ISSN 1823-626X

Journal of Fundamental Sciences

available online at http://jfs.ibnusina.utm.my

Statistical convergence of *n*-sequences and η -dual of some classical sets of *n*sequences

Hemen Dutta^{1*}, B. Surender Reddy², Iqbal H. Jebril³ and Vijay Kumar⁴

¹Department of Mathematics, Gauhati University, Kokrajhar Campus, Assam, INDIA, ²Department of Mathematics, PGCS, Saifabad, Osmania University, Hyderabad, A.P, INDIA.

³Department of Mathematics, King Faisal University, Saudi Arabia.

⁴Department of Mathematics, Haryana College of Technology & Mgt., Kaithal 136027, Haryana State, India.

Received 20 March 2011, Revised 5 April 2011, Accepted 20 May 2011, Available online 28 June 2011

ABSTRACT

In this paper we introduce the notion of *n*-sequence and extend the notion of statistical convergence to *n*-sequences. Further we define the notion of η – dual as a generalization of Köthe-Toeplitz dual for subsets of *n*-sequence spaces and compute η – d als of some classical sets of *n*-sequences.

/ n-sequence | statistical convergence | completeness | Köthe-Toeplitz dual |

® 2011 Ibnu Sina Institute. All rights reserved. http://dx.doi.org/10.11113/mjfas.v7n1.236

1. **INTRODUCTION**

Pringsheim gave the definition of the convergence for double sequences in 1900. Since then, this concept has been studied by many authors, see for instances [7, 14, 21]. The notion of the statistical convergence was first independently introduced by Fast [4] in 1951 and Schoenberg [17] in 1959. Later on it was further investigated from a sequence space point of view and linked with summability theory by Fridy [5], Salat [18] and many others. In [12] and [13] the above concept is extended to double sequences by using the idea of a two dimensional analogue of natural density

It is a fundamental principle of functional analysis that investigations of spaces are often combined with those of dual spaces. The notion of duals of sequence spaces was introduced by Köthe and Toeplitz [9]. Later on it was studied by Maddox [11], Lascarides [10], Bektaş, Et and Colak [2], Chandra and Tripathy [3], Sarma [19], Dutta [1] and many others.

$2.$ **)EFINITIONS AND PRELIMINARIES**

Now we introduce some basic notions and examples related to the subject of this paper.

Definition 2.1: Let $n(\geq 2)$ be an integer. A function $x: N \times ... \times N(n$ - factors $) \rightarrow R(C)$ is called a real (complex) n -sequence, where N , R and C denote the sets of natural numbers, real numbers and complex numbers respectively.

Definition 2.2: An *n*-sequence $(x_{k_1...k_n})$ is said to be convergent to L in Pringsheim's sense if for every $\varepsilon > 0$, there exists $M(\varepsilon) \in N$ such that

$$
\left|x_{k_1...k_n} - L\right| < \varepsilon \text{ whenever } k_i \ge M, i = 1,...,n \, .
$$

Example 2.1: Consider the 4-sequence $(x_{k,k,k,k})$, where

$$
x_{k_1k_2k_3k_4} = \begin{cases} k_2k_3k_4, k_1 = 2\\ k_1k_3k_4, k_2 = 4\\ k_1k_2k_4, k_3 = 6\\ k_1k_2k_3, k_4 = 8\\ 10, \text{otherwise.} \end{cases}
$$

Then (x_{k,k,k,k_4}) converges to 10 in Pringsheim's sense.

Corresponding author at: ¹Department of Mathematics, Gauhati University, Kokrajhar Campus, Assam, INDIA :

E-mail addresses: hemen dutta08@rediffmail.com; bsrmathou@yahoo.com; iqbal501@yahoo.com, vjy kaushik@yahoo.com;

Definition 2.3: An *n*-sequence $(x_{k_1...k_n})$ is said to be a Cauchy sequence if for every $\varepsilon > 0$, there exists $M(\varepsilon) \in N$ such that

$$
\left| x_{k_1...k_n} - x_{m_1...m_n} \right| < \varepsilon \text{ , whenever } k_i \ge m_i \ge M \text{ , } i = 1,...,n \text{ .}
$$

Definition 2.4: An *n*-sequence $(x_{k_1...k_n})$ is said to be bounded if there exists $U > 0$ such that $|x_{k_1...k_n}| < U$ for all k_i , $i = 1, ..., n$.

We denote the set of all bounded *n*-sequences by $n^{\ell_{\infty}}$. It is easy to show that $n^{\ell_{\infty}}$ is a normed space, normed

by
$$
||x||_{(\infty,n)} = \sup_{k_1,...,k_n} |x_{k_1...k_n}|
$$
.

A subset *K* of $N \times ... \times N(n$ – factors) is said to have natural density $\delta_n(K)$ if

$$
\delta_n(K) = \lim_{k_1,\dots,k_n \to \infty} \frac{|K(k_1,\dots,k_n)|}{k_1 \dots k_n} \text{ exists.}
$$

Here $|K(k_1,...,k_n)|$ denotes the numbers of $(l_1,...,l_n)$ in *K* such that $l_i \leq k_i, i = 1, ..., n$.

Example 2.2: Consider the set $K = \left\{ {l_1^3, l_2^3, l_3^3, l_4^3, l_5^3} \right\} : l_1, l_2, l_3, l_4, l_5 \in N \right\} \subseteq N \times N \times N \times N \times N.$

Then

$$
\delta_{5}(K) = \lim_{k_{1},k_{2},k_{3},k_{4},k_{5}\to\infty} \frac{\left|K(k_{1},k_{2},k_{3},k_{4},k_{5})\right|}{k_{1}k_{2}k_{3}k_{4}k_{5}}\n\leq \lim_{k_{1},k_{2},k_{3},k_{4},k_{5}\to\infty} \frac{k_{1}^{\frac{1}{3}}k_{2}^{\frac{1}{3}}k_{3}^{\frac{1}{3}}k_{4}^{\frac{1}{3}}k_{5}^{\frac{1}{3}}}{k_{1}k_{2}k_{3}k_{4}k_{5}} = 0.
$$

Definition 2.5: An *n*-sequence $(x_{k_1...k_n})$ is said to be statistically convergent to the number *L* if for each $\varepsilon > 0$,

$$
\delta_n\left(\bigg\{(k_1,\ldots,k_n)\in N\times\ldots\times N:\Big|x_{k_1\ldots k_n}-L\Big|\geq \varepsilon\bigg\}\right)=0.
$$

If $(x_{k_1...k_n})$ is statistically convergent to the number *L* we denote this by

$$
st - \lim_{k_1,\dots,k_n\to\infty} x_{k_1\dots k_n} = L.
$$

Remark 2.1: It is clear that if $(x_{k_1...k_n})$ is convergent then it is statistically convergent but the converse is not necessarily true.

Also a statistically convergent *n*-sequence need not be bounded which follows from the following example.

Example 2.3: Let us consider the 3-sequence $(x_{k_1k_2k_3})$, where

$$
x_{k_1k_2k_3} = \begin{cases} k_1k_2k_4, \text{ when } k_1, k_2, k_3 \text{ are cubes} \\ 3, \text{ otherwise.} \end{cases}
$$

Then $st - \lim x_{k_1k_2k_3} = 3$, but $(x_{k_1k_2k_3})$ is neither convergent in Pringsheim's sense nor bounded.

Definition 2.6: An *n*-sequence $(x_{k_1k_2...k_n})$ is said to be statistically Cauchy sequence if for every $\varepsilon > 0$, there exist $l_i = l_i(\varepsilon) \in N$, $1 \le i \le n$ such that

$$
\delta_n\left(\left\{(k_1,...,k_n)\in N\times...\times N:\Big|x_{k_1...k_n}-x_{l_1...l_n}\Big|\geq \varepsilon\right\}\right)=0.
$$

Definition 2.7: Let $X = (x_{k_1 k_2 ... k_n})$ and $Y = (y_{k_1 k_2 ... k_n})$ be two *n*-sequences. Then we say that $x_{k_1 k_2 \dots k_n} = y_{k_1 k_2 \dots k_n}$ for almost all (a. a.) $k_1, k_2, ..., k_n$ if

$$
\delta_n\left(\left\{\left(k_1,\ldots,k_n\right)\in N\times\ldots\times N:x_{k_1\ldots k_n}\neq y_{k_1\ldots k_n}\right\}\right)=0.
$$

Definition 2.8: Let $X = (x_{k_1 k_2 \dots k_n})$ be an *n*-sequence. A subset D of C , the set of complex numbers is said to contain $x_{k_1 k_2 ... k_n}$ for almost all $k_1, k_2, ..., k_n$ if

$$
\delta_n\left(\left\{(k_1,...,k_n)\in N\times...\times N:x_{k_1...k_n}\notin D\right\}\right)=0.
$$

3. STATISTICAL CONVERGENCE

Lemma 3.1: If
$$
st - \lim_{k_1, ..., k_n} x_{k_1...k_n} = a
$$
 and
\n $st - \lim_{k_1, ..., k_n} y_{k_1...k_n} = b$ and c is a scalar, then
\n(i) $st - \lim_{k_1, ..., k_n} (x_{k_1...k_n} + y_{k_1...k_n}) = a + b$.
\n(ii) $st - \lim_{k_1, ..., k_n} (c.x_{k_1...k_n}) = ca$.

Proof: The proof is easy.

Proposition 3.1: If $(x_{k_1k_2...k_n})$ is an n-sequence then $st - \lim_{k_1, \dots, k_n \to \infty} x_{k_1 \dots k_n} = L$ if and only if there exists a subset $K \subseteq N \times ... \times N$ such that $\delta_n(K) = 1$ and $k_1,...,k_n \to \infty$ k_1
 $(k_1,...,k_n) \in K$ $\lim_{\substack{\ldots,k_n\to\infty\\i_1,\ldots,k_n\in K}} x_{k_1\ldots k_n}$ $k_1,...,k_n \to \infty$
 $(k_1,...,k_n) \in K$
 $(k_1,...,k_n) \in K$ $\sum_{n \to \infty} x_{k_1...k_n} = L$
 $\sum_{n \in K}$ $=L$.

Proof: The proof follows from the proof of [6, Theorem 2].

Corollary 3.2: If $st - \lim_{k_1, \dots, k_n \to \infty} x_{k_1 \dots k_n} = L$ then there exists an n-sequence $y_{k_1...k_n}$ such that $\lim_{k_1,...,k_n \to \infty} y_{k_1...k_n} = L$ and

$$
\delta_n\left(\left\{(k_1,...,k_n)\in N\times...\times N:x_{k_1...k_n}\neq y_{k_1...k_n}\right\}\right)=0.
$$

Theorem 3.3: An n-sequence $(x_{k_1k_2...k_n})$ is statistically convergent if and only if it is a statistically Cauchy sequence.

Proof: Suppose $st - \lim_{k_1, \dots, k_n} x_{k_1 \dots k_n} = l$ and $\varepsilon > 0$. Then $|x_{k_1...k_n} - l| < \frac{\varepsilon}{2}$, for almost all $k_1, k_2,..., k_n \in N \times ... \times N$ and we can choose $(m_1, m_2, ..., m_n) \in N \times ... \times N$ such that $|x_{m_1...m_n} - l| < \frac{\varepsilon}{2}$. Then we have $|x_{k_1...k_n} - x_{m_1...m_n}| \leq |x_{k_1...k_n} - t| + |x_{m_1...m_n} - t|$ $\frac{c}{2} + \frac{c}{2}$ $\frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, for almost all $k_1, k_2, ..., k_n$.

Hence $(x_{k_1k_2...k_n})$ is a statistically Cauchy sequence

Next, assume $(x_{k,k_1 \ldots k_n})$ is a statistically Cauchy sequence and choose $\left(m_1^1, m_2^1, ..., m_n^1 \right) \in N \times ... \times N$ so that the closed interval $J = \begin{bmatrix} x_{m_1^1 \dots m_n^1} -1, x_{m_1^1 \dots m_n^1} + 1 \end{bmatrix}$ of length 2 contains x_{k_1, k_2, \dots, k_n} for almost all k_1, k_2, \dots, k_n . Again we can choose $\left(m_1^2, m_2^2, ..., m_n^2 \right)$ $\in N \times ... \times N$ so that the closed interval $J' = \left[x_{m_1^2...m_n^2} - \frac{1}{2}, x_{m_1^2...m_n^2} + \frac{1}{2} \right]$ of length 1 contains $x_{k_1 k_2 ... k_n}$ for almost all $k_1, k_2, ..., k_n$. If we take $J_1 = J \cap J'$, then J_1 is a closed interval of length less than or equal to 1 that contains $x_{k_1 k_2 \ldots k_n}$ for almost all k_1, k_2, \ldots, k_n . Now we proceed by choosing $\left(m_1^3, m_2^3, ..., m_n^3 \right) \in N \times ... \times N$ so that $J^{\text{/}} = \left[x_{m_1^3 \dots m_n^3} - \frac{1}{4}, x_{m_1^3 \dots m_n^3} + \frac{1}{4} \right]$ of length 1/2 contains $x_{k_1 k_2 ... k_n}$ for almost all $k_1, k_2, ..., k_n$. If we take $J_2 = J_1 \cap J^{/}/J$,

then J_2 is a closed interval of length less than or equal to $1/2$ that contains $x_{k_1 k_2 \ldots k_n}$ for almost all k_1, k_2, \ldots, k_n . Proceeding in this way inductively, we have a sequence (J_m) of closed intervals such that

 (i) $J_{m+1} \subseteq J_m$, for all $m \in N$

(*ii*) Length $J_m \leq 2^{1-m}$, for all $m \in N$

(*iii*) $x_{k_1 k_2 \ldots k_n} \in J_m$ for almost all k_1, k_2, \ldots, k_n and for each $m \in N$.

> Then by the nested interval theorem $\bigcap J_m$ 1 *m* ∞ =

contains one point. Denote this point by *v* and we shall

show that $(x_{k_1 k_2 \ldots k_n})$ statistically convergent to *v*. Now *v*∈ J_m , for all $m \in N$. If we choose *l* such that $\frac{1}{2^l} < \varepsilon$, then J_l contains $x_{k_1 k_2 \ldots k_n}$ for almost all k_1, k_2, \ldots, k_n . Hence we have $(x_{k,k}, k)$ is a statistically convergent to *v*.

Theorem 3.4: Let $X = (x_{k_1k_2...k_n})$ be an *n*-sequence. Then the following statements are equivalent: (i) X is a statistically convergent sequence; (ii) X is a statistically Cauchy sequence; (iii) There exists a subsequence $Y = \begin{pmatrix} y_{k,k_2} \\ k_1 \end{pmatrix}$ of $X = (x_{k_1 k_2 \ldots k_n})$ such that $x_{k_1 k_2 \ldots k_n} = y_{k_1 k_2 \ldots k_n}$ for almost all $k_1, k_2, ..., k_n$.

Proof: In view of the above theorem, the proof is easy.

Corollary 3.5: If $X = (x_{k_1k_2...k_n})$ is an n-sequence such that $st - \lim_{k_1, \dots, k_n \to \infty} x_{k_1 \dots k_n} = L$, then X has a subsequence Y = $(y_{k_1 k_2 ... k_n})$ such that $\lim_{k_1,...,k_n \to \infty} y_{k_1...k_n} = L$.

Theorem 3.6: The set $st \n\cap n \ell_{\infty}$ of all bounded statistically convergent n-sequences is a closed linear subspace of the normed linear space $n \ell_{\infty}$.

Proof: By Lemma 3.1, it is obvious that $st \n\cap_n \ell_\infty$ is a linear subspace of the normed linear space $n \ell_{\infty}$. To prove the result it is sufficient to prove that $st \n\cap_n \ell_\infty$ is closed. Let $x^{(m_1m_2...m_n)} = x^{(m_1m_2...m_n)}$... $n_2...m_n$
 $...k_n$ *n* $x_{k_1k_2...k_n}^{(m_1m_2...m_n)}$ be a convergent sequence in *st* $\cap_n \ell_\infty$ and converge to *x*. It is clear that $x \in \ell_\infty \ell_\infty$. Since $x^{(m_1 m_2 \dots m_n)} \in st$, by definition of statistical convergence there exist real numbers $a_{m_1 m_2 \dots m_n}$ such that

$$
st - \lim_{k_1, k_2, \dots, k_n} x^{(m_1 m_2 \dots m_n)} = a_{m_1 m_2 \dots m_n}, \quad m_1, m_2, \dots, m_n = 1, 2, 3, \dots
$$

As $x^{(m_1 m_2 \dots m_n)} \to x$, this implies that $x^{(m_1 m_2 \dots m_n)}$ is a Cauchy sequence. So for each $\varepsilon > 0$, there exists a positive integer n_0 such that

$$
\left| x^{(p_1p_2...p_n)} - x^{(m_1m_2...m_n)} \right| < \frac{\varepsilon}{3},
$$

for every $p_i \ge m_i \ge n_0$, $i = 1, 2, ..., n$

and |.| denotes the norm in the linear space. Since

$$
st - \lim x_{k_1k_2...k_n}^{(m_1m_2...m_n)} = a_{m_1m_2...m_n}
$$

$$
st-\lim x_{k_1k_2...k_n}^{(p_1p_2...p_n)}=a_{p_1p_2...p_n},
$$

and

by Proposition 3.1, there exists $K_1 \subseteq N \times ... \times N$ such that δ_n $(K_1) = 1$ and

$$
\lim_{\substack{k_1,\dots,k_n\to\infty\\(k_1,\dots,k_n)\in K_1}} x_{k_1\dots k_n}^{(m_1\dots m_n)} = a_{m_1\dots m_n}
$$

and there exists $K_2 \subseteq N \times ... \times N$ such that $\delta_n (K_2) = 1$

and

$$
\lim_{\substack{k_1,\ldots,k_n\to\infty\\(k_1,\ldots,k_n)\in K_2}} x^{(p_1\ldots p_n)}_{k_1\ldots k_n} = a_{p_1\ldots p_n}.
$$

Since $\delta_n (K_1 \cap K_2) = 1$, $K_1 \cap K_2$ is not finite. Let us choose $(d_1, ..., d_n) \in K_1 \cap K_2$ so that

$$
\left|x_{d_1...d_n}^{(p_1...p_n)}-a_{p_1...p_n}\right|<\frac{\varepsilon}{3}
$$

and

$$
\left| x_{d_1...d_n}^{(m_1...m_n)} - a_{m_1...m_n} \right| < \frac{\varepsilon}{3}.
$$

Hence for each $p_i \ge m_i \ge n_0$ (*i* = 1, 2,…,*n*), we have

$$
\left| a_{p_1...p_n} - a_{m_1...m_n} \right| \le \left| x_{d_1...d_n}^{(m_1...m_n)} - a_{m_1...m_n} \right| +
$$

$$
\left| x_{d_1...d_n}^{(p_1...p_n)} - x_{d_1...d_n}^{(m_1...m_n)} \right|
$$

$$
+ \left| x_{d_1...d_n}^{(p_1...p_n)} - a_{p_1...p_n} \right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.
$$

This implies that $\left(a_{m_1...m_n} \right)$ is a Cauchy sequence and consequently convergent. Let $\lim_{m_1 \dots m_n} a_{m_1 \dots m_n} = a$. Next our aim is to show that *x* is statistically convergent to *a*. Since $x^{(m_1m_2...m_n)}$ is convergent to *x* in $n \ell_{\infty}$, by the structure of $n^{\ell_{\infty}}$ it is also coordinate wise convergent. Therefore for each $\varepsilon > 0$, there exists a positive integer $n_1(\varepsilon)$ such that

$$
\left|x_{k_1...k_n}^{(m_1...m_n)}-x_{k_1...k_n}\right|<\frac{\varepsilon}{3},\ \text{for every}\ m_1,...,m_n\geq n_1\left(\varepsilon\right)
$$

and because $\lim_{m_1 \dots m_n} a_{m_1 \dots m_n} = a$, for each $\varepsilon > 0$, there exists $n_2(\varepsilon)$ such that

$$
\left|a_{m_1...m_n}-a\right|<\frac{\varepsilon}{3},\ \text{for every}\ m_1,...,m_n\geq n_2\left(\varepsilon\right).
$$

Finally since $x^{(m_1 m_2 ... m_n)}$ is statistically convergent to $a_{m_1 m_2 \dots m_n}$, there exists $K \subseteq N \times \dots \times N$ such that $\delta_n(K) = 1$ and $(m_1 ... m_n)$ $\begin{aligned} &\kappa_1,...,k_n\to\infty\quad k_1...k_n &\kappa_1,...k_n &\kappa_1,...k_n \end{aligned}$... $\lim_{\substack{\ldots,k_n\to\infty\\[1,\ldots,k_n]\in K}} x_{k_1\ldots k_n} = a_{m_1\ldots m}$ $\lim_{\substack{k_n \to \infty \\ ... , k_n \to \infty}} x_{k_1...k_n}^{(m_1...m_n)} = a_{m_1...m_n}$ $m_1...m$ $\lim_{\substack{k_1, ..., k_n \to \infty \\ (k_1, ..., k_n) \in K}} x_{k_1...k_n}^{(m_1...m_n)} = a_{m_1...m}$ $=a_{m-m}$.

This means that for every $\varepsilon > 0$, there exists a positive integer $n_3(\varepsilon)$ such that

 $(k_1,...,k_n)$

$$
\begin{aligned}\n\mathbf{m} \quad & \left| x_{k_1 \dots k_n}^{(m_1 \dots m_n)} - a_{m_1 \dots m_n} \right| < \frac{\varepsilon}{3}, \\
& \text{for every } m_1, \dots, m_n \ge n_3(\varepsilon) \text{ and } (k_1, \dots, k_n) \in K. \\
\text{Let } n_4(\varepsilon) = \max \left\{ n_1(\varepsilon), n_2(\varepsilon), n_3(\varepsilon) \right\}. \text{ Then}\n\end{aligned}
$$

$$
\left| x_{k_1...k_n} - a \right| \le \left| x_{k_1...k_n}^{(m_1...m_n)} - x_{k_1...k_n} \right| + \left| x_{k_1...k_n}^{(m_1...m_n)} - a_{m_1...m_n} \right| +
$$

$$
\left| a_{m_1...m_n} - a \right| < \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon \; .
$$

So, *x* is statistically convergent to *a* and this completes the proof.

Corollary 3.7: The set *st* $\cap_n \ell_\infty$ is nowhere dense in $n \ell_\infty$.

Proof: It is a well known fact that every closed linear subspace of an arbitrary linear normed space *E*, different from *E*, is a nowhere dense set in *E*. Hence on account of the above theorem it suffices to prove that $st \cap_n \ell_\infty \neq n \ell_\infty$, which follows from the following example.

Example 3.1: Let $n = 3$ and consider the triple sequence (x_{ijk}) defined as

$$
x_{ijk} = \begin{cases} -3, & i, j, k \text{ are odd} \\ 3, & \text{otherwise.} \end{cases}
$$

Then (x_{ijk}) is bounded but not statistically convergent.

4. GENERALIZED KöTHE-TOEPLITZ DUAL

The notion of α -duals is generalized by Chandra and Tripathy [3] by introducing the notion of η -duals of sequence spaces. Throughout the paper $n \wedge n \wedge n$, $n \wedge n \wedge n \wedge n$, $n \wedge n \wedge n$ n^{ℓ_p} , $n^{\ell_{\infty}}$, $n^{b\nu}$, n^{σ} and n^{ν_p} denote the spaces of all, convergent in Pringsheim's sense, null in Pringsheim's sense, absolutely summable, p-absolutely summable, bounded, bounded variation, eventually alternating and strongly p-Cesàro summable n-sequence spaces respectively.

We have the following sequence spaces:

$$
{}_{n}\ell_{\infty} = \left\{ \left(a_{k_{1} \dots k_{n}} \right) \in {}_{n}w: \sup_{k_{1}, \dots, k_{n}} \left| a_{k_{1} \dots k_{n}} \right| < \infty \right\},
$$

$$
{}_{n}c = \left\{ \left(a_{k_{1} \dots k_{n}} \right) \in {}_{n}w: a_{k_{1} \dots k_{n}} \to L, \text{ as}
$$

$$
\min(k_{1}, \dots, k_{n}) \to \infty, \text{ for some } L \in C \right\},
$$

$$
{}_{n}c_{0} = \left\{ \left(a_{k_{1} \dots k_{n}} \right) \in {}_{n}w: a_{k_{1} \dots k_{n}} \to 0, \text{ as } \min(k_{1}, \dots, k_{n}) \to \infty \right\},
$$

$$
{n}bv = \Big\{(a{k_{1}...k_{n}}) \in_{n} w : \sum \Big|\Delta_{k_{1}} a_{k_{1}...k_{n}}\Big| < \infty, ...,
$$

$$
\sum \Big|\Delta_{k_{n}} a_{k_{1}...k_{n}}\Big| < \infty \text{ and } \sum ... \sum \Big|\Delta_{k_{1}...k_{n}} a_{k_{1}...k_{n}}\Big| < \infty \Big\},\
$$

where

$$
\Delta_{k_1} a_{k_1...k_n} = a_{k_1...k_n} - a_{k_1+1,k_2...k_n} \dots ,
$$

\n
$$
\Delta_{k_n} a_{k_1...k_n} = a_{k_1...k_n} - a_{k_1...k_{n-1},k_n+1},
$$

\n
$$
\Delta_{k_1,...,k_n} a_{k_1...k_n} = \Delta_{k_2,...,k_n} a_{k_1k_2...k_n} - \Delta_{k_2,...,k_n} a_{k_1+1,k_2...k_n}
$$
 etc.

We define $n_b v_0 = n_b v \bigcap_n c_0$,

 $\frac{1}{2}$ *w* =

$$
\begin{aligned}\n\left\{ \left(a_{k_1 \dots k_n} \right) \in_n w : \lim_{l_1, \dots, l_n \to \infty} \frac{1}{l_1 \dots l_n} \sum_{k_1 = 1}^{l_1} \dots \sum_{k_n = 1}^{l_n} \left| a_{k_1 \dots k_n} - L \right|^p = 0 \right\} \\
\frac{}{\sum_{n \sigma} = \left\{ \left(a_{k_1 \dots k_n} \right) \in_n w : a_{k_1 \dots k_n} = -a_{k_1 \dots k_{n-1}, k_n + 1} \text{ for all } k_n \ge l_n, \dots, a_{k_1 \dots k_n} = -a_{k_1 + 1, k_2 \dots k_n} \text{ for all } k_1 \ge l_1 \right\}}.\n\end{aligned}
$$

Let *E* be a non-empty subset of $n \times n$ and $r \ge 1$. Then the η -dual of *E* is defined as

$$
E^{\eta} = \left\{ (a_{k_1 \dots k_n}) \in {}_n w : \sum_{k_1} \dots \sum_{k_n} \left| a_{k_1 \dots k_n} b_{k_1 \dots k_n} \right|^r < \infty \text{ for all } \left(b_{k_1 \dots k_n} \right) \in E \right\}
$$

The space *E* is said to be η -reflexive if $E^{\eta\eta} = E$. Taking $r = 1$ in the above definition we get the α -dual (Köthe-Toeplitz dual) of *E*, *i.e.*, E^{α} , for $E \subset_{n} w$.

 The proof of the following results is obvious in view of the definition of η -dual of *n*-sequences.

Lemma 4.1: Let *E* and *F* be any two non-empty subsets of n^w . Then

- (*i*) E^{η} is a linear subspace of w . (*ii*) $E \subset F$ implies $F^{\eta} \subset E^{\eta}$.
- (*iii*) $E \subseteq E^{\eta\eta}$.

Theorem 4.1: $\left({}_{n} \ell_{r} \right)^{\eta} = {}_{n} \ell_{\infty}$ and $\left({}_{n} \ell_{\infty} \right)^{\eta} = {}_{n} \ell_{r}$. The spaces n^{ℓ} and n^{ℓ} are perfect spaces.

Proof. Let
$$
(a_{k_1...k_n}) \in n \ell_{\infty}
$$
. Then we have
\n
$$
\sum_{k_1} \sum_{k_n} |a_{k_1...k_n} b_{k_1...k_n}|^r < \infty \text{ for all } (b_{k_1...k_n}) \in n \ell_r.
$$

Hence

$$
n^{\ell_{\infty}} \subseteq (n^{\ell_r})^{\eta}.
$$

Conversely let $(a_{k_1...k_n}) \notin_{n} \ell_{\infty}$. Then there exists sequence of positive integers $\left(l_{i_1} \right),..., \left(l_{i_n} \right)$ such that

$$
a_{l_{i_1} \ldots l_{i_n}} > i.
$$

Define the *n*-sequence $(b_{k_1...k_n})$ as follows

$$
b_{k_1...k_n} = i^{-1}, \text{if } k_1 = l_{i_1}, ..., k_n = l_{i_n}
$$

$$
= 0, \text{ otherwise.}
$$

Then $(b_{k_1...k_n}) \in {}_n\ell_r$, but $(a_{k_1...k_n}b_{k_1...k_n}) \notin {}_n\ell_r$.
Hence $({}_n\ell_r)^{\eta} \subseteq {}_n\ell_{\infty}$.

The proof for the case $\left(\int_n \ell_\infty \right)^{\eta} = n \ell_r$ is a routine work. This completes the proof of the Theorem.

Theorem 4.2: $\left(\int_n b v \right)^{\eta} = \left(\int_n b v_0 \right)^{\eta} = \int_n \ell_r$. The spaces $\int_n b v$ and $h v_0$ are not perfect.

Proof: We have $n b v_0 \nsubseteq n \ell_{\infty}$. Hence we have

$$
{}_{n}\ell_{r} = \left({}_{n}\ell_{\infty}\right)^{\eta} \subseteq \left({}_{n}bv_{0}\right)^{\eta}.
$$

Next we show that

$$
\left(\, _{n}bv_{0}\right) ^{\eta }\subseteq {}_{n}\ell _{r}.
$$

Let $(b_{k_1...k_n}) \notin n^{\ell}$. Then we can find a sequence (l_i) of positive integers with $l_1 = 1$ such that

$$
\sum_{k_1=1}^{\infty} \dots \sum_{k_{n-1}=1}^{\infty} \sum_{k_n=l_i}^{l_{i+1}-1} \left| b_{k_1 \dots k_n} \right|^r > i^r \text{ for all } i=1, 2, \dots
$$

Define $(a_{k_1...k_n})$ as follows:

$$
a_{k_1...k_n} = i^{-1}, \text{if } l_i \le k_n < l_{i+1}, \text{ for all } i = 1, 2, \dots
$$

Then

$$
\sum_{k_1=1}^{\infty} \dots \sum_{k_n=1}^{\infty} \left| \Delta a_{k_1...k_n} \right| = \sum_{k_1=1}^{\infty} \dots \sum_{i=1}^{\infty} \left(\sum_{k_n=l_i}^{l_{i+1}-1} \left| \Delta a_{k_1...k_n} \right| \right)
$$

$$
= \sum_{k=1}^{\infty} \dots \sum_{i=1}^{\infty} \left(\sum_{k_n=l_i}^{l_{i+1}-1} \left| a_{k_1...k_n} - a_{k_1...k_{n-1},k_n+1} - a_{k_1...k_{n-1}+1,k_n} \right| + \dots + a_{k_1...k_{n-1}+1,k_n+1} - \dots - a_{k_1+1...k_n+1} \right|)
$$

$$
= \sum_{k_1=1}^{\infty} \dots \sum_{i=1}^{\infty} \left(\sum_{k_n=l_i}^{l_{i+1}-1} \left| \frac{1}{i} - \frac{1}{i+1} + \dots + \frac{1}{i} - \frac{1}{i+1} \right| \right)
$$

Hence
$$
(a_{k_1...k_n}) \in nbv_0
$$
.

 $= 0.$

$$
\ell_{r} \cdot \sum_{k_{1}=1}^{\infty} \dots \sum_{k_{n}=1}^{\infty} \left| a_{k_{1} \dots k_{n}} b_{k_{1} \dots k_{n}} \right|^{r} = \sum_{i=1}^{\infty} \sum_{k_{1}=1}^{\infty} \dots \sum_{k_{n}=1}^{\infty} \sum_{k_{n}=l_{i}}^{l_{i+1}-1} \left| a_{k_{1} \dots k_{n}} b_{k_{1} \dots k_{n}} \right|^{r}
$$
\nquence

\n
$$
= \sum_{i=1}^{\infty} \frac{1}{i^{r}} \sum_{k_{1}=1}^{\infty} \dots \sum_{k_{n}=1}^{\infty} \sum_{k_{n}=l_{i}}^{l_{i+1}-1} \left| b_{k_{1} \dots k_{n}} \right|^{r}
$$

$$
\sum_{i=1}^{\infty} \frac{1}{i^r} i^r
$$

= ∞ a contradiction

1 $k_1 = 1$ $k_{n-1} = 1$

 1^{-1} κ_{n-1}

−

1

+

 $n-1$ ⁻¹ κ _n- ι _i

1

 $\sum_{i=1}^{l_{i+1}-1}$ $\prod_{i=1}^{l_{i+1}-1}$

b

...

n

1

∞ , a contradiction

Hence $\left(\int_{R} bv_{0} \right)^{\eta} \subseteq \int_{R} \ell_{r}$. Thus we have

| 76 |

$$
\left(\,{}_n b v_0\,\right)^{\eta} = {}_n \ell_r\,.
$$

The proof of $\left(\frac{h}{n}bv\right)^{\eta} = \frac{h}{n} \ell_r$ follows from the following inclusion

$$
n^{(n)} \subseteq n^{(n)} \subseteq n^{(n)}.
$$

Hence it follows from the theorem 4.1 that the spaces n *bv* and $h v_0$ are not perfect.

Theorem 4.3: $\left(\begin{array}{c} n \sigma \end{array} \right)^{\eta} = n \ell_r$. The space $n \sigma$ is not perfect.

Proof: We have $_n \sigma \subseteq n_{\infty}$.

Hence

 $\int_{\mathbb{R}^n} \ell_r = \left(\int_{\mathbb{R}^n} \ell_{\infty} \right)^{\eta} \subseteq \left(\int_{\mathbb{R}^n} \sigma \right)^{\eta}.$

For converse part, let $(b_{k_1...k_n}) \in (n \sigma)^n$. Then

$$
\sum_{k_1} \dots \sum_{k_n} \left| a_{k_1 \dots k_n} b_{k_1 \dots k_n} \right|^r < \infty \quad \text{for all} \ \left(a_{k_1 \dots k_n} \right) \in {}_n\sigma \ .
$$

Consider $a_{k_1...k_n} = 1 = -a_{k_1+1...k_n} = ... = -a_{k_1...k_n+1}$, for all $k_1, ..., k_n \in N$. Then

and

$$
\sum_{k_1}\ldots\sum_{k_n}\left|b_{k_1\ldots k_n}\right|^r<\infty\ .
$$

 $(a_{k_1...k_n}) \in {}_n\sigma$

This implies that

$$
\left(b_{k_1\dots k_n}\right)\in {}_n\ell_r.
$$

Hence

$$
\left(\begin{array}{c} n \sigma \end{array} \right)^{\eta} \subseteq {}_{n} \ell_{r} .
$$

Thus $\left(\begin{matrix} n \\ n \end{matrix} \right)^{\eta} = \ell^n$.

REFERENCES

Hence it follows from Theorem 4.1 that the space $n \sigma$ is not perfect.

Theorem 4.4: $\left(n w_p \cap n \ell_{\infty} \right)^{\eta} =_n \ell_r$. The space $n w_p \cap n \ell_{\infty}$ is not perfect.

Proof: Clearly
$$
{n} \ell{r} \subseteq ({}_{n} w_{p} \cap {}_{n} \ell_{\infty})^{n}
$$
.

Conversely, let $(a_{k_1...k_n}) \notin {}_n \ell_r$. Then we can write

$$
\sum_{k_1} \dots \sum_{k_n} \left| a_{k_1 \dots k_n} \right|^r = \infty \ .
$$

Consider the *n*-sequence $(b_{k_1...k_n})$, defined by

$$
b_{k_1...k_n} = j, \text{ a constant, for all } k_1,...,k_n \in N.
$$

Then $(b_{k_1...k_n}) \in {}_n w_p \cap {}_n \ell_\infty$, but

$$
\sum_{k_1} \dots \sum_{k_n} \left| a_{k_1 \dots k_n} b_{k_1 \dots k_n} \right|^r = \infty \ .
$$

Hence

$$
\left(a_{k_1\ldots k_n}\right)\notin\left(n\ w_p\cap_n\ell_\infty\right)^{\eta}.
$$

It follows that

$$
\left({_{n}w_{p}\cap_{n}\ell_{\infty}}\right)^{\eta}\subseteq {}_{n}\ell_{r}.
$$

Thus $\left(\begin{array}{c}n & w_p \bigcap_{n} \ell_{\infty}\end{array}\right)^{\eta} = n \ell_r$.

Hence it follows from Theorem 4.1 that the space $_n w_p \cap_n \ell_\infty$ is not perfect.

ACKNOWLEDGEMENT

 The authors are grateful to the referee for careful reading of the article and suggested improvements.

- [1] H. Dutta, *On Köthe-Toeplitz and null duals of some difference sequence spaces defined by Orlicz functions*, Eur. J. Pure Appl. Math, 2:4 (2009) , 554-563.
[2] C.A. Bektas, M. 1
- [2] Ç.A. Bektaş, M. Et and R. Çolak, *Generalized difference sequence spaces and their dual spaces*, J. Math. Anal. Appl., 292(2004), 423-432.
- [3] P. Chandra and B.C. Tripathy, *On generalized Köthe-Toeplitz duals of some sequence spaces*, Indian J. Pure Appl. Math., 33(2002), 1301-1306.
- [4] H. Fast, *Surla convergence statistique*, Colloq. Math., 2(1951), 241 244.
- [5] J.A. Fridy, *On statistical convergence*, Analysis, 5(1985), 301 313.
- [6] J.A. Fridy, *Statistical limit points*, Proc. Amer. Math. Soc., 118 (1993), 1187-1192.
- [7] H. J. Hamilton, *Transformations of multiple sequences*, Duke Math. J., 2 (1936), 29-60.
- [8] P.K. Kamthan and M. Gupta, *Sequence Spaces and Series*, Marcel Dekker, New York (1981).
- [9] G. Köthe and O. Toeplitz, *Linear Raume mit unendlichvielen koordinaten and Ringe unenlicher Matrizen*, Jour. reine angew Math., 171 (1934), 193-226.
- [10] C.G. Lascarides, *A study of certain sequence spaces of Maddox and generalization of a theorem of Iyer*, Pacific Jour. Math., 38(2) (1971), 487-500.
[11] I. J. Mad
- [11] I. J. Maddox, *Continuous and Köthe-Toeplitz duals of certain sequence spaces*, Proc. Camb. Phil. Soc., 65 (1969), 431-435.
- [12] F. Moricz, *Statistical convergence of multiple sequences*, Arch. Math., 81(2003), 82 89.
- [13] M. Mursaleen, H. H. E. *Osama, Statistical convergence of double sequences*, J. Math. Anal. Appl., 288(2003), 223 231.
- [14] A. Pringsheim, *Zur Theorie der zweifach unendlichen Zahlenfolgen*, Math. Ann., 53(1900), 289 321.
- [15] G. M. Robinson, *Divergent double sequences and series*, Trans. Amer. Math. Soc., 28 (1926), 50 -73.
- [16] H. Steinhaus, *Sur la convergence ordinaire et la convergence asymptotique*, Colloq. Math., 2 (1951), 73 -74.
- [17] I. J. Schoenberg, *The integrability of certain function and related summability methods*, Amer. Math. Monthly, 66(1959), 361 375.
- [18] T. Salat, *On statistically convergent sequences of real numbers, Math. Slovaca*, 30(1980), 139 150.
- [19] B. Sarma, *Studies on Some Vector Valued Sequence Spaces and Köthe-Toeplitz Duals*, 2005(Ph.D Thesis).
- [20] A. Şahiner, M. Gürdal and F. K. Düden, *Triple sequences and their statistical convergence,* Selçuk J. Appl. Math., 8(2007), 49-55.
- [21] B.C. Tripathy, *Statistically convergent double sequences*, Tamkang J. Math., 34(2003), 231-237.