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Definition 2.3: An n-sequence ( )1... nk kx  is said to be a 

Cauchy sequence if for every 0ε > , there exists ( )M Nε ∈  
such that 
       

1 1... ...n nk k m mx x ε− < , whenever , 1,...,i ik m M i n≥ ≥ = . 

 
Definition 2.4:  An n-sequence ( )1... nk kx  is said to be 

bounded if there exists U > 0 such that 
1... nk kx U<  for all 

, 1,...,ik i n= . 
We denote the set of all bounded n-sequences by

n ∞A . It is easy to show that n ∞A  is a normed space, normed 

by                                  ( ) 1
1

...,
,...,
sup

n
n

k kn
k k

x x
∞

= . 

A subset K of ( )... factorsN N n× × −  is said to have 

natural density ( )n Kδ  if 

                  ( )n Kδ =
( )

1

1

,..., 1

,...,
lim

...n

n

k k n

K k k

k k→∞
 exists. 

Here ( )1,..., nK k k  denotes the numbers of ( )1,..., nl l  in K 

such that , 1,...,i il k i n≤ = . 
 
Example 2.2:  Consider the set   

( ){ } .,,,,:,,,, 54321
3
5

3
4

3
3

3
2

3
1 NNNNNNllllllllllK ××××⊆∈=

 
Then    

     
54321

54321

,,,,5

),,,,(
lim)(

54321 kkkkk
kkkkkK

K
kkkkk ∞→

=δ  

                  .0lim
54321

54321

,,,,

3
1

3
1

3
1

3
1

3
1

54321

=≤
∞→ kkkkk

kkkkk
kkkkk

 

Definition 2.5: An n-sequence ( )1... nk kx  is said to be 

statistically convergent to the number L if for each 0ε > , 
                         

( ){ }( )11 ...,..., ... : 0
nn n k kk k N N x Lδ ε∈ × × − ≥ = . 

If ( )1... nk kx  is statistically convergent to the number L we 

denote this by 
               

1
1

...,...,
lim

n
n

k kk k
st x L

→∞
− = . 

 
Remark 2.1: It is clear that if  ( )1... nk kx  is convergent then 

it is statistically convergent but the converse is not 
necessarily true. 

 
Also a statistically convergent n-sequence need not be 

bounded which follows from the following example. 

 Example 2.3: Let us consider the 3-sequence ( )1 2 3k k kx , 

where            

⎩
⎨
⎧

=
otherwise.,3

cubes are ,,when , 321421
321

kkkkkk
x kkk  

Then
1 2 3

lim 3k k kst x− = , but ( )1 2 3k k kx  is neither convergent 

in Pringsheim’s sense nor bounded. 
 
Definition 2.6: An n-sequence ( )1 2 ... nk k kx  is said to be 

statistically Cauchy sequence if for every 0ε > , there exist 
( )i il l ε= ∈N, 1 i n≤ ≤  such that 

( ){ }( )1 11 ... ...,..., ... : 0
n nn n k k l lk k N N x xδ ε∈ × × − ≥ = . 

Definition 2.7: Let X = ( )1 2 ... nk k kx  and Y = ( )1 2 ... nk k ky  be 

two n-sequences. Then we say that 
1 2 ... nk k kx  = 

1 2 ... nk k ky for 

almost all (a. a.) 1 2, ,..., nk k k  if  

       ( ){ }( )1 11 ... ...,..., ... : 0
n nn n k k k kk k N N x yδ ∈ × × ≠ = . 

Definition 2.8: Let  X = ( )1 2 ... nk k kx  be an n-sequence. A 

subset D of C, the set of complex numbers is said to contain 

1 2 ... nk k kx  for almost all 1 2, ,..., nk k k  if  

            ( ){ }( )11 ...,..., ... : 0
nn n k kk k N N x Dδ ∈ × × ∉ = . 

  
3.      STATISTICAL CONVERGENCE 

 
Lemma 3.1:  If 

1
1

...,...,
lim

n
n

k kk k
st x a− =  and  

1
1

...,...,
lim

n
n

k kk k
st y b− =  and c is a scalar, then 

(i) ( )1 1
1

... ...,...,
lim

n n
n

k k k kk k
st x y a b− + = + . 

(Ii) ( )1
1

...,...,
lim .

n
n

k kk k
st c x ca− = . 

 
Proof:  The proof is easy. 
 
Proposition 3.1: If ( )1 2 ... nk k kx  is an n-sequence then 

1
1

...,...,
lim

n
n

k kk k
st x L

→∞
− =  if and only if there exists a subset 

...K N N⊆ × ×  such that ( ) 1n Kδ =  and  
                    

( )
1

1
1

...,...,
,...,

lim
n

n
n

k kk k
k k K

x L
→∞
∈

= . 

 
Proof: The proof follows from the proof of [6, Theorem 2]. 
 
Corollary 3.2: If 

1
1

...,...,
lim

n
n

k kk k
st x L

→∞
− =  then there exists 

an n-sequence 
1... nk ky  such that 

1
1

...,...,
lim

n
n

k kk k
y L

→∞
=  and  
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            ( ){ }( )1 11 ... ...,..., ... : 0
n nn n k k k kk k N N x yδ ∈ × × ≠ = . 

 
Theorem 3.3: An n-sequence ( )1 2 ... nk k kx  is statistically 

convergent if and only if it is a statistically Cauchy 
sequence. 
 
Proof: Suppose 

1
1

...,...,
lim

n
n

k kk k
st x l− =  and 0ε > . Then

1... 2nk kx l ε
− < , for almost all 1 2, ,..., nk k k ...N N∈ × ×  and 

we can choose ( )1 2, ,..., ...nm m m N N∈ × ×  such that

1... 2nm mx l ε
− < . Then we have 

  
1 1 1 1... ... ... ...n n n nk k m m k k m mx x x l x l− ≤ − + −  

                             <
2 2
ε ε ε+ = , for almost all 1 2, ,..., nk k k . 

Hence ( )1 2 ... nk k kx  is a statistically Cauchy sequence 

Next, assume ( )1 2 ... nk k kx  is a statistically Cauchy 

sequence and choose ( )1 1 1
1 2, ,..., nm m m  ∈ ...N N× ×  so that 

the closed interval J = 1 1 1 1
1 1... ...1, 1

n nm m m mx x⎡ ⎤− +⎢ ⎥⎣ ⎦
 of length 2 

contains 
1 2 ... nk k kx  for almost all 1 2, ,..., nk k k . Again we can 

choose ( )2 2 2
1 2, ,..., nm m m   ∈ ...N N× ×  so that the closed 

interval J/ = 2 2 2 2
1 1... ...

1 1,
2 2n nm m m mx x⎡ ⎤− +⎢ ⎥⎣ ⎦

 of length 1 contains 

1 2 ... nk k kx  for almost all 1 2, ,..., nk k k . If we take /
1J J J= ∩ , 

then J1 is a closed interval of length less than or equal to 1 
that contains 

1 2 ... nk k kx  for almost all 1 2, ,..., nk k k . Now we 

proceed by choosing ( )3 3 3
1 2, ,..., nm m m ∈ ...N N× ×  so that 

 J// = 3 3 3 3
1 1... ...

1 1,
4 4n nm m m mx x⎡ ⎤− +⎢ ⎥⎣ ⎦

 of length 1/2 contains 

1 2 ... nk k kx  for almost all 1 2, ,..., nk k k . If we take / /
2 1J J J= ∩ , 

then J2 is a closed interval of length less than or equal to 1/2 
that contains 

1 2 ... nk k kx  for almost all 1 2, ,..., nk k k . Proceeding 
in this way inductively, we have a sequence (Jm) of closed 
intervals such that 
(i) 1m mJ J+ ⊆ , for all m N∈  

(ii) Length 12 m
mJ −≤ , for all m N∈  

(iii) 
1 2 ... nk k kx ∈ mJ  for almost all 1 2, ,..., nk k k  and for each 

m N∈ . 

Then by the nested interval theorem 
1

m
m

J
∞

=
∩  

contains one point. Denote this point by v and we shall 

show that ( )1 2 ... nk k kx  statistically convergent to v. Now v∈

mJ , for all m N∈ . If we choose l such that 1
2l ε< , then Jl 

contains 
1 2 ... nk k kx  for almost all 1 2, ,..., nk k k . Hence we have 

( )1 2 ... nk k kx  is a statistically convergent to v. 

 
Theorem 3.4: Let X = ( )1 2 ... nk k kx  be an n-sequence. Then 

the following statements are equivalent: 
(i) X is a statistically convergent sequence; 
(ii) X is a statistically Cauchy sequence; 
(iii) There exists a subsequence Y = ( )1 2 ... nk k ky  of 

 X = ( )1 2 ... nk k kx  such that 
1 2 ... nk k kx  = 

1 2 ... nk k ky for almost all 

1 2, ,..., nk k k . 
 
Proof: In view of the above theorem, the proof is easy. 
 
Corollary 3.5: If X = ( )1 2 ... nk k kx  is an n-sequence such that 

1
1

...,...,
lim

n
n

k kk k
st x L

→∞
− = , then X has a subsequence Y = 

( )1 2 ... nk k ky  such that 
1

1
...,...,

lim
n

n
k kk k

y L
→∞

= . 

 
Theorem 3.6: The set nst ∞∩ A  of all bounded statistically 
convergent n-sequences is a closed linear subspace of the 
normed linear space n ∞A . 
 
Proof: By Lemma 3.1, it is obvious that nst ∞∩ A  is a linear 
subspace of the normed linear space n ∞A . To prove the 
result it is sufficient to prove that nst ∞∩ A  is closed. Let 
( )1 2 ... nm m mx  = ( )( )1 2

1 2

...
...

n

n

m m m
k k kx  be a convergent sequence in 

nst ∞∩ A  and converge to x. It is clear that nx ∞∈ A . Since
( )1 2 ... nm m mx st∈ , by definition of statistical convergence 

there exist real numbers 
1 2 ... nm m ma such that 

    ( )1 2

1 2

...
...lim n

n

m m m
k k kst x− =

1 2 ... nm m ma , 1 2, ,..., nm m m = 1, 2, 3, . . .. 

As ( )1 2 ... nm m mx x→ , this implies that ( )1 2 ... nm m mx  is a Cauchy 
sequence. So for each 0ε > , there exists a positive integer 
n0 such that 

               ( ) ( )1 2 1 2... ...

3
n np p p m m mx x ε
− < ,  

                                     for every 0i ip m n≥ ≥ , i = 1, 2,…,n 
and |.| denotes the norm in the linear space. Since           
                     ( )1 2

1 2

...
...lim n

n

m m m
k k kst x− =

1 2 ... nm m ma   

and        
                      ( )1 2

1 2

...
...lim n

n

p p p
k k kst x−  =

1 2 ... np p pa ,  
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by Proposition 3.1, there exists 1 ...K N N⊆ × ×  such that 

( )1 1n Kδ =  and  

                    
( )

( )1

11
1

1 1

...
......,...,

,...,

lim n

nn
n

n

m m
m mk kk k

k k K

x a
→∞
∈

=  

 and there exists 2 ...K N N⊆ × ×  such that ( )2 1n Kδ =  

 and                     
( )

( )1
11

1
1 2

...
......,...,

,...,

lim n
nn

n
n

p p
p pk kk k

k k K

x a
→∞
∈

= .  

Since ( )1 2 1n K Kδ ∩ = , 1 2K K∩  is not finite. Let us 

choose ( )1 1 2,..., nd d K K∈ ∩  so that 

                           ( )1
11

...
...... 3

n
nn

p p
p pd dx a ε

− <  

and  

                           ( )1
11

...
...... 3

n
nn

m m
m md dx a ε

− < . 

Hence for each 0i ip m n≥ ≥  (i = 1, 2,…,n), we have 

                
1 1... ...n np p m ma a− ≤ ( )1

11

...
......

n

nn

m m
m md dx a− +

( ) ( )1 1

1 1

... ...
... ...

n n

n n

p p m m
d d d dx x−                  

                                 + ( )1

11

...
......

n

nn

p p
p pd dx a−  < 

3
ε +

3
ε +

3
ε = ε . 

This implies that ( )1... nm ma  is a Cauchy sequence and 

consequently convergent. Let 
1

1
......

lim
n

n
m mm m

a a= . Next our 

aim is to show that x is statistically convergent to a. Since 
( )1 2 ... nm m mx  is convergent to x in n ∞A , by the structure of 

n ∞A  it is also coordinate wise convergent. Therefore for 
each 0ε > , there exists a positive integer ( )1n ε  such that 

          ( )1
11

...
...... 3

n
nn

m m
k kk kx x ε

− < ,  for every ( )1 1,..., nm m n ε≥  

and because 
1

1
......

lim
n

n
m mm m

a a= , for each 0ε > , there exists 

( )2n ε  such that 

                 
1... 3nm ma a ε

− < ,  for every ( )1 2,..., nm m n ε≥ . 

Finally since ( )1 2 ... nm m mx  is statistically convergent to 

1 2 ... nm m ma , there exists ...K N N⊆ × ×  such that ( ) 1n Kδ =  

and                      
( )

( )1
11

1
1

...
......,...,

,...,

lim n
nn

n
n

m m
m mk kk k

k k K

x a
→∞
∈

= .  

This means that for every 0ε > , there exists a positive 
integer ( )3n ε  such that 

    m    ( )1
11

...
...... 3

n
nn

m m
m mk kx a ε

− < , 

                      for every ( )1 3,..., nm m n ε≥  and ( )1,..., nk k K∈ . 

Let ( ) ( ) ( ) ( ){ }4 1 2 3max , ,n n n nε ε ε ε= . Then 

   
1... nk kx a− ≤ ( )1

11

...
......

n

nn

m m
k kk kx x− + ( )1

11

...
......

n

nn

m m
m mk kx a− + 

                                            
1... nm ma a−  < 

3
ε +

3
ε +

3
ε = ε . 

So, x is statistically convergent to a and this completes the 
proof. 
 
Corollary 3.7: The set nst ∞∩ A  is nowhere dense in n ∞A . 
 
Proof: It is a well known fact that every closed linear 
subspace of an arbitrary linear normed space E, different 
from E, is a nowhere dense set in E. Hence on account of 
the above theorem it suffices to prove that nst ∞∩ A ≠ n ∞A , 
which follows from the following example. 
 
Example 3.1: Let n = 3 and consider the triple sequence 

( )ijkx  defined as 

                        
⎩
⎨
⎧−

=
otherwise.,3

odd are ,,,3 kji
xijk  

Then ( )ijkx  is bounded but not statistically convergent. 

 
4.      GENERALIZED KöTHE-TOEPLITZ DUAL 
    

The notion of α -duals is generalized by Chandra 
and Tripathy [3] by introducing the notion of η -duals of 
sequence spaces. Throughout the paper n w , n c , 0n c , 1n A , 

n pA , n ∞A , n bv , nσ  and n pw  denote the spaces of all, 
convergent in Pringsheim’s sense, null in Pringsheim’s 
sense, absolutely summable, p-absolutely summable, 
bounded, bounded variation, eventually alternating and 
strongly p-Cesàro summable n-sequence spaces 
respectively. 

 
We have the following sequence spaces: 

      n ∞A = ( )1 1
1

... ...
,...,

: sup
n n

n

k k n k k
k k

a w a
⎧ ⎫⎪ ⎪∈ < ∞⎨ ⎬
⎪ ⎪⎩ ⎭

,   

n c { Lawa
nn kknkk →∈= ...... 11

:)( , as                     

                           min ∞→),...,( 1 nkk , for some }CL∈  , 

0n c =

( ) ( ){ }1 1... ... 1: 0,as min ,...,
n nk k n k k na w a k k∈ → →∞ , 

 

n bv { ∑ ∞<∆∈=
nn kkknkk awa ...... 111

:)( , … , 

       ∑ ∞<∆
nn kkk a ...1

 and }∑∑ ∞<∆
nn kkkk a ...... 11

... , 

 
where    
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1 1 1 1 2... ... 1, ...n n nk k k k k k k ka a a +∆ = − ,. . ., 

              
1 1 1 1... ... ... , 1n n n n nk k k k k k k ka a a

− +∆ = − ,  

      
1 1,..., ...n nk k k ka∆ = 

2 1 2 2 1 2,..., ... ,..., 1, ...n n n nk k k k k k k k k ka a +∆ −∆ etc. 
 
We define 0 0n n nbv bv c= ∩ , 

n pw =

( )
1

1 1
1

1

... ...,..., 1 1 1

1: lim ... 0
...

n

n n
n

n

ll
p

k k n k kl l n k k

a w a L
l l→∞

= =

⎧ ⎫⎪ ⎪∈ − =⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
 

nσ { 1,......... 1111
:)( +−

−=∈=
nnnn kkkkknkk aawa  for all 

             
nn kkkkknn aalk ...,.1... 211

,..., +−=≥ for all }11 lk ≥ . 
 

Let E be a non-empty subset of n w  and 1r ≥ . 
Then the η -dual of E is defined as  

Eη =

( ) ( )1 1 1 1

1

... ... ... ...: ... for all
n n n n

n

r
k k n k k k k k k

k k

a w a b b E
⎧ ⎫⎪ ⎪∈ < ∞ ∈⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑
 The space E is said to be η -reflexive if E Eηη = . 
Taking r = 1 in the above definition we get the α -dual 
(Köthe-Toeplitz dual) of E ,  i.e., Eα , for nE w⊂ . 
 The proof of the following results is obvious in 
view of the definition of η -dual of n-sequences. 
 
Lemma 4.1: Let E and F be any two non-empty subsets of 
n w . Then 

(i) Eη  is a linear subspace of n w . 

(ii) E F⊂  implies F Eη η⊂ . 
(iii) E Eηη⊆ . 
 

Theorem 4.1: ( )n r
ηA = n ∞A  and ( )n n r

η
∞ =A A . The spaces 

n rA  and n ∞A  are perfect spaces. 
 
Proof. Let ( )1... nk k na ∞∈ A . Then we have 

          
1 1

1

... ......
n n

n

r
k k k k

k k

a b < ∞∑ ∑  for all ( )1... nk k n rb ∈ A . 

Hence 

                               n ∞A  ⊆  ( )n r
ηA . 

Conversely let ( )1... nk k na ∞∉ A . Then there exists sequence 

of positive integers ( ) ( )1
,...,

ni il l  such that 

                                  
1 ...i i nl la i> . 

Define the n-sequence ( )1... nk kb  as follows 

                
1 1

1
... 1, if ,...,

n nk k i n ib i k l k l−= = =  

                           = 0, otherwise. 
Then ( )1... nk k n rb ∈ A , but ( )1 1... ...n nk k k k n ra b ∉ A . 

Hence ( )n r
ηA ⊆ n ∞A . 

The proof for the case ( )n n r
η

∞ =A A  is a routine 
work. This completes the proof of the Theorem. 
 

Theorem 4.2: ( ) ( )0n n n rbv bvη η= = A . The spaces n bv  
and 0n bv  are not perfect. 
 
Proof: We have 0n bv ⊆ n ∞A . Hence we have  

                      ( ) ( )0n r n n bvη η
∞= ⊆A A . 

Next we show that 

                               ( )0n n rbv η ⊆ A . 

Let ( )1... nk k n rb ∉ A . Then we can find a sequence ( )il  of 

positive integers with l1 = 1 such that  

                  
1

1

1 1

1

...
1 1

...
i

n

n n i

l
r r

k k
k k k l

b i
+

−

−∞ ∞

= = =

>∑ ∑ ∑  for all i = 1, 2, . . . 

Define ( )1... nk ka  as follows: 

            
1

1
... 1, if

nk k i n ia i l k l−
+= ≤ < , for all i = 1, 2, . . . 

Then 

      
1

1 1

1 1

1

... ...
1 1 1 1

... ...
i

n n

n n i

l

k k k k
k k k i k l

a a
+ −∞ ∞ ∞ ∞

= = = = =

⎛ ⎞
⎜ ⎟∆ = ∆
⎜ ⎟
⎝ ⎠

∑ ∑ ∑ ∑ ∑  

                                  

 ∑ ∑ ∑
∞

=

∞

=

−

=
++⎜⎜

⎝

⎛
−−=

+

−−
1 1

1

,1...1,......

1

11111
...

k i

l

lk
kkkkkkkk

i

in

nnnnn
aaa  

                        )1...11,1... 111
...... ++++ −−++

− nnn kkkkk aa  

              =
1

1

1

1 1

1 1 1 1... ...
1 1

i

n i

l

k i k l i i i i

+ −∞ ∞

= = =

⎛ ⎞
⎜ ⎟− + + −
⎜ ⎟+ +
⎝ ⎠

∑ ∑ ∑  

              = 0. 
Hence ( )1... 0nk k na bv∈ . 

Now 
1

1 1 1 1

1 1 1

1

... ... ... ...
1 1 1 1 1

... ...
i

n n n n

n n n i

l
r r

k k k k k k k k
k k i k k k l

a b a b
+

−

−∞ ∞ ∞ ∞ ∞

= = = = = =

=∑ ∑ ∑∑ ∑ ∑  

                                     =
1

1

1 1

1

...
1 1 1

1 ...
i

n

n n i

l
r

k kr
i k k k l

b
i

+

−

−∞ ∞ ∞

= = = =
∑ ∑ ∑ ∑  

                                      >
1

1 r
r

i

i
i

∞

=
∑  

                                      =∞ , a contradiction. 

Hence ( )0n n rbv η ⊆ A .  
Thus we have 
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                               ( )0n n rbv η = A . 

The proof of ( )n n rbv η = A  follows from the following 
inclusion 
                            0n nbv bv⊆ ⊆ n ∞A . 
Hence it follows from the theorem 4.1 that the spaces n bv  
and 0n bv  are not perfect.  

Theorem 4.3: ( )n n r
ησ = A . The space nσ  is not perfect. 

 
Proof: We have n nσ ∞⊆ A . 
Hence 

                         ( ) ( )n r n n
η ησ∞= ⊆A A . 

For converse part, let ( ) ( )
1... nk k nb ησ∈ . Then 

               
1 1

1

... ......
n n

n

r
k k k k

k k

a b < ∞∑ ∑  for all ( )1... nk k na σ∈ . 

Consider
1 1 1... 1... ... 11 ...

n n nk k k k k ka a a+ += = − = = − , for all 

1,..., nk k N∈ . Then 

                                   ( )1... nk k na σ∈   

and 

                          
1

1

......
n

n

r
k k

k k

b < ∞∑ ∑ . 

This implies that 
                                  ( )1... nk k n rb ∈ A . 

Hence 

                                   ( )n n r
ησ ⊆ A . 

Thus ( ) n
n r

ησ = A . 

Hence it follows from Theorem 4.1 that the space nσ  is not 
perfect. 

Theorem 4.4: ( )n p n n rw
η

∞∩ =A A . The space n p nw ∞∩ A  

is not perfect. 
 

Proof: Clearly ( )n r n p nw
η

∞⊆ ∩A A . 

Conversely, let ( )1... nk k n ra ∉ A . Then we can write 

                            
1

1

......
n

n

r
k k

k k

a = ∞∑ ∑ . 

Consider the n-sequence ( )1... nk kb , defined by 

               ,...1
jb

nkk =  a constant,  for all 1,..., nk k N∈ . 

Then ( )1... nk k n p nb w ∞∈ ∩ A , but 

                  
1 1

1

... ......
n n

n

r
k k k k

k k

a b = ∞∑ ∑ . 

Hence  

                        ( ) ( )1... nk k n p na w
η

∞∉ ∩ A . 

It follows that 

                         ( )n p n n rw
η

∞∩ ⊆A A . 

Thus ( )n p n n rw
η

∞∩ =A A . 

Hence it follows from Theorem 4.1 that the space 
n p nw ∞∩ A  is not perfect. 
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