Journal of Fundamental Sciences

Statistical convergence of n-sequences and η-dual of some classical sets of n sequences

Hemen Dutta ${ }^{1 *}$, B. Surender Reddy ${ }^{2}$, Iqbal H. Jebril ${ }^{3}$ and Vijay Kumar ${ }^{4}$
${ }^{1}$ Department of Mathematics, Gauhati University, Kokrajhar Campus, Assam, INDIA,
${ }^{2}$ Department of Mathematics, PGCS, Saifabad, Osmania University, Hyderabad, A.P, INDIA.
${ }^{3}$ Department of Mathematics,King Faisal University, Saudi Arabia.
${ }^{4}$ Department of Mathematics, Haryana College of Technology \& Mgt., Kaithal 136027, Haryana State, India.

Received 20 March 2011, Revised 5 April 2011, Accepted 20 May 2011, Available online 28 June 2011

Abstract

In this paper we introduce the notion of n-sequence and extend the notion of statistical convergence to n-sequences. Further we define the notion of η - dual as a generalization of Köthe-Toeplitz dual for subsets of n-sequence spaces and compute $\eta-\mathrm{d}$ als of some classical sets of n-sequences. | n-sequence | statistical convergence | completeness | Köthe-Toeplitz dual |

1. INTRODUCTION

Pringsheim gave the definition of the convergence for double sequences in 1900. Since then, this concept has been studied by many authors, see for instances [7, 14, 21]. The notion of the statistical convergence was first independently introduced by Fast [4] in 1951 and Schoenberg [17] in 1959. Later on it was further investigated from a sequence space point of view and linked with summability theory by Fridy [5], Salat [18] and many others. In [12] and [13] the above concept is extended to double sequences by using the idea of a two dimensional analogue of natural density

It is a fundamental principle of functional analysis that investigations of spaces are often combined with those of dual spaces. The notion of duals of sequence spaces was introduced by Köthe and Toeplitz [9]. Later on it was studied by Maddox [11], Lascarides [10], Bektaş, Et and Çolak [2], Chandra and Tripathy [3], Sarma [19], Dutta [1] and many others.

[^0]
2. JEFINITIONS AND PRELIMINARIES

Now we introduce some basic notions and examples related to the subject of this paper.

Definition 2.1: Let $n(\geq 2)$ be an integer. A function $x: N \times \ldots \times N(n$-factors $) \rightarrow R(C)$ is called a real (complex) n-sequence, where N, R and C denote the sets of natural numbers, real numbers and complex numbers respectively.

Definition 2.2: An n-sequence $\left(x_{k_{1} \ldots k_{n}}\right)$ is said to be convergent to L in Pringsheim's sense if for every $\varepsilon>0$, there exists $M(\varepsilon) \in N$ such that

$$
\left|x_{k_{1} \ldots k_{n}}-L\right|<\varepsilon \text { whenever } k_{i} \geq M, i=1, \ldots, n
$$

Example 2.1: Consider the 4 -sequence $\left(x_{k_{1} k_{2} k_{3} k_{4}}\right)$, where

$$
x_{k_{1} k_{2} k_{3} k_{4}}=\left\{\begin{array}{l}
k_{2} k_{3} k_{4}, k_{1}=2 \\
k_{1} k_{3} k_{4}, k_{2}=4 \\
k_{1} k_{2} k_{4}, k_{3}=6 \\
k_{1} k_{2} k_{3}, k_{4}=8 \\
10, \text { otherwise }
\end{array}\right.
$$

Then $\left(x_{k_{1} k_{2} k_{3} k_{4}}\right)$ converges to 10 in Pringsheim's sense.

Definition 2.3: An n-sequence $\left(x_{k_{1} \ldots k_{n}}\right)$ is said to be a Cauchy sequence if for every $\varepsilon>0$, there exists $M(\varepsilon) \in N$ such that

$$
\left|x_{k_{1} \ldots k_{n}}-x_{m_{1} \ldots m_{n}}\right|<\varepsilon, \text { whenever } k_{i} \geq m_{i} \geq M, i=1, \ldots, n .
$$

Definition 2.4: An n-sequence $\left(x_{k_{1} \ldots k_{n}}\right)$ is said to be bounded if there exists $U>0$ such that $\left|x_{k_{1} \ldots k_{n}}\right|<U$ for all $k_{i}, i=1, \ldots, n$.

We denote the set of all bounded n-sequences by ${ }_{n} \ell_{\infty}$. It is easy to show that ${ }_{n} \ell_{\infty}$ is a normed space, normed by

$$
\|x\|_{(\infty, n)}=\sup _{k_{1}, \ldots, k_{n}}\left|x_{k_{1} \ldots k_{n}}\right|
$$

A subset K of $N \times \ldots \times N(n-$ factors $)$ is said to have natural density $\delta_{n}(K)$ if

$$
\delta_{n}(K)=\lim _{k_{1}, \ldots, k_{n} \rightarrow \infty} \frac{\left|K\left(k_{1}, \ldots, k_{n}\right)\right|}{k_{1} \ldots k_{n}} \text { exists. }
$$

Here $\left|K\left(k_{1}, \ldots, k_{n}\right)\right|$ denotes the numbers of $\left(l_{1}, \ldots, l_{n}\right)$ in K such that $l_{i} \leq k_{i}, i=1, \ldots, n$.

Example 2.2: Consider the set $K=\left\{\left(l_{1}^{3}, l_{2}^{3}, l_{3}^{3}, l_{4}^{3}, l_{5}^{3}\right): l_{1}, l_{2}, l_{3}, l_{4}, l_{5} \in N\right\} \subseteq N \times N \times N \times N \times N$.

Then

$$
\begin{aligned}
\delta_{5}(K) & =\lim _{k_{1}, k_{2}, k_{3}, k_{4}, k_{5} \rightarrow \infty} \frac{\left|K\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}\right)\right|}{k_{1} k_{2} k_{3} k_{4} k_{5}} \\
& \leq \lim _{k_{1}, k_{2}, k_{3}, k_{4}, k_{5} \rightarrow \infty} \frac{k_{1}^{\frac{1}{3}} k_{2}^{\frac{1}{3}} k_{3}^{\frac{1}{3}} k_{4}^{\frac{1}{3}} k_{5}^{\frac{1}{3}}}{k_{1} k_{2} k_{3} k_{4} k_{5}}=0 .
\end{aligned}
$$

Definition 2.5: An n-sequence $\left(x_{k_{1} \ldots k_{n}}\right)$ is said to be statistically convergent to the number L if for each $\varepsilon>0$,
$\delta_{n}\left(\left\{\left(k_{1}, \ldots, k_{n}\right) \in N \times \ldots \times N:\left|x_{k_{1} \ldots k_{n}}-L\right| \geq \varepsilon\right\}\right)=0$.
If $\left(x_{k_{1} \ldots k_{n}}\right)$ is statistically convergent to the number L we denote this by

$$
s t-\lim _{k_{1}, \ldots, k_{n} \rightarrow \infty} x_{k_{1} \ldots k_{n}}=L
$$

Remark 2.1: It is clear that if $\left(x_{k_{1} \ldots k_{n}}\right)$ is convergent then it is statistically convergent but the converse is not necessarily true.

Also a statistically convergent n-sequence need not be bounded which follows from the following example.

Example 2.3: Let us consider the 3 -sequence $\left(x_{k_{1} k_{2} k_{3}}\right)$, where
$x_{k_{1} k_{2} k_{3}}=\left\{\begin{array}{l}k_{1} k_{2} k_{4}, \text { when } k_{1}, k_{2}, k_{3} \text { are cubes } \\ 3, \text { otherwise } .\end{array}\right.$
Then $s t-\lim x_{k_{1} k_{2} k_{3}}=3$, but $\left(x_{k_{1} k_{2} k_{3}}\right)$ is neither convergent in Pringsheim's sense nor bounded.

Definition 2.6: An n-sequence $\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ is said to be statistically Cauchy sequence if for every $\varepsilon>0$, there exist $l_{i}=l_{i}(\varepsilon) \in N, 1 \leq i \leq n$ such that

$$
\delta_{n}\left(\left\{\left(k_{1}, \ldots, k_{n}\right) \in N \times \ldots \times N:\left|x_{k_{1} \ldots k_{n}}-x_{l_{1} \ldots l_{n}}\right| \geq \varepsilon\right\}\right)=0 .
$$

Definition 2.7: Let $X=\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ and $Y=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ be two n-sequences. Then we say that $x_{k_{1} k_{2} \ldots k_{n}}=y_{k_{1} k_{2} \ldots k_{n}}$ for almost all (a. a.) $k_{1}, k_{2}, \ldots, k_{n}$ if

$$
\delta_{n}\left(\left\{\left(k_{1}, \ldots, k_{n}\right) \in N \times \ldots \times N: x_{k_{1} \ldots k_{n}} \neq y_{k_{1} \ldots k_{n}}\right\}\right)=0
$$

Definition 2.8: Let $X=\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ be an n-sequence. A subset D of C, the set of complex numbers is said to contain $x_{k_{1} k_{2} \ldots k_{n}}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$ if

$$
\delta_{n}\left(\left\{\left(k_{1}, \ldots, k_{n}\right) \in N \times \ldots \times N: x_{k_{1} \ldots k_{n}} \notin D\right\}\right)=0 .
$$

3. STATISTICAL CONVERGENCE

Lemma 3.1: If $s t-\lim _{k_{1}, \ldots, k_{n}} x_{k_{1} \ldots k_{n}}=a$ and $s t-\lim _{k_{1}, \ldots, k_{n}} y_{k_{1} \ldots k_{n}}=b$ and c is a scalar, then
(i) $s t-\lim _{k_{1}, \ldots, k_{n}}\left(x_{k_{1} \ldots k_{n}}+y_{k_{1} \ldots k_{n}}\right)=a+b$.
(Ii) $s t-\lim _{k_{1}, \ldots, k_{n}}\left(c . x_{k_{1} \ldots k_{n}}\right)=c a$.

Proof: The proof is easy.
Proposition 3.1: If $\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ is an n-sequence then st $-\lim _{k_{1}, \ldots, k_{n} \rightarrow \infty} x_{k_{1} \ldots k_{n}}=L$ if and only if there exists a subset $K \subseteq N \times \ldots \times N$ such that $\delta_{n}(K)=1$ and

$$
\lim _{\substack{k_{1}, \ldots, k_{n} \rightarrow \infty \\\left(k_{1}, \ldots, k_{n}\right) \in K}} x_{k_{1} . . . k_{n}}=L
$$

Proof: The proof follows from the proof of [6, Theorem 2].
Corollary 3.2: If $s t-\lim _{k_{1}, \ldots, k_{n} \rightarrow \infty} x_{k_{1} \ldots k_{n}}=L$ then there exists an n-sequence $y_{k_{1} \ldots k_{n}}$ such that $\lim _{k_{1}, \ldots, k_{n} \rightarrow \infty} y_{k_{1} \ldots k_{n}}=L$ and
$\delta_{n}\left(\left\{\left(k_{1}, \ldots, k_{n}\right) \in N \times \ldots \times N: x_{k_{1} \ldots k_{n}} \neq y_{k_{1} \ldots k_{n}}\right\}\right)=0$.

Theorem 3.3: An n-sequence $\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ is statistically convergent if and only if it is a statistically Cauchy sequence.

Proof: Suppose $s t-\lim _{k_{1}, \ldots, k_{n}} x_{k_{1} \ldots k_{n}}=l$ and $\varepsilon>0$. Then $\left|x_{k_{1} \ldots k_{n}}-l\right|<\frac{\varepsilon}{2}$, for almost all $k_{1}, k_{2}, \ldots, k_{n} \in N \times \ldots \times N$ and we can choose $\left(m_{1}, m_{2}, \ldots, m_{n}\right) \in N \times \ldots \times N$ such that $\left|x_{m_{1} \ldots m_{n}}-l\right|<\frac{\varepsilon}{2}$. Then we have

$$
\begin{aligned}
\left|x_{k_{1} \ldots k_{n}}-x_{m_{1} \ldots m_{n}}\right| & \leq\left|x_{k_{1} \ldots k_{n}}-l\right|+\left|x_{m_{1} \ldots m_{n}}-l\right| \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon, \text { for almost all } k_{1}, k_{2}, \ldots, k_{n} .
\end{aligned}
$$

Hence $\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ is a statistically Cauchy sequence
Next, assume $\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ is a statistically Cauchy sequence and choose $\left(m_{1}^{1}, m_{2}^{1}, \ldots, m_{n}^{1}\right) \in N \times \ldots \times N$ so that the closed interval $J=\left[x_{m_{1}^{1} \ldots m_{n}^{1}}-1, x_{m_{1}^{1} \ldots m_{n}^{1}}+1\right]$ of length 2 contains $x_{k_{1} k_{2} \ldots k_{n}}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$. Again we can choose $\left(m_{1}^{2}, m_{2}^{2}, \ldots, m_{n}^{2}\right) \in N \times \ldots \times N$ so that the closed interval $J^{\prime}=\left[x_{m_{1}^{2} \ldots m_{n}^{2}}-\frac{1}{2}, x_{m_{1}^{2} \ldots m_{n}^{2}}+\frac{1}{2}\right]$ of length 1 contains $x_{k_{1} k_{2} \ldots k_{n}}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$. If we take $J_{1}=J \cap J^{\prime}$, then J_{1} is a closed interval of length less than or equal to 1 that contains $x_{k_{1} k_{2} \ldots k_{n}}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$. Now we proceed by choosing $\left(m_{1}^{3}, m_{2}^{3}, \ldots, m_{n}^{3}\right) \in N \times \ldots \times N$ so that $J^{\prime \prime}=\left[x_{m_{1}^{3} \ldots m_{n}^{3}}-\frac{1}{4}, x_{m_{1}^{3} \ldots m_{n}^{3}}+\frac{1}{4}\right]$ of length $1 / 2$ contains $x_{k_{1} k_{2} \ldots k_{n}}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$. If we take $J_{2}=J_{1} \cap J^{\prime \prime}$, then J_{2} is a closed interval of length less than or equal to $1 / 2$ that contains $x_{k_{1} k_{2} \ldots k_{n}}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$. Proceeding in this way inductively, we have a sequence $\left(J_{m}\right)$ of closed intervals such that
(i) $J_{m+1} \subseteq J_{m}$, for all $m \in N$
(ii) Length $J_{m} \leq 2^{1-m}$, for all $m \in N$
(iii) $x_{k_{1} k_{2} \ldots k_{n}} \in J_{m}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$ and for each $m \in N$.

Then by the nested interval theorem $\bigcap_{m=1}^{\infty} J_{m}$ contains one point. Denote this point by v and we shall
show that $\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ statistically convergent to v. Now $v \in$ J_{m}, for all $m \in N$. If we choose l such that $\frac{1}{2^{l}}<\varepsilon$, then J_{l} contains $x_{k_{1} k_{2} \ldots k_{n}}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$. Hence we have $\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ is a statistically convergent to v.

Theorem 3.4: Let $\mathrm{X}=\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ be an n-sequence. Then the following statements are equivalent:
(i) X is a statistically convergent sequence;
(ii) X is a statistically Cauchy sequence;
(iii) There exists a subsequence $\mathrm{Y}=\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ of
$\mathrm{X}=\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ such that $x_{k_{1} k_{2} \ldots k_{n}}=y_{k_{1} k_{2} \ldots k_{n}}$ for almost all $k_{1}, k_{2}, \ldots, k_{n}$.

Proof: In view of the above theorem, the proof is easy.
Corollary 3.5: If $\mathrm{X}=\left(x_{k_{1} k_{2} \ldots k_{n}}\right)$ is an n-sequence such that st $-\lim _{k_{1}, \ldots, k_{n} \rightarrow \infty} x_{k_{1} \ldots k_{n}}=L$, then X has a subsequence $\mathrm{Y}=$ $\left(y_{k_{1} k_{2} \ldots k_{n}}\right)$ such that $\lim _{k_{1}, \ldots, k_{n} \rightarrow \infty} y_{k_{1} \ldots k_{n}}=L$.

Theorem 3.6: The set $s t \cap_{n} \ell_{\infty}$ of all bounded statistically convergent n-sequences is a closed linear subspace of the normed linear space ${ }_{n} \ell_{\infty}$.

Proof: By Lemma 3.1, it is obvious that $s t \cap_{n} \ell_{\infty}$ is a linear subspace of the normed linear space ${ }_{n} \ell_{\infty}$. To prove the result it is sufficient to prove that st $\cap_{n} \ell_{\infty}$ is closed. Let $x^{\left(m_{1} m_{2} \ldots m_{n}\right)}=\left(x_{k_{1}\left(m_{2} \ldots k_{n}\right.}^{\left(m_{1} m_{2} \ldots m_{n}\right)}\right)$ be a convergent sequence in st $\cap_{n} \ell_{\infty}$ and converge to x. It is clear that $x \in{ }_{n} \ell_{\infty}$. Since $x^{\left(m_{1} m_{2} \ldots m_{n}\right)} \in s t$, by definition of statistical convergence there exist real numbers $a_{m_{1} m_{2} \ldots m_{n}}$ such that

$$
s t-\lim x_{k_{1} k_{2} \ldots k_{n}}^{\left(m_{1} m_{2} \ldots m_{n}\right)}=a_{m_{1} m_{2} \ldots m_{n}}, m_{1}, m_{2}, \ldots, m_{n}=1,2,3, \ldots
$$

As $x^{\left(m_{1} m_{2} \ldots m_{n}\right)} \rightarrow x$, this implies that $x^{\left(m_{1} m_{2} \ldots m_{n}\right)}$ is a Cauchy sequence. So for each $\varepsilon>0$, there exists a positive integer n_{0} such that

$$
\left|x^{\left(p_{1} p_{2} \ldots p_{n}\right)}-x^{\left(m_{1} m_{2} \ldots m_{n}\right)}\right|<\frac{\varepsilon}{3},
$$

for every $p_{i} \geq m_{i} \geq n_{0}, i=1,2, \ldots, n$ and $|$.$| denotes the norm in the linear space. Since$

$$
\begin{aligned}
& s t-\lim x_{k_{1} k_{2} \ldots k_{n}}^{\left(m_{1} m_{2} \ldots m_{n}\right)}=a_{m_{1} m_{2} \ldots m_{n}} \\
& s t-\lim x_{k_{1} k_{2} \ldots k_{n}}^{\left(p_{1} p_{2} \ldots p_{n}\right)}=a_{p_{1} p_{2} \ldots p_{n}},
\end{aligned}
$$

by Proposition 3.1 , there exists $K_{1} \subseteq N \times \ldots \times N$ such that $\delta_{n}\left(K_{1}\right)=1$ and

$$
\lim _{\substack{k_{1}, \ldots, k_{n} \rightarrow \infty \\\left(k_{1}, \ldots, k_{n}\right) \in K_{1}}} x_{k_{1} \ldots k_{n}}^{\left(m_{1}, \ldots m_{n}\right)}=a_{m_{1} \ldots m_{n}}
$$

and there exists $K_{2} \subseteq N \times \ldots \times N$ such that $\delta_{n}\left(K_{2}\right)=1$
and

$$
\lim _{\substack{k_{1}, \ldots, k_{n} \rightarrow \infty \\\left(k_{1}, \ldots, k_{n}\right) \in K_{2}}} x_{\left.k_{1} \ldots k_{n}\right)}^{\left(p_{1} \ldots p_{n}\right)}=a_{p_{1} \ldots p_{n}}
$$

Since $\delta_{n}\left(K_{1} \cap K_{2}\right)=1, \quad K_{1} \cap K_{2}$ is not finite. Let us choose $\left(d_{1}, \ldots, d_{n}\right) \in K_{1} \cap K_{2}$ so that

$$
\left|x_{d_{1} \ldots d_{n}}^{\left(p_{1} \ldots p_{n}\right)}-a_{p_{1} \ldots p_{n}}\right|<\frac{\varepsilon}{3}
$$

and

$$
\left|x_{d_{1} \ldots d_{n}}^{\left(m_{1} \ldots m_{n}\right)}-a_{m_{1} \ldots m_{n}}\right|<\frac{\varepsilon}{3}
$$

Hence for each $p_{i} \geq m_{i} \geq n_{0}(i=1,2, \ldots, n)$, we have

$$
\begin{aligned}
& \left|a_{p_{1} \ldots p_{n}}-a_{m_{1} \ldots m_{n}}\right| \leq\left|x_{d_{1} \ldots d_{n}}^{\left(m_{1} \ldots m_{n}\right)}-a_{m_{1} \ldots m_{n}}\right|+ \\
& \left|x_{d_{1} \ldots d_{n}}^{\left(p_{1} \ldots p_{n}\right)}-x_{d_{1} \ldots d_{n}}^{\left(m_{1} \ldots m_{n}\right)}\right| \\
&
\end{aligned}
$$

This implies that $\left(a_{m_{1} \ldots m_{n}}\right)$ is a Cauchy sequence and consequently convergent. Let $\lim _{m_{1} \ldots m_{n}} a_{m_{1} \ldots m_{n}}=a$. Next our aim is to show that x is statistically convergent to a. Since $x^{\left(m_{1} m_{2} \ldots m_{n}\right)}$ is convergent to x in ${ }_{n} \ell_{\infty}$, by the structure of ${ }_{n} \ell_{\infty}$ it is also coordinate wise convergent. Therefore for each $\varepsilon>0$, there exists a positive integer $n_{1}(\varepsilon)$ such that

$$
\left|x_{k_{1} \ldots k_{n}}^{\left(m_{1} \ldots m_{n}\right)}-x_{k_{1} \ldots k_{n}}\right|<\frac{\varepsilon}{3}, \text { for every } m_{1}, \ldots, m_{n} \geq n_{1}(\varepsilon)
$$

and because $\lim _{m_{1} \ldots m_{n}} a_{m_{1} \ldots m_{n}}=a$, for each $\varepsilon>0$, there exists $n_{2}(\varepsilon)$ such that

$$
\left|a_{m_{1} \ldots m_{n}}-a\right|<\frac{\varepsilon}{3}, \text { for every } m_{1}, \ldots, m_{n} \geq n_{2}(\varepsilon)
$$

Finally since $x^{\left(m_{1} m_{2} \ldots m_{n}\right)}$ is statistically convergent to $a_{m_{1} m_{2} \ldots m_{n}}$, there exists $K \subseteq N \times \ldots \times N$ such that $\delta_{n}(K)=1$ and

$$
\lim _{\substack{k_{1}, \ldots, k_{n} \rightarrow \infty \\\left(k_{1}, \ldots, k_{n}\right) \in K}} x_{k_{1} \ldots k_{n}}^{\left(m_{1} \ldots m_{n}\right)}=a_{m_{1} \ldots m_{n}}
$$

This means that for every $\varepsilon>0$, there exists a positive integer $n_{3}(\varepsilon)$ such that

$$
\mathrm{m}\left|x_{k_{1} \ldots k_{n}}^{\left(m_{1} \ldots m_{n}\right)}-a_{m_{1} \ldots m_{n}}\right|<\frac{\varepsilon}{3}
$$

for every $m_{1}, \ldots, m_{n} \geq n_{3}(\varepsilon)$ and $\left(k_{1}, \ldots, k_{n}\right) \in K$.

$$
\begin{array}{r}
\left|x_{k_{1} \ldots k_{n}}-a\right| \leq\left|x_{k_{1} \ldots k_{n}}^{\left(m_{1} \ldots m_{n}\right)}-x_{k_{1} \ldots k_{n}}\right|+\left|x_{k_{1} \ldots k_{n}}^{\left(m_{1} \ldots m_{n}\right)}-a_{m_{1} \ldots m_{n}}\right|+ \\
\left|a_{m_{1} \ldots m_{n}}-a\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{array}
$$

So, x is statistically convergent to a and this completes the proof.

Corollary 3.7: The set $s t \cap_{n} \ell_{\infty}$ is nowhere dense in ${ }_{n} \ell_{\infty}$.
Proof: It is a well known fact that every closed linear subspace of an arbitrary linear normed space E, different from E, is a nowhere dense set in E. Hence on account of the above theorem it suffices to prove that st $\cap_{n} \ell_{\infty} \neq{ }_{n} \ell_{\infty}$, which follows from the following example.

Example 3.1: Let $n=3$ and consider the triple sequence $\left(x_{i j k}\right)$ defined as

$$
x_{i j k}=\left\{\begin{array}{l}
-3, i, j, k \text { are odd } \\
3, \text { otherwise }
\end{array}\right.
$$

Then $\left(x_{i j k}\right)$ is bounded but not statistically convergent.

4. GENERALIZED KÖTHE-TOEPLITZ DUAL

The notion of α-duals is generalized by Chandra and Tripathy [3] by introducing the notion of η-duals of sequence spaces. Throughout the paper ${ }_{n} w,{ }_{n} c,{ }_{n} c_{0},{ }_{n} \ell_{1}$, ${ }_{n} \ell_{p},{ }_{n} \ell_{\infty},{ }_{n} b v,{ }_{n} \sigma$ and ${ }_{n} w_{p}$ denote the spaces of all, convergent in Pringsheim's sense, null in Pringsheim's sense, absolutely summable, p-absolutely summable, bounded, bounded variation, eventually alternating and strongly p-Cesàro summable n-sequence spaces respectively.

We have the following sequence spaces:

$$
\begin{aligned}
& { }_{n} \ell_{\infty}=\left\{\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} w: \sup _{k_{1}, \ldots, k_{n}}\left|a_{k_{1} \ldots k_{n}}\right|<\infty\right\}, \\
& { }_{n} c=\left\{\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} w: a_{k_{1} \ldots k_{n}} \rightarrow L,\right. \text { as }
\end{aligned}
$$

$$
\left.\min \left(k_{1}, \ldots, k_{n}\right) \rightarrow \infty, \text { for some } L \in C\right\}
$$

${ }_{n} c_{0}=$
$\left\{\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} w: a_{k_{1} \ldots k_{n}} \rightarrow 0, \operatorname{as} \min \left(k_{1}, \ldots, k_{n}\right) \rightarrow \infty\right\}$,

$$
\begin{aligned}
& { }_{n} b v=\left\{\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} w: \sum\left|\Delta_{k_{1}} a_{k_{1} \ldots k_{n}}\right|<\infty, \ldots,\right. \\
& \left.\quad \sum\left|\Delta_{k_{n}} a_{k_{1} \ldots k_{n}}\right|<\infty \text { and } \sum \ldots \sum\left|\Delta_{k_{1} \ldots k_{n}} a_{k_{1} \ldots k_{n}}\right|<\infty\right\},
\end{aligned}
$$

where

Let $n_{4}(\varepsilon)=\max \left\{n_{1}(\varepsilon), n_{2}(\varepsilon), n_{3}(\varepsilon)\right\}$. Then

$$
\begin{aligned}
& \Delta_{k_{1}} a_{k_{1} \ldots k_{n}}=a_{k_{1} \ldots k_{n}}-a_{k_{1}+1, k_{2} \ldots k_{n}}, \ldots, \\
& \Delta_{k_{n}} a_{k_{1} \ldots k_{n}}=a_{k_{1} \ldots k_{n}}-a_{k_{1} \ldots k_{n-1}, k_{n}+1}, \\
& \Delta_{k_{1}, \ldots, k_{n}} a_{k_{1} \ldots k_{n}}=\Delta_{k_{2}, \ldots, k_{n}} a_{k_{1} k_{2} \ldots k_{n}}-\Delta_{k_{2}, \ldots, k_{n}} a_{k_{1}+1, k_{2} \ldots k_{n}} \text { etc. }
\end{aligned}
$$

We define ${ }_{n} b v_{0}={ }_{n} b v \cap_{n} c_{0}$,

$$
\begin{aligned}
& { }_{n} w_{p}= \\
& \left\{\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} w: \lim _{l_{1}, \ldots, l_{n} \rightarrow \infty} \frac{1}{l_{1} \ldots l_{n}} \sum_{k_{1}=1}^{l_{1}} \ldots \sum_{k_{n}=1}^{l_{n}}\left|a_{k_{1} \ldots k_{n}}-L\right|^{p}=0\right\} \\
& { }_{n} \sigma=\left\{\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} w: a_{k_{1} \ldots k_{n}}=-a_{k_{1} \ldots k_{n-1}, k_{n}+1}\right. \text { for all } \\
& \left.\quad k_{n} \geq l_{n}, \ldots, a_{k_{1} \ldots k_{n}}=-a_{k_{1}+1, . k_{2} \ldots k_{n}} \text { for all } k_{1} \geq l_{1}\right\} .
\end{aligned}
$$

Let E be a non-empty subset of ${ }_{n} w$ and $r \geq 1$.
Then the η-dual of E is defined as

$$
\begin{aligned}
& E^{\eta}= \\
& \left\{\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} w: \sum_{k_{1}} \ldots \sum_{k_{n}}\left|a_{k_{1} \ldots k_{n}} b_{k_{1} \ldots k_{n}}\right|^{r}<\infty \text { for all }\left(b_{k_{1} \ldots k_{n}}\right) \in E\right\}
\end{aligned}
$$

The space E is said to be η-reflexive if $E^{\eta \eta}=E$.
Taking $r=1$ in the above definition we get the α-dual (Köthe-Toeplitz dual) of E, i.e., E^{α}, for $E \subset{ }_{n} w$.

The proof of the following results is obvious in view of the definition of η-dual of n-sequences.

Lemma 4.1: Let E and F be any two non-empty subsets of ${ }_{n} w$. Then
(i) E^{η} is a linear subspace of ${ }_{n} w$.
(ii) $E \subset F$ implies $F^{\eta} \subset E^{\eta}$.
(iii) $E \subseteq E^{\eta \eta}$.

Theorem 4.1: $\left({ }_{n} \ell_{r}\right)^{\eta}={ }_{n} \ell_{\infty}$ and $\left({ }_{n} \ell_{\infty}\right)^{\eta}={ }_{n} \ell_{r}$. The spaces ${ }_{n} \ell_{r}$ and ${ }_{n} \ell_{\infty}$ are perfect spaces.

Proof. Let $\left(a_{k_{1} \ldots k_{n}}\right) \in{ }_{n} \ell_{\infty}$. Then we have

$$
\sum_{k_{1}} \ldots \sum_{k_{n}}\left|a_{k_{1} \ldots k_{n}} b_{k_{1} \ldots k_{n}}\right|^{r}<\infty \text { for all }\left(b_{k_{1} \ldots k_{n}}\right) \in_{n} \ell_{r}
$$

Hence

$$
{ }_{n} \ell_{\infty} \subseteq\left({ }_{n} \ell_{r}\right)^{\eta}
$$

Conversely let $\left(a_{k_{1} \ldots k_{n}}\right) \not \notin n \ell_{\infty}$. Then there exists sequence of positive integers $\left(l_{i_{1}}\right), \ldots,\left(l_{i_{n}}\right)$ such that

$$
a_{l_{i_{1}} \ldots l_{i_{n}}}>i
$$

Define the n-sequence $\left(b_{k_{1} . . . k_{n}}\right)$ as follows

$$
b_{k_{1} \ldots k_{n}}=i^{-1}, \text { if } k_{1}=l_{i_{1}}, \ldots, k_{n}=l_{i_{n}}
$$

$=0$, otherwise.
Then $\left(b_{k_{1} \ldots k_{n}}\right) \in_{n} \ell_{r}$, but $\left(a_{k_{1} \ldots k_{n}} b_{k_{1} \ldots k_{n}}\right) \notin{ }_{n} \ell_{r}$.
Hence $\left({ }_{n} \ell_{r}\right)^{\eta} \subseteq{ }_{n} \ell_{\infty}$.
The proof for the case $\left({ }_{n} \ell_{\infty}\right)^{\eta}={ }_{n} \ell_{r}$ is a routine work. This completes the proof of the Theorem.

Theorem 4.2: $\left({ }_{n} b v\right)^{\eta}=\left({ }_{n} b v_{0}\right)^{\eta}={ }_{n} \ell_{r}$. The spaces ${ }_{n} b v$ and ${ }_{n} b v_{0}$ are not perfect.

Proof: We have ${ }_{n} b v_{0} \subseteq{ }_{n} \ell_{\infty}$. Hence we have

$$
{ }_{n} \ell_{r}=\left({ }_{n} \ell_{\infty}\right)^{\eta} \subseteq\left({ }_{n} b v_{0}\right)^{\eta}
$$

Next we show that

$$
\left({ }_{n} b v_{0}\right)^{\eta} \subseteq{ }_{n} \ell_{r}
$$

$\operatorname{Let}\left(b_{k_{1} \ldots k_{n}}\right) \nexists_{n} \ell_{r}$. Then we can find a sequence $\left(l_{i}\right)$ of positive integers with $l_{1}=1$ such that

$$
\sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n-1}=1}^{\infty} \sum_{k_{n}=l_{i}}^{l_{i+1}-1}\left|b_{k_{1} \ldots k_{n}}\right|^{r}>i^{r} \text { for all } i=1,2, \ldots
$$

Define $\left(a_{k_{1} \ldots k_{n}}\right)$ as follows:

$$
a_{k_{1} \ldots k_{n}}=i^{-1}, \text { if } l_{i} \leq k_{n}<l_{i+1}, \text { for all } i=1,2, \ldots
$$

Then

$$
\begin{aligned}
& \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1}^{\infty}\left|\Delta a_{k_{1} \ldots k_{n}}\right|=\sum_{k_{1}=1}^{\infty} \ldots \sum_{i=1}^{\infty}\left(\sum_{k_{n}=l_{i}}^{l_{i+1}-1}\left|\Delta a_{k_{1} \ldots k_{n}}\right|\right) \\
& =\sum_{k=1}^{\infty} \ldots \sum_{i=1}^{\infty}\left(\sum_{k_{n}=l_{i}}^{l_{i+1}-1} \mid a_{k_{1} \ldots k_{n}}-a_{k_{1} \ldots k_{n-1}, k_{n}+1}-a_{k_{1} \ldots k_{n-1}+1, k_{n}}\right. \\
& \left.\quad+\ldots+a_{k_{1} \ldots k_{n-1}+1, k_{n}+1}-\ldots-a_{k_{1}+1 \ldots k_{n}+1} \mid\right) \\
& =\sum_{k_{1}=1}^{\infty} \ldots \sum_{i=1}^{\infty}\left(\sum_{k_{n}=l_{i}}^{l_{i+1}-1}\left|\frac{1}{i}-\frac{1}{i+1}+\ldots+\frac{1}{i}-\frac{1}{i+1}\right|\right) \\
& =0 .
\end{aligned}
$$

Hence $\left(a_{k_{1} \ldots k_{n}}\right) \in{ }_{n} b v_{0}$.
Now

$$
\begin{aligned}
\sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n}=1}^{\infty}\left|a_{k_{1} \ldots k_{n}} b_{k_{1} \ldots k_{n}}\right|^{r} & =\sum_{i=1}^{\infty} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n-1}=1}^{\infty} \sum_{k_{n}=l_{i}}^{l_{i+1}-1}\left|a_{k_{1} \ldots k_{n}} b_{k_{1} \ldots k_{n}}\right|^{r} \\
& =\sum_{i=1}^{\infty} \frac{1}{i^{r}} \sum_{k_{1}=1}^{\infty} \ldots \sum_{k_{n-1}=1}^{\infty} \sum_{k_{n}=l_{i}}^{l_{i+1}-1}\left|b_{k_{1} \ldots k_{n}}\right|^{r} \\
& >\sum_{i=1}^{\infty} \frac{1}{i^{r}} i^{r} \\
& =\infty, \text { a contradiction. }
\end{aligned}
$$

Hence $\left({ }_{n} b v_{0}\right)^{\eta} \subseteq{ }_{n} \ell_{r}$.
Thus we have

$$
\left({ }_{n} b v_{0}\right)^{\eta}={ }_{n} \ell_{r}
$$

The proof of $\left({ }_{n} b v\right)^{\eta}={ }_{n} \ell_{r}$ follows from the following inclusion

$$
{ }_{n} b v_{0} \subseteq{ }_{n} b v \subseteq{ }_{n} \ell_{\infty} .
$$

Hence it follows from the theorem 4.1 that the spaces ${ }_{n} b v$ and ${ }_{n} b v_{0}$ are not perfect.
Theorem 4.3: $\left({ }_{n} \sigma\right)^{\eta}={ }_{n} \ell_{r}$. The space ${ }_{n} \sigma$ is not perfect.
Proof: We have ${ }_{n} \sigma \subseteq{ }_{n} \ell_{\infty}$.
Hence

$$
{ }_{n} \ell_{r}=\left({ }_{n} \ell_{\infty}\right)^{\eta} \subseteq\left({ }_{n} \sigma\right)^{\eta}
$$

For converse part, let $\left(b_{k_{1} \ldots k_{n}}\right) \in\left({ }_{n} \sigma\right)^{\eta}$. Then

$$
\sum_{k_{1}} \ldots \sum_{k_{n}}\left|a_{k_{1} \ldots k_{n}} b_{k_{1} \ldots k_{n}}\right|^{r}<\infty \text { for all }\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} \sigma
$$

Consider $a_{k_{1} \ldots k_{n}}=1=-a_{k_{1}+1 \ldots k_{n}}=\ldots=-a_{k_{1} \ldots k_{n}+1}$, for all $k_{1}, \ldots, k_{n} \in N$. Then

$$
\left(a_{k_{1} \ldots k_{n}}\right) \in_{n} \sigma
$$

and

$$
\sum_{k_{1}} \ldots \sum_{k_{n}}\left|b_{k_{1} \ldots k_{n}}\right|^{r}<\infty
$$

This implies that

$$
\left(b_{k_{1} \ldots k_{n}}\right) \in{ }_{n} \ell_{r} .
$$

Hence

$$
\left({ }_{n} \sigma\right)^{\eta} \subseteq{ }_{n} \ell_{r} .
$$

$\operatorname{Thus}\left({ }_{n} \sigma\right)^{\eta}=\ell_{r}^{n}$.

Hence it follows from Theorem 4.1 that the space ${ }_{n} \sigma$ is not perfect.
Theorem 4.4: $\left({ }_{n} w_{p} \cap_{n} \ell_{\infty}\right)^{\eta}={ }_{n} \ell_{r}$. The space ${ }_{n} w_{p} \cap_{n} \ell_{\infty}$ is not perfect.

Proof: Clearly ${ }_{n} \ell_{r} \subseteq\left({ }_{n} w_{p} \cap_{n} \ell_{\infty}\right)^{\eta}$.
Conversely, let $\left(a_{k_{1} \ldots k_{n}}\right) \nexists_{n} \ell_{r}$. Then we can write

$$
\sum_{k_{1}} \ldots \sum_{k_{n}}\left|a_{k_{1} \ldots k_{n}}\right|^{r}=\infty
$$

Consider the n-sequence $\left(b_{k_{1} \ldots k_{n}}\right)$, defined by

$$
b_{k_{1} \ldots k_{n}}=j, \text { a constant, for all } k_{1}, \ldots, k_{n} \in N
$$

$\operatorname{Then}\left(b_{k_{1} \ldots k_{n}}\right) \in{ }_{n} w_{p} \cap_{n} \ell_{\infty}$, but

$$
\sum_{k_{1}} \ldots \sum_{k_{n}}\left|a_{k_{1} \ldots k_{n}} b_{k_{1} \ldots k_{n}}\right|^{r}=\infty
$$

Hence

$$
\left(a_{k_{1} \ldots k_{n}}\right) \notin\left({ }_{n} w_{p} \cap_{n} \ell_{\infty}\right)^{\eta} .
$$

It follows that

$$
\left({ }_{n} w_{p} \cap_{n} \ell_{\infty}\right)^{\eta} \subseteq{ }_{n} \ell_{r}
$$

$\operatorname{Thus}\left({ }_{n} w_{p} \cap_{n} \ell_{\infty}\right)^{\eta}={ }_{n} \ell_{r}$.
Hence it follows from Theorem 4.1 that the space ${ }_{n} w_{p} \cap_{n} \ell_{\infty}$ is not perfect.

ACKNOWLEDGEMENT

The authors are grateful to the referee for careful reading of the article and suggested improvements.

REFERENCES

[1] H. Dutta, On Köthe-Toeplitz and null duals of some difference sequence spaces defined by Orlicz functions, Eur. J. Pure Appl. Math, 2:4 (2009), 554-563.
[2] Ç.A. Bektaş, M. Et and R. Çolak, Generalized difference sequence spaces and their dual spaces, J. Math. Anal. Appl., 292(2004), $423-432$.
[3] P. Chandra and B.C. Tripathy, On generalized Köthe-Toeplitz duals of some sequence spaces, Indian J. Pure Appl. Math., 33(2002), 1301-1306.
[4] H. Fast, Surla convergence statistique, Colloq. Math., 2(1951), 241-244.
[5] J.A. Fridy, On statistical convergence, Analysis, 5(1985), 301-313.
[6] J.A. Fridy, Statistical limit points, Proc. Amer. Math. Soc., 118 (1993), 1187-1192.
[7] H. J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
[8] P.K. Kamthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker, New York (1981).
[9] G. Köthe and O. Toeplitz, Linear Raume mit unendlichvielen koordinaten and Ringe unenlicher Matrizen, Jour. reine angew Math.,
171 (1934), 193-226.
[10] C.G. Lascarides, A study of certain sequence spaces of Maddox and generalization of a theorem of Iyer, Pacific Jour. Math., 38(2) (1971), 487-500.
[11] I. J. Maddox, Continuous and Köthe-Toeplitz duals of certain sequence spaces, Proc. Camb. Phil. Soc., 65 (1969), 431-435.
[12] F. Moricz, Statistical convergence of multiple sequences, Arch. Math., 81(2003), 82 - 89.
[13] M. Mursaleen, H. H. E. Osama, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), 223 - 231.
[14] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann., 53(1900), 289-321.
[15] G. M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc., 28 (1926), 50-73.
[16] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73 -74.
[17] I. J. Schoenberg, The integrability of certain function and related summability methods, Amer. Math. Monthly, 66(1959), $361-375$.
[18] T. Salat, On statistically convergent sequences of real numbers, Math. Slovaca, 30(1980), 139-150.
[19] B. Sarma, Studies on Some Vector Valued Sequence Spaces and Köthe-Toeplitz Duals, 2005(Ph.D Thesis).
[20] A. Şahiner, M. Gürdal and F. K. Düden, Triple sequences and their statistical convergence, Selçuk J. Appl. Math., 8(2007), 49-55.
[21] B.C. Tripathy, Statistically convergent double sequences, Tamkang J. Math., 34(2003), 231-237.

[^0]: Corresponding author at: ${ }^{1}$ Department of Mathematics, Gauhati University, Kokrajhar Campus, Assam, INDIA :
 E-mail addresses: hemen_dutta08@rediffmail.com; bsrmathou@yahoo.com; iqbal501@yahoo.com, vjy_kaushik@yahoo.com;

