage collinearity-enhancing observations (HLCEO). The 
commonly used within group ordinary least squares (WOLS) estimator for estimating the 
parameters of fixed effect panel data model is easily affected by HLCEOs. In their presence, the 
WOLS estimates may produce large variances and this would lead to erroneous interpretation. 
Therefore, it is imperative to detect the multicollinearity which is caused by HLCEOs. The classical 
Variance Inflation Factor (CVIF) is the commonly used diagnostic method for detecting 
multicollinearity in panel data. However, it is not correctly diagnosed multicollinearity in the 
presence of HLCEOs. Hence, in this paper three new robust diagnostic methods of diagnosing 
multicollinearity in panel data are proposed, namely the RVIF (WGM-FIMGT), RVIF (WGM-
DRGP) and RVIF (WMM) and compared their performances with the CVIF. The numerical 
evidences show that the CVIF incorrectly diagnosed multicollinearity but our proposed methods 
correctly diagnosed no multicollinearity in the presence of HLCEOs where RVIF (WGM-FIMGT) 
being the best method as it has the least computational running time. 
Keywords: High Leverage Points, Generalized-M estimator, High Leverage Collinearity Enhancing 
Observations, Multicollinearity, Within Group Least Squares Estimator. 
 

 
1. Introduction 

 
Multicollinearity describes a near-linear dependency of two or more predictor variables. In the 
presence of multicollinearity, the commonly used ordinary least squares (OLS) method may 
have wrong sign problem and produces estimates with large variances and this would lead to 
inaccurate prediction. Multicollinearity occurs as a result of data collection method employed, 
constraints on the model, model specification and overdetermined model. 
 
It is now evident that high leverage points which are outliers in the X-space may be another 
source of multicollinearity (Kamruzzaman and Imon,2002; Bagheri and Midi ,2011; Bagheri et 
al. ,2012; Midi et al. ,2011). This recent source of multicollinearity was considered as a new 
case of collinearity-influential observations. According to Bagheri et al.(2012) , high leverage 
collinearity-influential observations (HCIO) are those observations that can changed the 
pattern of multicollinearity in a data set (Midi et al., 2018; Bagheri et al., 2011; Habshah et al., 
2009; Hadi, 2011; Sengupta and Behimasankaram, 1997 ). HCIO can be classified into high 
leverage collinearity-enhancing (HLCEO) and high leverage collinearity-reducing (HLCRO) 
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observations. Those high leverage points that induce or reduce multicollinearity in a data set 
is called HLCEO and HLCRO, respectively. HLCEO refers to HLPs which caused 
multicollinearity in their presence. The OLS estimates will be much affected by their presence. 
Hence it is crucial to detect multicollinearity which is caused by HLPs. Classical Variance 
Inflation Factor (CVIF) is the commonly used diagnostic method to diagnose multicollinearity 
in multiple linear regression model. However, Bagheri and Midi (2011) highlighted that CVIF 
is not very successful in detecting multicollinearity in the presence of HLPs. They introduced 
robust VIFs which are based on MM and Diagnostic Robust Generalized Potential (DRGP) of 
Habshah et. al. (2009) and showed that both methods are successful in diagnosing 
multicollinearity in multiple linear regression model.  
 
Unfortunately, to the best of our knowledge, we have not encountered any article in the 
literature that discusses diagnostic methods for diagnosing multicollinearity in fixed effect 
panel data model. Panel data is a multi-dimensional data in which many individuals are 
measure over time. It contains multiple observations over multiple time periods for the same 
firms or individuals. Since panel data model also involves more than one independent 
variables, it is very likely that these variables are correlated with each other resulting to a 
multicollinearity problem. Moreover, HLCEO may also cause multicollinearity in panel data 
model.   Like linear model, as anticipated the presence of multicollinearity in panel data set 
will affect the efficiency of the parameter estimation. Therefore, it is very crucial to detect 
multicollinearity in panel data, specifically in the presence of HLCEO so that suitable actions 
can be taken to remedy such problems. This paper is organized as follows; the classical within 
group estimator based on the ordinary least squares method for fixed effect panel data model 
is presented in Section 2. The Robust Within Group Estimator based on GM-FIMGT for Fixed 
Effect Panel Data Model is presented in Section 3. The new proposed robust VIF in panel data 
model is presented in Section 4. Simulation study and numerical examples are discussed in 
Section 5 and 6, respectively. Finally, the concluding remark is given in Section 7.  

 

2. Classical within group estimator based on the ordinary 
least squares method for fixed effect panel data model. 

 
Consider the fixed effect panel data model (see Bramati and Croux, 2007) ; 

          𝑦"# = 𝛼" + 𝑥"#( 𝛽 + 𝜀"#		,																																																																																																																																									(1)   

for 𝑖 = 1,2, . . . , 𝑛 individual units observed at time t = 1,2,…T .  is the response variable,  are the 

unobservable time-invariant individual effects and considered to be fixed, 𝛽 is 𝑘 × 1 vector of 

regression parameter and  is k x 1 column vector of  k-explanatory variables.  The 𝜀"# denotes  the 

error terms which are assumed to be uncorrelated across time and individual units.  Within each time 
series, panel data needs to be firstly transformed before any statistical method is applied to the 
transformed data. The commonly used method to transform the data is by using mean centering (see 
Baltagi, 2008)  as follows: 
 
           
                         𝑦6"# = 𝑦"# −

8
9
∑ 𝑦"#9
#;8 	

                        𝑥6"#
(<) = 𝑥"#

(<) − 8
9
∑ 𝑥"#

(<)9
#;8                                                                                                   (2) 

 
Greene (2007) highlighted that by performing this centering operation will eliminate any unobserved  
time-invariant individual fixed effects 𝛼" and Equation (1) becomes  
 
                              𝑦6"# = 𝛽(𝑥6"# + 𝜀"#																																																																						                                                                 (3) 

  
The classical Within Group estimator 𝛽=>? , denoted as WOLS is obtained when regressing 𝑦6"# on 𝑥6"# by 
Ordinary Least Squares (OLS) method.  
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3. Robust within group estimator based on GM-FIMGT for 
fixed effect panel data model. 

 
Since the WOLS easily affected by outliers, Bramati and Croux (2007) introduced Robust Within Group 
GM estimator based on GM6 (WGM-GM6) estimator using median centering. According to Bakar and 
Midi [2015a,2015b], using median centering produces nonlinearity to the resulting data and make the 
equivariance properties of the robust estimator redundant. Moreover, Bagheri and Midi (2015a) 
highlighted the weakness of GM6 is that it suffers from swamping effect. Furthermore, Ismaeel and Midi 
(2018) noted that GM6 has long computational running times due to using Robust Mahalanobis distance 
(RMD) which is based on minimum volume ellipsoid (MVE). Ismaeel and Midi (2018) pointed out that the 
efficiency of the GM6 estimates tend to decrease as the number of good leverage points increases. 
Hence, they developed a fast GM estimator which is based on Index Set Equality (ISE) which is much 
faster than MVE as noted by Lim and Midi (2016).  We refer to this newly developed GM estimator as 
GM-FIMGT. The Within group GM-FIMGT estimator denoted as WGM-FIMGT is then developed by 
applying the GM-FIMGT to the transformed data whereby transformation of data within each time series 
is done by using MM-centering which is more robust than the median centering. The main attraction of 
WGM-FIMGT is that it only down weight vertical outliers and bad leverage points unlike the GM6 
estimator where it down weights all detected high leverage points irrespective of whether they are good 
or bad leverage points.  As noted by Rousseeuw and Van Zomeren (1990), good leverage points may 
contribute to the efficiency of parameter estimates and should not be down weighted. This is the main 
weakness of the WGM-GM6 estimator. 
 
The GM estimator is defined as the solution of normal equations (see Maronna et al., 2006, 
Krasker and Welsch, 1982) which is given by: 
 

                ∑ 𝜋"A
";8 𝜓(CDEFD

GHI

JKLD
)𝑥" = 0                                                                                                          (4) 

where 𝜓 = 𝜌( is a derivative of redescending function (weight function) and 𝜋", 𝑖 = 1,2,… , 𝑛 is the ith initial 
weight element of the diagonal matrix W, 𝜎Q is the scale estimate, and  𝛽=  is the vector of parameters 
estimates. The main aim of GM estimator is to down weight high leverage points which have large 
residuals.  
It is important to highlight that most GM estimators depend on the high leverage points diagnostic 
methods of detection of HLPs. The GM6 utilizes the Robust Mahalanobis Distance (RMD) based on 
Minimum Volume Ellipsoid (MVE) or Minimum Covariance Determinant (MCD) for the identification of 
high leverage points.   
The 𝑖#R vector of explanatory variables can be written as: 

𝑥"( = (1, 𝑥8, 𝑥S, … , 𝑥T) = (1, 𝑡"), 

where 𝑡" is a 𝑝 −dimensional row vector. We calculate the mean vector  𝑡̅ = 1 𝑛X ∑ 𝑡"A
";8 	and the 

variance- covariance matrix  

  𝐶 = Z 8
AE8

[∑ (𝑡"A
";8 − 𝑡̅	) ′(𝑡" − 𝑡̅).   

Then,  Mahalanobis distance (MD) for each point is defined as  follows:  
 

𝑀𝐷" = _(𝑡" − 𝑇(𝑋)′)𝐶(𝑋)E8	(𝑡" − 𝑇(𝑋)′)#            𝑖 = 1,2,… , 𝑛,                       (5)     
     
where 𝑇(𝑋) is the mean vector (	𝑡̅	)  and 𝐶(𝑋) is the variance covariance matrix (𝐶).  
Since the location and scatter estimates in (5) are not robust, Rousseeuw and Leroy (1987) proposed 
utilizing Robust Mahalanobis Distance (RMD) as a diagnostic tool for identifying HLPs by substituting the 
classical mean vector, 𝑇(𝑋)	and classical covariance matrix, 𝐶(𝑋) of 𝑀𝐷" in Equation [5] by robust 
estimators based on Minimum Volume Ellipsoid (MVE) or Minimum Covariance Determinant (MCD).   
The RMD (see Habshah et al., 2009;  Rousseeuw and Leroy, 1987) is then defined as follows:  
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                                𝑅𝑀𝐷" = _(𝑡" − 𝑇(𝑋)′)𝑉dE8(𝑡" − 𝑇(𝑋)′)#, 𝑖 = 1,2,… , 𝑛			     

where	Xfg	and	Vg		𝑎𝑟𝑒		robust locations and scatter estimates based on the MVE, respectively. 

The choice of initial weight  𝜋"  is very important. The initial weight of GM6 estimator (Coakley and 
Hettmansperger , 1993) is formulated based on RMD which is given by: 

 

                    𝜋" = min q1, r
s(t.uv,w)
x

dyzx
{| , 𝑖 = 1,2,… , 𝑛																																																																																																				(6) 

 
We have noted earlier, the main weakness of GM6 where it utilizes RMD based on MVE which has 
swamping effect, long computational running time and its’ efficiency decreases as the number of good 
leverage points increases. Hence, this initial weight is not very efficient in the presence of good leverage 
points.  
 
The shortcoming of GM6 estimator has inspired Ismaeel and Midi (2018) to propose a new GM estimator 
which is based on Fast Improvised Generalized Studentized Residual (FIMGT) which utilizes RMD based 
on Index Set Equality (ISE). We call this method fast because the ISE needs much less times for 
computing the mean and covariance matrix as shown by Lim and Midi (2016).  The FIMGT able to classify 
observations into four portions, namely clean observations, vertical outliers, good leverage points (GLPs) 
and bad leverage points (BLPs). The GM-FIMGT is then developed by formulating an initial weight, 𝜋" 
which guarantee only vertical outliers and bad leverage points be down weighted to increase the 
efficiency of the estimates.  
 

                          𝜋" = min ~1, Z���������y?9
[� , 𝑖 = 1,2,… , 𝑛																																																																																													(7) 

 
where the cut-off points for FIMGT denoted as CP����� is defined as follows; 
 

𝐶𝑃����� = Median(FIMGT�) + c	MAD(FIMGT�)																																																																														(8)  
         

where c is equals to 2 or 3. The median absolute deviation (MAD) is defined (see Ismaeel and Midi, 
2018;  Midi et al., 2021) as MAD(FIMGT�) = median{|FIMGT� 	− median(FIMGT�)|}/0.6745. The initial 
weight 𝜋" of the regular observation and GLPs are given weight equals 1 and the vertical outliers and 
bad leverage points are given weight equals  �������

��y?9
. Due to space limitation, the GM-FIGMT estimator 

(for detail, see Ismaeel and Midi ,2018)  is summarized as follows: 
 
Step 1: Use the S estimator (Rousseuw, 1984) as an initial estimator to achieve a high breakdown of 
50% with a 𝑛E8 S⁄  rate of convergence, and calculate the residuals (𝑟").  
Step 2: Based on the residuals in Step 1, compute the estimated scale of the residuals, denoted as s 
and it is defined 𝑎𝑠	𝑠 = (1.4826)(𝑡ℎ𝑒	𝑚𝑒𝑑𝑖𝑎𝑛	𝑜𝑓	𝑡ℎ𝑒	𝑙𝑎𝑟𝑔𝑒𝑠𝑡	(𝑛 − 𝑝)𝑜𝑓	𝑡ℎ𝑒	|𝑟"|), 1.4826 is used to achieve 
consistency at the normal distribution. 
Step 3: Using the estimated residuals (𝑟") and the estimated scale (𝑠), compute the standardized 
residuals (𝑒"), where, 𝑒" = 𝑟"/𝑠 
Step 4: Calculate the initial weight based on FIMGT, where 𝜋" = 𝑚𝑖𝑛	[1, �������

��y?9
].  

Step 5: Use the initial weight (step 4) and the standardized residuals (step 3) to achieve a bounded 
influence function for bad leverage points, 𝑡" = 𝑒"/𝜋" . 
Step 6: Use the weighted residuals (𝑡") in the first iteration of the weighted least squares (WLS) to 
estimate the parameters of the regression,	𝛽= = (𝑋®𝑊	𝑋)E8𝑋®𝑊	𝑌, where the weight 𝑤" is reduced for 
large residuals to get good efficiency (Tukey weight function is used in this paper). 
Step 7: Calculate the new residuals (𝑟") from WLS and repeat steps (2-6) until convergence.  
The robust Within Group estimator based on FIMGT (WGM-FIMGT) is then established by applying the 
GM-FIMGT to the transformed data based on MM-centering.   
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4. New proposed robust VIF in panel data model. 
 

Bagheri and Midi (2011) pointed out that the CVIF which is used to diagnose multicollinearity in multiple 
linear regression fails to correctly detect multicollinearity in the presence of HLPs. To remedy this 
problem, they introduced robust VIFs which are based on MM and Diagnostic Robust Generalized 
Potential (DRGP) of Habshah et al.(2009). However, we have not encountered any article in the literature 
that discusses robust diagnostic methods for diagnosing multicollinearity in fixed effect panel data model.  
Since within group estimator is established by employing statistical method such as OLS on the 
transformed model as in Equation 3 (which is equivalent to multiple linear regression model), we would 
like to extend the idea of formulating robust VIF for fixed effect panel data model by using similar manner 
as in  linear model.  
 
The CVIF is the most popular method to identify multicollinearity and it is given by 
 

                 𝑉𝐼𝐹 = 8
8Edµ

x , 𝑗 = 1,2, . . . , 𝑝																																																																																																																									(9) 

where 𝑅¸S is the coefficient of multiple determination when 𝑥¸ is regressed on other  𝑋(¹E8) variables in 
the model using Ordinary Least Squares (OLS) method. 
Following this idea, we formulate robust VIF based on our newly developed WGM-FIMGT estimator as 
follows:   
 
Step 1: Compute the location MM estimate for each dependent and independent variable of panel data. 
 
Step 2: Transform data by using MM-centering instead of mean-centering  (see Ismaeel and Midi, 2018) 
as: 
                    	𝑦6"# = 𝑦"# − 𝜇̂¼¼{𝑦"#}                                                                                                             (10)	
                     𝑥6"#

(´) = 𝑥"#
(´) − 𝜇̂¼¼{𝑥"#

(´)}                                                                  
     for 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑡 ≤ 𝑇  and 1 ≤ 𝑗 ≤ 𝑝, where𝑥(´) is the j-th explanatory variable. 
 
Step 3: Regress 𝑦6"# on 𝑥6"# using Fast Improvised Generalized Studentized Residuals based on Index 
Set Equality (FIMGT) and obtained the parameter estimates of the fixed effect panel data model. 
 
Step 4: Calculate 𝑅𝑅S(>GM-FIMGT), as follows. 

                 𝑅𝑅S(>GM-FIMGT) = 1 − ∑ ¾D¿D
x𝒏

𝒊Â𝟏
∑ ¾D(𝒚𝒊E𝒚̄)𝟐𝒏
𝒊Â𝟏

																																																																																																						(11)  

where w�and	r�	 are the robust weights and residuals obtain from WGM-FIMGT, respectively. The y	f is the 
weighted average of y, calculated as 

𝒚̄ =
∑ 𝑤"𝑦"𝒏
𝒊;𝟏
∑ 𝑤"𝒏
𝒊;𝟏

 

 
Step 5: The RVIF based on WGM-FIMGT is formulated as below: 
 
														𝑅𝑉𝐼𝐹 (𝑊𝐺𝑀 − 𝐹𝐼𝑀𝐺𝑇) = 8

8Eddµ
x(>?yE��y?9)

; 𝑗 = 1,2, . . . , 𝑝                                                      (12)

  
where 𝑅𝑅S(𝑊𝐺𝑀 − 𝐹𝐼𝑀𝐺𝑇) is the coefficient of multiple determination when 𝑥¸ is regressed on other  
X(ÌE8) variables in the model using WGM-FIMGT estimator. Using similar manner, the RVIF (WMM) and 
RVIF (WGM-DRGP) can also be formulated. This two RVIF measures can also be considered as  new 
robust diagnostic measure of multicollinearity in panel data model since they have not been formulated 
before.  

 

5. Monte Carlo simulation study 
 
In this section, a simulation study is done to evaluate the performance of our newly developed robust 
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multicollinearity diagnostic measures, RVIF(WGM-FIMGT), RVIF(WMM) and RVIF (WGM-DRGP) and 
to compare its performance with CVIF. Following the idea of Bakar and Midi (2015), the explanatory 
variables were generated as follows: 
 

          𝑦"# = 𝛼" + 𝑥"#( 𝛽 + 𝜀"#		,																																																																																																																								(13)  
  

where 𝜀 is the error term distributed as N(0,1) and the time-invariant variables were distributed as 
	α~U(0,1) while the explanatory variables are generated from a multivariate  standard normal distribution 
N(0,1). The vector of slope coefficient 𝛽 is set equal to a vector of ones. In this simulation study, we 
consider panel datasets of ( T=10 and 20) and (n=10,50,100) representing small, medium  and large 
samples respectively, the number of explanatory variables (p) is 3 and 4. Due to space constraints, 
results for p=4 is not included. However, the results are consistent with p=3. We consider this generated 
data set as good observations or clean non-correlated data set.  
 
Data is contaminated randomly over all observations (random contamination). The contaminations are 
done in x-direction at different level of contamination (α = 0.05, 0.10). Since contamination is done 
randomly in the x-direction, the resultant high leverage points may be good or bad leverage points. Also, 
the magnitude of contamination (MC) was chosen equals to 100 following the idea of Bagheri and Midi 
(2011). Since we want to focus on collinearity-enhancing observations, a non-correlated data was 
generated with different percentage of high leverage points.  To create outliers in the data, we randomly 
replaced 100(𝛼) percent of good observations of 𝑥8 and 𝑥S with values equal 100. The simulation was 
run 1000 times (𝑅 = 1000).  
 
Table 1 exhibits the VIF values for non-correlated data without HLPs. It is very interesting to observe that 
for non-correlated data, all VIFs values show no multicollinearity problems (VIF < 5.0).  While, it is seen 
in Tables (2-3) that the CVIF diagnose the problem of  multicollinearity  in the data in the presence of 
HLPs, but other VIFs methods do not show multicollinearity regardless of size of samples, and level of 
contamination. We refer to this situation as high leverage collinearity enhancing observations where the 
CVIF shows no multicollinearity and show otherwise in the absence and presence of HLPs in the data 
set, respectively.  
 
It is important to note that when multicollinearity is caused by HLPs (HLCEO), the commonly used 
methods such as ridge regression, latent root regression, jackknife ridge regression are not the possible 
options to remedy this problem. Bagheri and Midi (2012) suggested to use Robust Generalized-M (GM) 
estimator. However, this is not the focus of this paper. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 

 
642 

  Ismaeel et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 17 (2021) 636-646 

Table 1. VIF values for non-correlated data set (clean data) 
 

 
 

Table 2. VIF values for non-correlated data with HLPs (MC=100, α=5%) 
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1.0213 1.0211 1.0640 1.0268 
1.0216 1.0215 1.0631 1.0273 
1.0218 1.0215 1.0597 1.0265 

 
20 

1.0105 1.0107 1.0367 1.0134 
1.0108 1.0109 1.0350 1.0138 
1.0103 1.0105 1.0364 1.0129 
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10 

1.0044 1.0044 1.0168 1.0051 
1.0045 1.0043 1.0169 1.0053 
1.0046 1.0044 1.0168 1.0051 
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1.0021 1.0021 1.0101 1.0028 
1.0019 1.0020 1.0095 1.0026 
1.0019 1.0019 1.0092 1.0026 
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1.0023 1.002 1.0093 1.0026 
1.0022 1.002 1.0096 1.0024 
1.0022 1.0021 1.0092 1.0026 
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1.0009 1.0010 1.0049 1.0012 
1.0010 1.0010 1.0052 1.0013 
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283.68 1.0146 1.0621 1.0265 
283.65 1.0155 1.0639 1.0259 
1.0220 0.9643 1.0637 1.0200 

 
20 

269.26 1.0071 1.0381 1.0139 
269.26 1.0063 1.0368 1.0146 
1.0107 0.9660 1.0387 1.0136 

 
 
 

50 

 
10 

277.11 1.0019 1.0166 1.0052 
277.11 1.00266 1.0171 1.0051 
1.0041 0.9821 1.0153 1.0049 

 
20 

263.62 1.0006 1.0100 1.0026 
263.62 1.0009 1.0099 1.0027 
1.0019 0.9915 1.0095 1.0026 

 
 
 

100 

 
10 

55.1253 0.3129 0.5201 0.4881 
55.2341 0.3982 0.5001 0.4082 
0.25231 0.3012 0.4201 0.4001 

 
20 
 

52.27 0.1987 0.2001 0.1984 
52.27 0.1989 0.2001 0.1996 
0.1992 0.1985 0.2002 0.2011 
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Table 3. VIF values for non-correlated data with HLPs (MC=100, α=10%) 

 
 
 

 
 

6. Numerical examples 
 

In this section, an artificial data and one real data set are used to assess the performance of our proposed 
methods compared to CVIF measures. Let us first focus on the artificial data set. Non-correlated artificial 
panel data set with four predictor variables (p = 4) and sample size (n=10; and T=10) were generated 
following the same process as the simulation study. To change the pattern of correlation in the data, we 
modify the data by adding some high leverage points. The modification of data is done by replacing 
randomly 10% and 5% (the values in parentheses is for 5% HLPs) observations of clean data for the first 
and second predictor variables (x8	and	xS)by arbitrary large values (100).  
 
Figure 1(a) shows the boxplot of the modified data set which has some outliers, and Figure 1 (b) shows 
that x8 and xS are highly correlated (ρ8S = 0.98). The results of the classical and robust VIF methods are 
presented in Table 4. The results indicate that all the VIF methods correctly detect no multicollinearity 
problem in the original data set (no HLPs and no multicollinearity). For the modified data set, the CVIF 
indicates that there is multicollinearity problem in the data. However, robust VIFs diagnose that there is 
no multicollinearity. 
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Table 4. The VIF values for the classical and robust diagnostic methods for the original (non-correlated) and modified artificial 
data set n=10;t=10; MC=100 in panel data 
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Figure 1. The boxplot (a) and scatter plot (b) for modified correlated artificial data set after MM-centering 

 
An airline firms data taken from Greene(2007) is the first real example in this paper. The data represents 
the relationship between the response variable (cost) and three predictor variables (output, fuel price, 
and load factor) over 15 yearly observations (1970-1984). This data set has no outlier. To see the effect 
of outlier, the first good observation of the original data for x1 and x2 are replaced with a fixed value 
equals to 100.  According to Greene (2007), this model measured the output in “revenue passenger 
miles”. The load factor is defined as the average rate at which seat’s on the airline’s planes are filled. A 
straight forward equation can be formed as an illustration where the total cost of production is fitted into 
a multiple linear regression model: 
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The CVIF, RVIF(WMM) , RVIF(WGM(DRGP))  and RVIF(WGM -FIMGT) were then applied to the data. 
Table 5 exhibits the results for clean data (original) and contaminated data (modified). The results 
indicate that all the VIF methods detect no multicollinearity problem in original data set (no HLPs and no 
multicollinearity). For the modified data set, the CVIF indicates that there is multicollinearity problem in 
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the data. However, the three proposed robust VIFs diagnose that there is no multicollinearity. The results 
of the numerical examples are consistent with the results of the simulation study. 
 
 

Table 5. The VIF values for the classical and robust diagnostic methods for the airline data set. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusion 
 

The aim of this article is to formulate a reliable robust inflation factor (RVIF) to correctly diagnose 
multicollinearity in a panel data model in the presence of HLCEO. We have developed robust 
RVIF(WGM-FIMGT) in this regard based on our newly developed WGM-FIMGT estimator. We also 
extent the robust RVIF-MM and robust RVIF-DRGP of Bagheri and Midi (2011) in multiple linear 
regression to fixed effect panel data model.  In the absence of HLPs, all VIFs methods show no 
multicollinearity.  Nevertheless, all methods still show no multicollinearity in the presence of HLPs except 
the CVIF. This situation is referred to as HLCEO. In the presence of HLCEO, the CVIF wrongly diagnosed 
multicollinearity but all the RVIFs are very successful to show otherwise. In this situation, relying on CVIF, 
statistics practitioners will simply employ the commonly used methods such as latent root regression and 
ridge regression estimator to rectify this problem. This will produce inefficient estimates and will lead to 
misleading conclusions. The correct way to deal with this problem is by using robust Generalized-M 
estimator. Although, the performance of RVIF-MM, RVIF(WGM-DRGP) and RVIF(WGM-FIMGT) give 
similar conclusion, the main attraction of RVIF(WGM-FIMGT) is that its computation running times is 
much shorter than the other methods as shown by Lim and Midi (2016)  since it employs the ISE which 
is very fast algorithm to compute the robust location and covariance matrix  . 
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