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ABSTRACT

In this paper we introduce the notion of n-sequence and extend the notion of statistical convergence to n-sequences. Further we define the notion of
77 — dual as a generalization of K&the-Toeplitz dual for subsets of n-sequence spaces and compute 77 — d als of some classical sets of n-sequences.
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1. INTRODUCTION

Pringsheim gave the definition of the convergence for
double sequences in 1900. Since then, this concept has been
studied by many authors, see for instances [7, 14, 21]. The
notion of the statistical convergence was first independently
introduced by Fast [4] in 1951 and Schoenberg [17] in
1959. Later on it was further investigated from a sequence
space point of view and linked with summability theory by
Fridy [5], Salat [18] and many others. In [12] and [13] the
above concept is extended to double sequences by using the
idea of a two dimensional analogue of natural density

It is a fundamental principle of functional analysis
that investigations of spaces are often combined with those
of dual spaces. The notion of duals of sequence spaces was
introduced by Kothe and Toeplitz [9]. Later on it was
studied by Maddox [11], Lascarides [10], Bektas, Et and
Colak [2], Chandra and Tripathy [3], Sarma [19], Dutta [1]
and many others.
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2. JEFINITIONS AND PRELIMINARIES

Now we introduce some basic notions and examples
related to the subject of this paper.

Definition 2.1: Let n(Z 2) be an integer. A function
x:Nx..xN(n—factors) > R(C) is

(complex) n-sequence, where N, R and C denote the sets of
natural numbers, real numbers and complex numbers
respectively.

called a real

Definition 2.2: An n-sequence (Xk]_“kn ) is said to be

convergent to L in Pringsheim’s sense if for every &£ >0,
there exists M (8) € N such that

‘Xkl'“kn —L‘ <& whenever k; >M,i=1,..,n.

Example 2.1: Consider the 4-sequence (Xklk2k3k4 ) , where
k,k.k,,k, =2
k,k;k,.k, =4
k k,K,.k; =6
kk,k;,k, =8

10, otherwise.

X koksk, =

Then (Xk1k2k3k4 ) converges to 10 in Pringsheim’s sense.
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Definition 2.3: An n-sequence (Xkl...kn) is said to be a

Cauchy sequence if for every £ > 0, there exists M (6‘) eN
such that

Xk, — Xm ., ‘ <&, wheneverk; >m; >M,i=1..,n.

Definition 2.4: An n-sequence (Xkl'“kn ) is said to be

bounded if there exists U > 0 such that ‘Xkl»--kn ‘ <U forall

ki’i = 1,...,n .
We denote the set of all bounded n-sequences by
n{s - It is easy to show that ¢ is a normed space, normed

by = 550 i |-

A subset K of Nx..x N (n—factors) is said to have
natural density &, (K) if
K (Kpsoeorky )|
Kk KK,
Here |K (Ky,.... K )| denotes the numbers of (1,...,I;) in K
such that I; <k;,i=1,...,n.

exists.

Example 2.2: Consider the set
K= {0703, 1,0,1): 0,0, 01,1, e NJe NxNxNx N x N,

Then
, K (ky, Ky, K, Ky, k)|
5 K _ 1 | IERAVERACERLY ERA
s(K) N kK, kK, K
K kikik;k:

< lim ————=
Ky Ky kg kg ks —>00 kl k2 k3 k4 k5

Definition 2.5: An n-sequence (Xkl...kn) is said to be

statistically convergent to the number L if for each £ >0,

O, ({(kl,...,kn)e Nx..xN :‘Xk,..‘kn - L‘ > g}):O.

If (Xkl...kn) is statistically convergent to the number L we

denote this by
st— lim x., =L.
K, > 1=+

Remark 2.1: It is clear that if (Xkl“-kn ) is convergent then
it is statistically convergent but the converse is not
necessarily true.

Also a statistically convergent n-sequence need not be
bounded which follows from the following example.

Example 2.3: Let us consider the 3-sequence (Xklkzk3 ) ,

where

| kik,k,, whenk,,k,,k; are cubes

kkoky .
e 3, otherwise.

Thenst—limX \ =3, but (Xk1k2k3 ) is neither convergent

in Pringsheim’s sense nor bounded.

Definition 2.6: An n-sequence (Xklkz-"kn ) is said to be

statistically Cauchy sequence if for every ¢ > 0, there exist
li =1 (&) eN, 1<i<n such that

o, ({(kl,...,kn)e N x..xN :‘Xkl..‘kn =X ‘ > g}) =0.
Definition 2.7: Let X = (Xklkz...kn) and Y = (yklkz...kn) be

two n-sequences. Then we say that X = Yik,.k, for

almost all (a. a.) k;,K,,...,k, if
on ({(kl,...,kn)e Nx..xN: ik, * Vi ok, }) =0.

Definition 2.8: Let X = (XklkZ'-'kn) be an n-sequence. A

subset D of C, the set of complex numbers is said to contain
Xk, foralmostall Kk;,K,,....k, if
Ky Ky

s, ({(kl,...,kn) eNx.xNix , ¢ D}) 0.

3. STATISTICAL CONVERGENCE

,,,,,,

st— klin}( Yi,..k, =b and cis a scalar, then
RIS n

.....

(Ii) st— klirrin (c.xkl“_kn ) =ca.

Loees

Proof: The proof is easy.

Proposition 3.1: If (Xklkzu-kn) is an n-sequence then

st— lim X , =L if and only if there exists a subset
Ky 10

K c N x..xN such that 5n(K)=1 and

hm Xkl-"kn = L .

Proof: The proof follows from the proof of [6, Theorem 2].

Corollary 3.2: If st—k lim X . =L then there exists
—0 n

an n-sequence Y,  suchthat lim Yy, , =L and
1-+-Kp k. —»o0 1+ %n

152K

1731
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o, ({(kl,...,kn) eNx..xN: Xk, * Yk, }) =0.

Theorem 3.3: An n-sequence (Xklkz-ukn) is statistically

convergent if and only if it is a statistically Cauchy
sequence.
Proof: ande >0. Then

Suppose st—klim Xk, =1

S
‘Xkl»--kn —I‘ <§, for almost all k;,k,,....k, e Nx..xN and

we can choose (m;,m,,...m )eNx..xN such that

&
‘Xm m —I‘<—.Thenwehave
R >

‘Xkln.kI1 _Xml.“mn < ‘Xkl...kI1 _I‘_’_‘Xm]..‘mn _I‘

<§+§= ¢, for almost all k;,k,,....k, .

Hence (Xklkz-“kn ) is a statistically Cauchy sequence
Next, assume (XklkZ'-'kn) is a statistically Cauchy

sequence and choose (mf,m;,...,m;) € Nx..xN so that

the closed interval J = |:X =Ly +1} of length 2
m,. m;...my,

.my
contains Xy for almost all k;,k,,....k, . Again we can

choose (mf,m%,...,mﬁ) € Nx..xN so that the closed

. 1
interval J' = |:X s ——, X,
mi.mg o Tmp.m

2 +%} of length 1 contains

Xik,.k, for almost all ki,k;,....k, . If we take J; =J nJ’,
then J; is a closed interval of length less than or equal to 1
that contains Xy | for almost allk.k,,...k,. Now we

proceed by choosing (mf,mg,...,mﬁ) € Nx..xN so that
Y 1 1 .
J'=1x; 5——,%X5 5+—| of length 1/2 contains
mi.my 47 Tmilmy g

Xk, .k, for almostallk;,k,,...k, . If we take J, =J; N J "

then J, is a closed interval of length less than or equal to 1/2
that contains X for almost allk,k,,....K, . Proceeding

in this way inductively, we have a sequence (J) of closed
intervals such that

(1) Iy <y, forall meN

(ii) Length J,, <2'™™ forall me N

(i) Xy, , € Iy for almost all ki, k,,....k, and for each

meN.

Then by the nested interval theorem ﬂJm
m=1
contains one point. Denote this point by v and we shall

show that (XklkZ"-kn ) statistically convergent to V. Now Ve

Jn,, forall me N . If we choose | such that2—1| < ¢, then J,
contains X, for almost allky,k;,...,k, . Hence we have

(XklkZ'-'kn ) is a statistically convergent to V.

Theorem 3.4: Let X = (Xk]kz...kn) be an n-sequence. Then

the following statements are equivalent:
(i) X is a statistically convergent sequence;
(i1) X is a statistically Cauchy sequence;

(iii) There exists a subsequence Y = (yklkzmkn ) of

X = (Xklkz'--kn) such that Xklkzmkn =
KKy

Y k,..k, for almost all

Proof: In view of the above theorem, the proof is easy.

Corollary 35: If X = (Xklkz-"kn ) is an n-sequence such that

st— lim X, =L, then X has a subsequence Y =
Ky yeensky =00 1N

(Yijy ., ) such that lim Yi.x, =L

] 5ee

Theorem 3.6: The set st ¢, of all bounded statistically

convergent n-sequences is a closed linear subspace of the
normed linear space /.

Proof: By Lemma 3.1, it is obvious that st ¢, is a linear
subspace of the normed linear space,f,. To prove the
result it is sufficient to prove that stm, ¢ is closed. Let

(mmy..m,) (mym,..my )
X T Xk,

172-++Bn

) be a convergent sequence in

stn, ¢, and converge to X. It is clear thatx €,/ . Since

(MM est, by definition of statistical convergence

there exist real numbers &,y such that

st —Tim (™M) —

o m;,m,,...,m, =

1,2,3,...

mm,...m,

(mym,...my,) (mym,...my)

As X — X, this implies that X is a Cauchy
sequence. So for each ¢ > 0, there exists a positive integer
N, such that

X(p, [ _X(mlmzu.mn) <§’

forevery p; 2m; 2n,,i=1,2,...,n
and |.| denotes the norm in the linear space. Since

. (mmymy)
st —lim Xekyko = Bmm, _m,
and
R T (PiPa--Pn) —
st—limx . =™ =app p >

|74
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by Proposition 3.1, there exists K; < N x..xN such that
5,(K;)=1 and

. (mp..my) _
kl,...,llgll)oo Xk]"'k" B aml' Mh
(kl, .,kn)eKl

and there exists K,  Nx..x N such that &, (K,)=1

and lim Xlgp"k'p”) =ap o -
Kposky o0 NeKn -+
(kl,A..,kn)eK2

Since (3',](K1 mK2)=1, K,nK, 1is not finite. Let us
choose (d,,....d,) € K; K, so that

(Prpn) &
‘Xdl“.dn ap . p, | < 3
and
(my..my) &
g .d,  ~8mem, | <7
Hence for each p, >2m; 2n, (i=1, 2,...,n), we have
_ (my...my) _
‘app'-pn An.m, | S Xgd, ~8mem | T
(P-pn)  (mpmy)
‘Xdlu.dn ~Xq,..d,
(Pr--pn) £, & &
_ < 4+ 42 =
Jr‘xdln.dn ap .., t—-t+t—=¢.

This implies that (am1~-~mn) is a Cauchy sequence and

consequently convergent. Let lim a, , =a. Next our
m,...my,

aim is to show that X is statistically convergent to a. Since

(mm,...m, )

X is convergent to X in ¢, by the structure of

£, it is also coordinate wise convergent. Therefore for

n*oo
each ¢ > 0, there exists a positive integer N, (6‘) such that

(my...my)

X .k,

£
—Xk]”_kn‘<§, for every my,..,m, >n, (&)

and because lim a, ., =a, for each &>0, there exists
m,...m,

n, (8) such that

£
‘aml_”mn —a‘ <3 for every my,...m, >n, (&).
Finally since x(m'mz”'m”) is statistically convergent to
8 m,..m, » there exists K < Nx..xN such that &, (K) =1
. (m..m))

and ) lim Xkl"l'kn "=an m -

L seesKpy =00

(K Ky )eK

This means that for every & >0, there exists a positive
integer N; (&) such that

&
m,...m, <7

3

X(m,...mn)

m X kT4

>

for every my,..., Ny (8) and (k;,...k,) € K .

Let n (&)= max{n1 (£).n, (&), (g)} . Then

_al < (my..my) (mp..my)
‘Xkl...kn a‘ S ke " Mook | Tk, " 8mem, | T
E & €&
‘aml...mn _a‘ <SSt Tt Te.

3 33
So, X is statistically convergent to a and this completes the
proof.

Corollary 3.7: The set st ¢, is nowhere dense in 7, .

Proof: It is a well known fact that every closed linear
subspace of an arbitrary linear normed space E, different
from E, is a nowhere dense set in E. Hence on account of
the above theorem it suffices to prove that st ¢ # ,{,,

which follows from the following example.

Example 3.1: Let n = 3 and consider the triple sequence
(Xijk) defined as
-3, i, j,kareodd

3, otherwise.

Xig =
Then (Xijk ) is bounded but not statistically convergent.

4. GENERALIZED KOTHE-TOEPLITZ DUAL

The notion of « -duals is generalized by Chandra
and Tripathy [3] by introducing the notion of 7 -duals of
sequence spaces. Throughout the paper W, ,C, ,Cy, ¢,

4 1 bv

nlps nlws nBV, yo and W, denote the spaces of all,

P
convergent in Pringsheim’s sense, null in Pringsheim’s
sense, absolutely summable, p-absolutely summable,
bounded, bounded variation, eventually alternating and
strongly  p-Cesaro  summable n-sequence  spaces
respectively.

We have the following sequence spaces:

b

nlo= (akl,..kn)enW:ksup ‘akl.,.kn‘<°°
Lk

nC :{(ak,...kn) €w:ay , —L,as
min (K, ,...,K,) — oo, for some LEC} ,
nCo =

>

{(akl"'kn ) ew:a . 0, asmin (ki,....k; ) = oo}

Z‘Akn Q .k,| <0 and Z"'Z‘Ak,...kn ak,.“kn‘ < OO}»

where

1751
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Ay ayg x =a x — =0, otherwise.

A +1,ky K, 2
Akn aklmkn = ak]_“kn - akl'“knfl’kn +1> Then (bkl...kn ) € ngr > but (a‘kl...kn bkl...kn ) & nfr .

= — n
Ak Bk, = Bk, Bk, — D,k B +1k, .k, CEC- Hence (4, )" < o/

We define by, = by, ¢ The proof for the case (nﬁw)n =,¢, is a routine
e " work. This completes the proof of the Theorem.

nWp=
Th : 7 = ' =
eorem 4.2: (,bv)’ =(,bvy)" =,¢,. The spaces ,bv
(ak1~--kn ) EnWe, hlrn%w l,..1, kz: Z‘ kioko L‘ and by, are not perfect.
1
o= J[(akl...kn JELW: Ak, = .k, .k, Torall Proof: We have by, < /. . Hence we have
Ko 2 lhsees@y i = =841, forall Kj 2 I1}~ nle=(nle) =(nbvy)"-

Next we show that

Let E be a non-empty subset of W and r=1. ( by );7 y
n 0 =n-r-

Then the 77 -dual of E is defined as

£ Let(bkl'_'kn)enfr. Then we can find a sequence (l;) of

positive integers with |; = 1 such that
(ak“.k )enW:Z“'Z‘akmk by, .« ‘r <°Of0rall(bk.“k )E E o l'*l‘_l . .
o el ek Z ZZ‘bk k‘ >i" foralli=1,2,...
=1 Koy =1k,=l

The space E is said to be 7 -reflexive if E77 =E .
Define (ak]__‘kn) as follows:

Taking r = 1 in the above definition we get the « -dual

(Kothe-Toeplitz dual) of E, i.e., E“, for Ec w. ey, =1 Lifl <k, <l foralli=1,2,...
The proof of the following results is obvious in ~ Then

view of the definition of 7 -dual of n-sequences.

Lemma 4.1: Let E and F be any two non-empty subsets of k=1 k=1 k=1 i=1 \ ky=l;
oW . Then
. - w o (lg-l
(i) E” is a linear subspace of W . <
. . " = zz ‘ak,...kn T Kk T Rk Lk,
(il) EcF implies F" c E". k=t el K=l
(i) EC E". )

Fot Qe vk T T Rk
Theorem 4.1: (¢, )"=,¢,, and (¢, )" =,¢, . The spaces :i i I'”_l‘l 1 11
nl, and ¢ are perfect spaces. klzlmizl by i+l i i+l

=0.
Proof. Let (akl--~kn ) € ! . Then we have Hence (akln.kn ) e by, .
r
zz‘aklkn bkl...kn‘ < oo forall (bkl...kn ) € ngr . NOOOW - o o bl
K k, r i+ r
Hence l Z"'Z‘akl...kn b x| = ZZ z ‘akl k. Ok ..k
k=1 k,=I i=1 k=1 Ky =1k,=]
( ) 2 & o i1 .
Conversely let (ak X, ) (. Then there exists sequence :;F;kzlz ‘bklmkn
= 1= n-1=4 B0 =
of positive integers ( ) ( ) such that . 2 i
a | >i. =i’

i i

=00, a contradiction.

Define the n-sequence (bk K ) as follows
o Hence(nbvo)” ol

_._1 . —1. -
bk,...kn =1 ’lfkl_lh"“’kn I'n Thus we have

|76
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(nbVO)” =nly.
The proof of (nbV)" =,¢, follows from the following
inclusion
WbV bve 4,
Hence it follows from the theorem 4.1 that the spaces ,bv

and ,bv, are not perfect.

Theorem 4.3: (,&)" = ¢, . The space & is not perfect.

Proof: We have o </, .
Hence

nlr =(n€oo)]7 g(no-)ﬂ-

For converse part, let (bkl“'kn ) e(y0)". Then

r
Z'"z‘akl“-kn bk1~~-kn ‘ <oo forall (akl'_‘kn ) €n0 .
kl kn

Hence it follows from Theorem 4.1 that the space ,o is not
perfect.

Theorem 4.4: (,w, N4L,,)" =, £, . The space W, L.,
is not perfect.

n
Proof: Clearly , ¢, < ( nWp N nfw) .

Conversely, let (ak1~~-kn ) & ./, . Then we can write

22k,
kl kn

Consider the n-sequence (bkl-“kn ) , defined by

r
=00 .,

by « =], aconstant, forall k;,...k, €N .

Then(bkl__‘kn ) €W, Nyl , but

Z---Z‘akl Bk,
kl kn

r
=00 .,

Consider & | =1=-8 , y =..=—8 ., for all
Ki,....k, € N . Then Hence
(k) & (W N al)-
( " kn)eno. -k
It follows that
and .
5] < () <t
K, .
ko Thus (W, Aol ) =0t
This implies that <n .p " w) nr
Hence it follows from Theorem 4.1 that the space
(bkl -k ) Enlr w, Nl is not perfect
nWp ! 'ntew .
Hence
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