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Abstract Let 𝑁"#$%% be the Horvitz-Thompson estimator for the population size with one-inflated 
positive Poisson distribution as the underlying distribution. We estimate the variance of this estimator 
using conditional expectation technique and provide some descriptions on the variance and its 
associated confidence interval based on simulation study and real data applications. 
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Introduction 
 
One-inflated positive Poisson distribution [1], denoted as OIPP, has been recently introduced to cater for 
positive count data with large number of ones. The probability mass function for a random variable 𝑌 
which follows the OIPP distribution is given as 

Pr(𝑌 = 𝑦|𝜔, 𝜆) =

⎩
⎪
⎨

⎪
⎧𝜔 + (1 − 𝜔)

𝜆
exp(𝜆) − 1 ; 𝑦 = 1		

(1 − 𝜔)
𝜆=

𝑦! [exp(𝜆) − 1] ; 𝑦 ≥ 2,
 

where 0 < 𝜔 < 1 and 𝜆 > 0. Parameter 𝜔 refers to the one-inflation parameter whereas parameter 𝜆 
refers to the rate parameter. 

Godwin and Böhning [1] justify the use of the OIPP distribution because in a capture-recapture setting, 
if subjects gain sufficient information from the initial capture that gives them the desire and capability to 
avoid being recaptured, the resulting capture-recapture data will have excess of ones. The author 
proceeds to develop an estimator for the population size which is in the form of Horvitz-Thompson 
estimator [2], by considering the OIPP distribution as the underlying distribution of the population. 

In a capture-recapture framework, population size, 𝑁 can be written as the sum of observed members, 
𝑛 and unobserved members, 𝑛G of the population. The unobserved members, 𝑛G of the population can 
also be written as 𝑁𝑝G, which is the product of the population size and the proportion of unobserved 
members, 𝑝G. The population size, 𝑁 can be estimated using 𝑁" = 𝑛 (1 − 𝑝G)⁄  with variance 𝑉𝑎𝑟M𝑁"N =
𝑁𝑝G(1 − 𝑝G) (1 − 𝑝G)O⁄  [3]. However, since 𝐸(𝑛) = 𝑁(1 − 𝑝G), the variance can be estimated using 
𝑉𝑎𝑟Q M𝑁"N = 𝑛𝑝G (1 − 𝑝G)O⁄  [3]. Böhning [3] highlighted that 𝑝G are often not available and must be estimated 
from modelling, which further adds to the variation in the estimation of the population size. Hence, using 
𝑉𝑎𝑟Q M𝑁"N given above is insufficient. 

Therefore, when dealing with unknown 𝑝G, the unknown 𝑝G needs to be estimated first in order to estimate 
𝑁. When considering the OIPP distribution as the distribution of the population, the unknown 𝑝G can be 
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estimated using Poisson distribution with parameter 𝜆R, which is estimated from fitting the OIPP 
distribution to the data using maximum likelihood estimation, resulting in �̂�G = expM−𝜆RN. Assuming that 
the population follows the OIPP distribution, the population size estimator can be written as 𝑁"#$%% =
𝑛 T1 − expM−𝜆RNU⁄  [1]. The 𝜆R is the maximum likelihood estimator for the parameter 𝜆 of the OIPP 
distribution, which can be obtained by solving [4] 

M𝜆R − 𝐴N expM𝜆RN + (𝐴 − 1)𝜆R + 𝐴 = 0,																																																																									(1) 

where 𝐴 = (𝑛𝑚X − 𝑛X) (𝑛 − 𝑛X)⁄ ,  𝑛 = ∑ 𝑛Z[
Z\X , 𝑛Z is the frequency of 𝑥-valued data, 𝑚X is the sample 

mean. Tajuddin et al. [4] has found out that the 𝜆R is asymptotically unbiased, consistent and efficient 
compared to other estimators obtained from the ordinary least square approach, the method of moment 
and the ratio of probability. Similarly, the maximum likelihood estimator of 𝜔 can be written as [4] 

�̂� =
𝑛XTexpM𝜆RN − 1U − 𝑛𝜆R

𝑛TexpM𝜆RN − 1 − 𝜆RU
. 

Note that, if the population size follows a zero-truncated Poisson distribution, the same population size 
estimator can be used, however the 𝜆R will be the maximum likelihood estimator of 𝜆 using the zero-
truncated Poisson distribution, which can be obtained by solving [5] 

𝜆RTexpM𝜆RN − �̅�U + �̅� = 0, 

where �̅� is the sample mean. 

1. Estimation on the variance of Horvitz-Thompson estimator under the OIPP distribution  

A simple and general formula in obtaining the variance of the population size estimator has been 
proposed by Böhning [3], which makes use of the idea that the nonzero counts, 𝑛 and the parameter of 
the distribution, 𝜆R are two random variables, where 𝑛 follows a binomial distribution with parameter 𝑁 
and 𝑔(𝜆), and 𝑔(𝜆) = 1 − 𝑓(0|𝜆). This idea has been applied for different population size estimator [6-9]. 
Generally, the variance can be written as 

𝑉𝑎𝑟M𝑁"N = 𝑉𝑎𝑟c",d e
𝑛

𝑔M𝜆RN
f = 𝑉𝑎𝑟d g𝐸c"|d e

𝑛
𝑔M𝜆RN

fh + 𝐸d g𝑉𝑎𝑟c"|d e
𝑛

𝑔M𝜆RN
fh.																																									(2) 

From equation (2), it is clear that the variation in the estimated population size come from two sources 
[3]. The first term emerges as the binomial random variation involved in sampling the 𝑛 data from the 
population with probability 𝑔(𝜆) and size 𝑁. The second term arises as the variation in estimating 𝜆 based 
on 𝑛 data. Consider the first term on the RHS of equation (2) and by using delta method, 

𝐸c"|d e
𝑛

𝑔M𝜆RN
f ≈

𝑛
𝑔(𝜆). 

The 𝛿-method is used by approximating the expected value of the transformed variable with the 
transformation of the expected value [10]. Since 𝑛	~	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙M𝑁, 𝑔(𝜆)N, we obtain 

𝑉𝑎𝑟d g𝐸c"|d e
𝑛

𝑔M𝜆RN
fh ≈ 𝑉𝑎𝑟d p

𝑛
𝑔(𝜆)q =

𝑁𝑔(𝜆)[1 − 𝑔(𝜆)]
𝑔(𝜆)O . 

This term can be estimated by substituting 𝜆 with 𝜆R and 𝑁𝑔(𝜆) with 𝑛, resulting in 

𝑉𝑎𝑟Q d g𝐸c"|d e
𝑛

𝑔M𝜆RN
fh =

𝑛T1 − 𝑔M𝜆RNU

𝑔M𝜆RN
O . 

Note that for Poisson distribution, 𝑔(𝜆) = 1 − 𝑓(0|𝜆) = 1 − exp(−𝜆). Let  

𝐻(𝜆) =
1 − 𝑔(𝜆)
𝑔(𝜆)O =

𝑔′(𝜆)
𝑔(𝜆)O =

exp(−𝜆)
[1 − exp(−𝜆)]O. 

We obtain, 
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𝑉𝑎𝑟Q d g𝐸c"|d e
𝑛

𝑔M𝜆RN
fh = 𝑛𝐻M𝜆RN.																																																																																(3) 

Consider the second term in equation (2) and assume that 

𝐸d g𝑉𝑎𝑟c"|d e
𝑛

𝑔M𝜆RN
fh ≈ 𝑉𝑎𝑟c"|d e

𝑛
𝑔M𝜆RN

f. 

Note that by using delta method, 

𝑉𝑎𝑟c"|d e
𝑛

𝑔M𝜆RN
f = 𝑛O𝑉𝑎𝑟c"|d e

1
𝑔M𝜆RN

f ≈ 𝑛O e
𝑔u(𝜆)
𝑔(𝜆)Of

O

𝑉𝑎𝑟c"|dM𝜆RN = [𝑛𝐻(𝜆)]O𝑉𝑎𝑟c"|dM𝜆RN, 

where 𝑉𝑎𝑟c"|dM𝜆RN = 𝜆/𝑛 is the variance of the maximum likelihood estimator for the parameter 𝜆 of 
Poisson distribution. With substitution and some algebraic manipulation, the second term in equation (3) 
can be written as 

𝐸d g𝑉𝑎𝑟c"|d e
𝑛

𝑔M𝜆RN
fh ≈ 𝑛𝜆[𝐻(𝜆)]O, 

and by substituting 𝜆 with 𝜆R, the expected value of this term can be estimated as 

𝐸wd g𝑉𝑎𝑟c"|d e
𝑛

𝑔M𝜆RN
fh = 𝑛𝜆RT𝐻M𝜆RNU

O.																																																																												(4) 

Therefore, the estimated variance of the population size estimator after some simplification and by 
combining equations (3) and (4), can be written as 

𝑉𝑎𝑟Q M𝑁"#$%%N = 𝑛𝐻M𝜆RNT1 + 𝜆R𝐻M𝜆RNU.																																																																											(5) 

Under symmetric normal distribution assumption, the confidence interval for 𝑁"#$%% can be approximated 
using 

𝑁"#$%% ± 𝑧G.GO|𝑆𝐸M𝑁"#$%%N,																																																																																			(6) 

where 𝑧G.GO| = 1.96 and 𝑆𝐸M𝑁"#$%%N = �𝑉𝑎�𝑟M𝑁"#$%%N = �𝑛𝐻M𝜆RN�1 + 𝜆R𝐻M𝜆RN�. The variance in equation (5) 

and the confidence interval in equation (5) are estimated by substituting 𝜆R, obtained from fitting data to 
the OIPP distribution. Note that the inflation parameter 𝜔 is missing entirely from the formulae in 
equations (5-6). Also, note that the variance and confidence interval of the population size estimated 
using a zero-truncated Poisson distribution have similar formulae as in equations (5-6). However, the 𝜆R 
value is obtained by fitting the zero- truncated Poisson distribution to the data. 

2. Some results on the variance and the confidence interval 

A simulation study investigated by Godwin and Böhning [1] showed that the estimator, 𝑁"#$%% produces 
smaller percentage of bias values and the percentage of root mean squared error values when 𝜆 is large 
(𝜆 = 1 vs 𝜆 = 2). However, the increment in the value of 𝜔 does not change the percentage of bias values 
and the percentage of root mean squared error values significantly (see Table 1 [1]). Since, 𝑉𝑎�𝑟M𝑁"#$%%N 
in equation (5) and its associated 95% confidence interval in equation (6) only depend on the parameter 
𝜆R, the effect of the parameter 𝜔 to is almost close to negligible. Therefore, when the population data are 
generated from the OIPP distribution, we hypothesize that the estimated variance for the population size 
estimator is smaller and the 95% confidence interval for the population size estimator is narrower as 𝜆 
increases with no significant influence from parameter 𝜔. 

It is clear that for a given value of 𝜆, as 𝑛 increases, the variance estimation in equation (5) increases. 
However, it is unclear the effect of 𝜆 on the variance. The question on the indirect effect of the parameter 
𝜔 on the variance still lingers even though the parameter 𝜔 is absent from the variance estimation 
formula. Therefore, a simulation study is conducted to investigate the effects of both parameters towards 
the variance estimation and subsequently, its effect on the 95% confidence interval. The hypothesis for 
the simulation study is that when the population data are generated from the OIPP distribution, the 
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estimated variance (confidence interval) for the population size estimator is smaller (narrower) as 𝜆 
increases with no significant influence from 𝜔. Using the same simulated data, the accuracy of the 
standard error and the confidence interval given in (6) can be investigated. Note that, any changes in the 
standard error directly reflects on the variance itself. Therefore, for simplification, the standard error is 
considered in investigating the hypothesis. The algorithm for the simulation study is given below. 

• Step 1: Simulate 𝑁 = 5000 data from the OIPP distribution with parameters 𝜆 = 1.0 and 𝜔 =
0.2. 

• Step 2: Estimate 𝜆R using maximum likelihood estimation given in equation (1). 
• Step 3: Obtain the 𝑁"#$%% and 𝑆𝐸M𝑁"#$%%N from the data. 
• Step 3: Repeat steps 1 and 2 for 5000 times and obtain 5000 values for 𝑁"#$%% and 𝑆𝐸M𝑁"#$%%N. 
• Step 4: Obtain the average values for 𝑁"#$%% and 𝑆𝐸M𝑁"#$%%N and the standard deviation, 

𝑆𝐷M𝑁"#$%%N for 5000 values of 𝑁"#$%%. The 𝑆𝐷M𝑁"#$%%N will provide the standard error based on the 
simulated data. 

• Step 5: Tabulate the results and repeat the algorithms by varying parameters values (𝜆 =
2.0, 3.0, 4.0, 5.0 and 𝜔 = 0.4, 0.6). 

• Step 6: Compare the confidence interval of the estimated population size using 𝑆𝐸M𝑁"#$%%N and 
𝑆𝐷M𝑁"#$%%N to investigate the accuracy of the formula given in (6).  

The results of the simulation study are given in Table 1 and Table 2. Table 1 shows the percentage of 
relative absolute errors in calculating the variability in 5000 estimates of the population size. The formula 
for the percentage of relative absolute errors is given as 

𝑒 =
�𝐸T𝑆𝐸M𝑁"#$%%NU − 𝑆𝐷M𝑁"#$%%N�

𝑆𝐷M𝑁"#$%%N
× 100, 

where 𝐸T𝑆𝐸M𝑁"#$%%NU is the average standard error values obtain from equation (6) and 𝑆𝐷M𝑁"#$%%N is the 
standard deviation based on 5000 estimates of the population size. 

From Table 1, for any given values of 𝜆 and 𝜔, the 𝐸M𝑁"#$%%N from the 5000 estimates of the population 
size is close to the true population size, supporting the findings of Godwin and Böhning [1]. For a given 
𝜔, as 𝜆 increases, both the values of both 𝐸T𝑆𝐸M𝑁"#$%%NU and 𝑆𝐷M𝑁"#$%%N become close which can also be 
seen from the decreasing percentage values of 𝑒. This shows that the proposed standard error formula 
and consequently the proposed variance, are accurate in estimating the variability in the simulated 
population size estimates. For a given 𝜆, as 𝜔 increases, the 𝑆𝐷M𝑁"#$%%N increases and this is bound to 
happen when dealing with simulated data, where some variability cannot be avoided. However, for a 
larger value of 𝜆	(𝜆 ≥ 3.0),the 𝑆𝐷M𝑁"#$%%N values are close. It is expected that the 𝐸T𝑆𝐸M𝑁"#$%%NU has a 
constant value because the 𝜔 is absent in the 𝑆𝐸M𝑁"#$%%N formula in (6). Furthermore, the 𝐸M𝑁"#$%%N values 
do not change significantly when 𝜔 increases. 

Table 2 shows the 95% confidence interval based on the 𝑆𝐷M𝑁"#$%%N and the 𝐸T𝑆𝐸M𝑁"#$%%NU, From Table 
2, as 𝜆 increases, the 95% confidence interval using both standard deviation and standard error formulae 
become narrower. However, for any value of 𝜆, as 𝜔 increases, the confidence interval using standard 
error in equation (6) does not change significantly. The changes can be noticed for the confidence interval 
using standard deviation of the simulated data. Therefore, from Table 1 and Table 2, the hypothesis has 
been addressed and it can be concluded that when the population data are generated from the OIPP 
distribution, the estimated variance for the population size estimator is smaller as 𝜆 increases. 
Consequently, the 95% confidence interval for the population size estimator becomes narrower as 𝜆 
increases. However, the parameter 𝜔 plays no significant role in determining the variance and the 95% 
confidence interval for the population size. 

3. Some applications to real data 

To illustrate the variance estimation and the confidence interval for population size estimator, we use 
classic examples of number of eggs cells and gall cells observed on flower-heads, initially studied by 
Finney and Varley [11]. The resulting estimated population size for these datasets explain the observed 
eggs and gall cells by Finney and Varley [11] and the unobserved eggs and gall cells on flower-heads. 
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Table 3 provides four datasets studied. The datasets refer to the number of eggs and gall cells on flower-
heads in 1935 and 1936.  

Table 1 Results of the simulation study on the estimated population size and percentage of relative 
absolute errors in calculating the variability in 5000 estimates of the population size from the simulated 
data and the conditional expectation technique in equation (5) when both parameters 𝜆 and 𝜔 vary with 
true population size, 𝑁 = 5000. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Results of the simulation study on the estimated population size and the 95% confidence interval 
for the estimated population size from the simulated data and the conditional expectation technique in 
equation (6) when both parameters 𝜆 and 𝜔 vary with true population size, 𝑁 = 5000. 

𝜔 𝜆 𝐸M𝑁"#$%%N 
95% Confidence interval 

based on 𝑆𝐷M𝑁"#$%%N 
95% Confidence interval 
based on 𝐸T𝑆𝐸M𝑁"#$%%NU 

0.2 1.0 5006.17 (4722.44, 5289.90) (4859.17, 5153.17) 
 2.0 5001.00 (4920.17, 5081.83) (4936.93, 5065.07) 
 3.0 5000.11 (4963.34, 5036.88) (4965.85, 5034.37) 
 4.0 5000.18 (4980.34, 5020.02) (4980.54, 5019.82) 
 5.0 4999.99 (4988.19, 5011.78) (4988.39, 5011.59) 

0.4 1.0 5009.12 (4686.84, 5331.40) (4861.92, 5156.32) 
 2.0 5000.06 (4913.60, 5086.52) (4936.03, 5064.09) 
 3.0 4999.81 (4960.81, 5038.81) (4965.57, 5034.05) 
 4.0 5000.23 (4979.71, 5020.75) (4980.59, 5019.87) 
 5.0 4999.98 (4988.16, 5011.80) (4988.38, 5011.58) 

0.6 1.0 5013.97 (4618.27, 5409.67) (4866.46, 5161.48) 
 2.0 5001.61 (4902.67, 5100.55) (4937.54, 5065.68) 
 3.0 5000.57 (4959.23, 5041.91) (4966.31, 5034.83) 
 4.0 5000.24 (4979.72, 5020.76) (4980.58, 5019.90) 

𝜔 𝜆 𝐸M𝑁"#$%%N 𝑆𝐷M𝑁"#$%%N 𝐸T𝑆𝐸M𝑁"#$%%NU 𝑒	(%) 

0.2 1.0 5006.17 144.76 75.00 48.2 
 2.0 5001.00 41.24 32.69 20.7 
 3.0 5000.11 18.76 17.48 6.8 
 4.0 5000.18 10.12 10.02 1.0 
 5.0 4999.99 6.02 5.92 1.7 

0.4 1.0 5009.12 164.43 75.10 54.3 
 2.0 5000.06 44.11 32.67 25.9 
 3.0 4999.81 19.90 17.47 12.2 
 4.0 5000.23 10.47 10.02 4.3 
 5.0 4999.98 6.03 5.92 1.8 

0.6 1.0 5013.97 201.89 75.26 62.7 
 2.0 5001.61 50.48 32.69 35.2 
 3.0 5000.57 21.09 17.48 17.1 
 4.0 5000.24 10.47 10.03 4.2 
 5.0 4999.95 6.05 5.93 2.0 



 

 
242 

Tajuddin et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 18 (2022) 237-244 

 5.0 4999.95 (4988.09, 5011.81) (4988.33, 5011.57) 
 

Table 3 Datasets on the number of eggs and gall cells on flower-heads in 1935 and 1936. 

Data Year 
Counts 

Total 
1 2 3 4 5 6 7 8 9+ 

Number of 
eggs 

1935 29 38 36 23 8 5 5 2 2 148 

1936 22 18 18 11 9 6 3 0 1 88 

Number of 
gall cells 

1935 287 272 196 79 29 20 2 0 1 886 

1936 90 96 57 26 10 4 5 0 1 289 

 

To show the usability of the variance estimation and the confidence interval for population size estimator 
for human population data, the Dutch illegal immigrants, which was initially studied by Van der Heijden 
et al. [12] and re-investigated in the context of one-inflation by Godwin and Böhning [1], is reconsidered 
in this study. The data on Dutch illegal immigrants refers to the frequency of apprehensions of illegal 
immigrants, who were unable to be effectively expelled, is given in Table 4. 

Table 4 Dataset on the Dutch illegal immigrants 

Counts 
Total 

1 2 3 4 5 6 
1645 183 388 13 1 1 1881 

 

Using datasets in Table 3 and Table 4, the population size of the eggs and the gall cells as well as the 
Dutch illegal immigrants with its associated confidence interval are estimated. The chi-squared 
goodness-of-fit test is used to show that the OIPP distribution adequately fits the data. Table 5 
summarizes the model fittings of the five datasets, the estimated population size with its 95% confidence 
interval. 

Table 5 Model fittings of the five datasets to the OIPP distribution, variance estimation and 95% 
confidence interval (95% CI) for population size estimator, 𝑁"#$%%. 

Data Year 𝑁"#$%% 
(SE) 

95% CI 𝜆R �̂� 𝜒O 
(p-value) 

Number of 
eggs [11] 

1935 156 
(3.21) (150,163) 2.934 0.037 4.139 

(0.247) 

1936 92 
(2.10) (88,96) 3.212 0.133 1.202 

(0.753) 

Number of 
gall cells [11] 

1935 1028 
(15.04) (999,1058) 1.977 0.009 6.903 

(0.075) 

1936 332 
(8.14) (316,348) 2.048 0.012 7.312 

(0.063) 
Dutch illegal 
immigrants 

[12] 
- 2501 

(79.03) (2346,2656) 0.793 0.636 3.310 
(0.069) 

Based on Table 5, it can be observed that the OIPP distribution adequately fits all datasets. For the 
number of eggs and galls cells, the estimated proportion of excess ones ranges from 0.9% to 13.3% for 
the number of eggs and galls cells. For an example, the total population size for the eggs in 1935 is 156, 
which means that a total of 8 eggs are unobserved, whereas the number of unobserved eggs in 1936 is 
4. For gall cells, the number of unobserved gall cells in 1935 is 142 whereas in 1935, the unobserved 
gall cells are 43. Finney and Varley [9] did mention that the unobserved eggs and gall cells are not 
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reported because the counting process is destructive. Moreover, some eggs fail to become gall cells 
[11]. Using the 𝜆R reported by Finney and Varley [11], for these four datasets, we can obtain the estimated 
population size, the standard error and the 95% confidence interval for the data. Taking the number of 
eggs in 1936 as an example, the value of 𝜆R reported by Finney and Varley [11] is 2.860 and this value is 
significantly different from the one reported in Table 5. Using the formula of the population size estimator 
and equation 6, the estimated population size and the 95% confidence interval due to Finney and Varley 
[11] are 93 and (88,98) with a slightly bigger standard error of 2.59. This shows that the proposed 
variance estimate based on the Horvitz-Thompson estimator under the OIPP distribution is useful in 
obtaining the confidence interval for the estimated population size. 

For the Dutch illegal immigrants, the estimated proportion of excess ones is 63.6% with the estimated 
population size of 2501, meaning that there are 856 illegal immigrants who did not get caught and 
effectively expelled yet. This often happens because either the apprehended illegal immigrants refuse to 
mention their nationality or their home country refuses to accept them [12]. Based on the null model 
which is the truncated Poisson distribution, used by Van der Heijden et al. [12], the estimated population 
size is 7080 with the 95% confidence interval of (6363, 7797), which is way higher than our estimate of 
2501 and its associated 95% confidence interval of (2346, 2656). However, it is trivial to see that the 
standard error based on the confidence interval due to Van der Heijden et al. [12] is about 366, whereas 
the standard error from the proposed formula is only about 79, which further shows how reliable and 
useful the proposed variance estimation is. 

Concluding remarks 
Assuming that the population follows the one-inflated positive Poisson distribution (OIPP), the variance 
estimation for the population size estimator in the form of Horvitz-Thompson estimator is developed. 
Using the variance estimation, the 95% confidence interval is given under the symmetric normal 
approximation. The changes in the variance and the confidence interval relies heavily on the parameter 
𝜆. 

The error in the difference in the simulated standard deviation and the theoretical standard error 
approach to zero as 𝜆 increases. The increment in of 𝜔 on the other hand does affect the standard 
deviation of the simulated data but this is due to the unavoidable variation happening during simulating 
the data. However, any changes in 𝜔 does not affect the standard error as seen from equation (6) and 
further supported by the simulation results in Table 1. Similarly, as 𝜆 increases, the standard error 
decreases, which subsequently makes the confidence interval narrower. Similar observation can be 
made when the simulated data is used to obtain the standard deviation and subsequently, the confidence 
interval. However, for a given value of 𝜆, any changes in 𝜔 only affects the confidence interval due to the 
standard deviation of the simulated data and not due to the standard error in equation (6). Applications 
to real datasets also show the usability of the proposed variance for population size estimator based on 
the OIPP distribution. 

Therefore, the simulation study supports the hypothesis stated that when the population data are 
generated from the OIPP distribution, the estimated variance (confidence interval) for the population size 
estimator is smaller (narrower) as 𝜆 increases with no significant influence from 𝜔. It is found that the 
proposed variance and the standard error can accurately estimate the variability in the estimates of 
population size, and subsequently provide an accurate 95% confidence interval for a given value of 𝜆 
and for any value of 𝜔. 

Since the formulae on the estimated variance and the 95% confidence interval rely on the 𝜆R, the only 
limitation to the formulae is the 𝜆R itself. The better the estimator of 𝜆, the better the estimated variance 
and the 95% confidence interval will be. The formulae on the estimated variance and the 95% confidence 
interval can be further investigated in the context of not upweighting the excess ones in the data. By not 
upweighting the excess ones, a new estimator [13] can be obtained and both variances from this study 
and [13] can be compared. 
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