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ABSTRACT 
 
Depth function is a new notion intensively developed in the last decade in the field of non-parametric statistics, 
computational geometry, algebra, and computer science. It is closely related to multivariate ordering, robust estimation, 
and outlier detection. One of the most widely used in statistics and related areas is the so-called Mahalanobis depth. In 
this paper we redefine that depth function by introducing a new one which is equivalent to the former, in the sense that 
they give the same multivariate ordering, less complicated to compute, and generalizes the “vanishing at infinity” 
property of depth function.  
 
| center | covariance matrix | Mahalanobis depth | multivariate ordering | 

 
1. Introduction  

Suppose a random cloud in pR or a probability distribution is given. A depth function measures how central a 
point is located in the cloud or the distribution. In the last decade, see, for example, Liu et al. (1999), Zuo and 
Serfling (2000), and Mosler (2004), the notion of depth function has been put into a general context of theory and 
applications. Among various depth functions, Mahalanobis depth is the oldest one dated 1936 (see Liu et al. 
(1999) for further information). Since then, various versions were proposed. For example, half-space depth 
proposed by Hodges in 1955 and by Tukey in 1975 as reported in Liu (1990), convex hull peeling depth proposed 
by Barnett (1976), Oja depth by Oja (1983), simplicial depth by Liu (1990), majority depth by Singh in 1991 as 
reported in Liu et al. (1999). In recent years, there are a lot of new depth functions available. Among them are 
regression depth proposed by Rousseeuw and Hubert (1999), tangent depth by Mizera (2002), projection depth 
by Zuo (2003), spherical depth by Elmore, Hettmansperger, and Xuan in 2004 as reported in Elmore (2005), and 
elliptical depth by Elmore (2005).  
 
Theoretically, those depth functions are constructed in order to have a better one satisfying the following five key 
properties: affine invariant, monotone relative to deepest point, attain maximum value at the center, vanishes at 
infinity, and computationally efficient. Practically, the role of depth function in application is wider and wider. A 
comprehensive discussion on its wide applications such as in regression, confidence region, outlier identification, 
classification, discrimination, and multivariate control charts can be found in Mosler (2004). A specific 
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application in multivariate control charts is presented in Liu et al. (1999) and Dai et al. (2006) and an application 
in aviation safety analysis is presented in Cheng et al. (2000). 
 
By definition, depth function is closely related to multivariate ordering in the sense of center-outward ordering 
in pR , data outlyingness, and robust estimation. See, for example, Zuo and Serfling (2000) for the notion of these 
terminologies. In multivariate setting outlier region is defined as the complement of a depth central region. 
Furthermore, as in classical approach, the primary concern on robust estimation of location and covariance matrix 
lies in its property to have a high breakdown point. In classical approach, the most popular robust estimations are 
those constructed by minimizing the volume of ellipsoid (MVE) and by minimizing the determinant of 
covariance matrix (MCD) introduced by Rousseeuw (1985). Some improved versions of these two methods are 
proposed by many authors such as feasible solution algorithm in Hawkins (1994) and Hawkins and Olive (1999), 
fast MCD in Rousseeuw and van Driessen (1999), block adaptive computationally efficient outlier nominators 
(BACON) in Billor et al. (2000), and minimum vector variance in Herwindiati et al. (2006). It is to be noted that 
these versions are proposed in order to increase the computational efficiency. 
 
The popularity of MVE- and MCD-based robust estimations is due to their commendable properties. They are 
affine-equivariant and have high breakdown point. See Lopuhaa and Rousseeuw (1991), Hadi (1992), Croux and 
Haesbroeck (1999), Rousseeuw and van Driessen (1999), Werner (2003), Hardin and Rocke (2004) for further 
discussion on these properties, and Jensen et al. (2005) for potential application in multivariate process control. 
However, because these robust estimations are constructed based on Mahalanobis depth, they are complicated to 
compute due to the need of inversion of covariance matrix.  
 
The computational complexity of Mahalanobis depth, in terms of the number of operations in its computation, is 
still questionable especially for high dimensional data sets. The higher the dimension of the data sets the greater 
the number of operations in the computation of Mahalanobis distance the higher the computational complexity 
and the lower the computational efficiency. Can we redefine that depth function in a less complicated manner to 
compute? This is the problem that we intent to discuss in this paper. The main result consists of a new definition 
of Mahalanobis depth and a generalization of the “vanishing at infinity” property. The new definition will be 
formulated by introducing a new depth function which is equivalent to the former, i.e., they give the same 
multivariate ordering in the sense of center-outward ordering, and less complicated to compute. 
  
This paper is organized as follows. In Section 2 we propose a new depth function and redefine the Mahalanobis 
depth. Section 3 will be focused on its computational complexity in terms of the number of operations in its 
computation. We show that asymptotically its relative complexity with respect to Mahalanobis depth is eight 
eleventh. This is a promising advantage. Additional remarks in Section 4 will close this presentation. 
 
 
2. A Proposed Depth Function 
 

Let Φ be the class of p-variate distributions and XF  be the distribution of a given random vector X in pR . The 
following formal definition of depth function is given in Zuo and Serfling (2000). 
 
Definition 1. 
 
A non-negative and bounded mapping D from pR ×Φ  ®  R is called depth function if it satisfies the following 
properties: 

1. Affine invariance. ( , )Ax bD Ax b F ++  = ( , )XD x F  for any random vector X in pR , any non-singular 

matrix A of size p ×  p, and any vectors b in pR ; 
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2. Maximality at center. ( , )D Fq  = sup ( , )
x

D x F , for any F in Φ and q in pR  called the center of F; 

3. Monotonicity relative to deepest point. ( , )D x F  £  ( (1 ) , )D x Fl q l+ -  for any F in Φ having 
deepest point q  and 0 £ l £  1; 

4. Vanishing at infinity. ( , )D x F  ®  0 if x q-  ®  ∞  and F in Φ.  
 
 A sample version of ( , )D x F , denoted by ( , )n nD x F  is defined by replacing F by a suitable empirical 

distribution nF ; n is the sample size. Thus, for a given random sample of size n, ( , )n nD x F  is a function of x. In 
this setting, sample version of Mahalanobis depth is defined in the next paragraph. 
 
Let 1X , 2X , ..., nX  be a random sample from p-variate distribution where the second moment exists. The 
sample mean vector and sample covariance matrix are, respectively, 

1

1 n

i
i

X X
n =

= ∑  and 
1

1 ( )( )
1

n
t

i i
i

S X X X X
n =

= − −
− ∑  

 
Sample version of Mahalanobis depth of iX  is defined as (Liu et al. (1999)) 

iMD  = 1

1
1 ( ) ( )t

i iX X S X X−+ − −
 

 
This measures how depth iX  is with respect to the random cloud 1X , 2X , ..., nX . The larger the value of 

iMD  the closer the point iX  to the center X .  
 
The second term of the denominator at the right hand side of iMD  is the so-called 2T -Hotelling’s statistic or 
Mahalanobis distance. In the literature, see for example, Hadi (1992), Liu et al. (1999), Rousseeuw and van 
Driessen (1999), Werner (2003), and Herwindiati et al. (2006), that distance is computed directly from the 
definition. Thus, we need the inversion of sample covariance matrix S. This is a very tedious job especially for 
high dimensional data sets. Its computational complexity, in terms of the number of operations in its algorithm, is 
high. In what follows we redefine the Mahalanobis depth by introducing a new depth function with the following 
properties: 
 

1. It is equivalent to Mahalanobis depth in the sense that they give the same multivariate ordering, i.e., the 
same center-outward ordering described by the second and third properties in Definition 1. See also, for 
example, Liu (1990) and Liu et al. (1999); 

2. Its computation is less complicated than that of Mahalanobis depth.  
 
A new definition of Mahalanobis depth will be formulated based on Proposition 1 which can be proved by using 
the property of the determinant of a partitioned matrix.  
 
Proposition 1. Let  1X , 2X , ..., nX  be a random sample from p-variate distribution having the second 
moment and, 
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iM  =  
( )
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1
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 − 

 

a matrix of size (p+1)× (p+1) associated with iX ; i = 1, 2, ... , n. If S  and iM  are the determinant of S  and 

iM , respectively, then  

iMD  = 
2 i

S
S M−

 

Proof. 
 

Let 2
iT  = 1( ) ( )t

i iX X S X X−− − . Then, by using the property of the determinant of a partitioned matrix, see 
Appendix A in Anderson (1966) or Mardia et al. (1979), we obtain,  

2 1 i
i

M
T

S
= − . 

From this equality we get,  

iMD  = 1

1
1 ( ) ( )t

i iX X S X X−+ − −
 = 

1

1 1 iM
S

 
+ − 
 

 = 
2 i

S
S M−

 

as we have to prove. 
 
In the following proposition we show that iM  and iMD  define the same multivariate ordering. 
 
Proposition 2. iMD  ≤  jMD  if and only if iM  ≤  jM . 

 
Proof. 

Proposition 1 gives us that iMD  ≤  jMD  if and only if 
2 i

S
S M−

 ≤  
2 j

S
S M−

. This means that iMD  

≤  jMD  if only if 2 jS M−  ≤  2 iS M−  or if and only if iM  ≤  jM . Thus, we get the proof. 

 
This proposition shows that the two functions iM  and iMD  measure the depth of iX and define the same 

multivariate ordering, i.e., the same center-outward ordering. Based on this result, we propose to use iM  as a 

new depth function which is equivalent to Mahalanobis depth. Furthermore, as the value of iMD  is in (0, 1), the 

value of iM  is in ( − ∞ , S ) because iMD  is proportional to the negative of the inverse of iM . This 
suggests us to reformulate Definition 1 and generalize the fourth property of depth function described in that 
definition. The function D in Definition 1 does not need to be non-negative nor bounded. It just needs to be 
bounded above. Furthermore, the fourth property which says that ( , )D x F  ®  0 if x q-  ® ∞  must be 
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generalized. As iM  is in (− ∞ , S ), that property must be extended as follows: ( , )D x F  tends to 0 or − ∞  
at infinity. 
 
 
3. Futher Result 
 
An advantage of iM  as a measure of the depth of iX  is that it does not need any matrix inversion in its 

computation. It only needs to compute the deteminant of a symmetric matrix. This means that iM  is less 

complicated to compute than iMD . Its computational complexity is certainly lower than that of Mahalanobis 
depth. More precisely, by using Cholesky decomposition to calculate the determinant of a symmetric matrix and 
the inverse of covariance matrix, the asymptotic relative computational complexity of iM  with respect to 

iMD , i.e., the ratio of the number of operations in their computations, is less than 1. This is given in Proposition 
3. 
 
Proposition 3. If iM  and the inverse of covariance matrix are computed using Cholesky decomposition, then 

the asymptotic relative computational complexity of iM  with respect to iMD  is 
8
11

. 

 
In fact, the number of operations in the algorithm to compute iM  and iMD  are, respectively (substitute m by 
(p+1) in Appendix A and by p in Appendix B) 
 

1. ( ) ( ) ( )3 22 3 51 1 1 1
3 2 6

p p p+ + + + + + ,  

2. 3 211 27 39 2
12 8 4

p p p+ + + . 

 
Thus, according to the number of operations in those algorithms, the asymptotic relative computational 
complexity of the proposed depth function with respect to Mahalanobis depth equals,  
 

( ) ( ) ( )3 2

3 2

2 3 51 1 1 1
3 2 6lim 11 27 39 2

12 8 4
p

p p p

p p p
→∞

+ + + + + +

+ + +
 = 

8
11

. 

 
Table 1 illustrates the difference of the number of operations in the computation of the two depth functions for 
various values of p. We see that, as p gets larger, the column iM  divided by the column iMD  tends to eight 
eleventh. 
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Table 1. Number of operations in the computation of iMD  and iM  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1 is a graphical display of Table 1. The upper curve is for Mahalanobis depth and the lower for the 
proposed depth function. We see how the number of operations in the algorithm to compute the two depth 
functions differs considerably.  
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Figure 1. Number of operations in computing iMD  and iM  as a function of p  

 
 
 

p  
iMD  iM   p

iMD  iM  

5 
10 
15 
20 
25 
30 
35 
40 
45 
50 
60 
70 

         250 
       1354 
       4001 
       8880 
     16678 
     28082 
     43780 
     64459 
     90806 
 1.24E+05 
 2.11E+05   
 3.32E+05 
    

         204 
       1079 
       3129        
       6854 
     12754 
     21329 
     33079 
     48504 
     68104 
     92379 
 1.57E+05 
 2.46E+05 
    

 80 
90 
100 
150 
200 
250 
300 
350 
400 
450 
500 

 4.92E+05 
 6.96E+05 
 9.51E+05 
 3.17E+06 
 7.47E+06 
 1.45E+07 
 2.51E+07 
 3.97E+07 
 5.92E+07 
 8.42E+07 
 1.15E+08 

 3.64E+05 
 5.15E+05 
 7.02E+05 
 2.33E+06 
 5.47E+06 
 1.06E+07 
 1.83E+07 
 2.90E+07 
 4.32E+07 
 6.15E+07 
 8.42E+07 
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4. Additional remarks 

The advantage of the proposed depth function iM  lies in its computation which is less complicated than that of 

Mahalanobis depth iMD . Its computational complexity, i.e., the number of operations in the computation of 

iM , is less than that of iMD . Specifically, its asymptotic relative computational complexity is eight eleventh 

for p sufficiently large. However, iM  has its own limitation with respect to iMD . In the latter we need to 

compute the inverse of S once for all sample items, whereas in the former we need to involve S in iM  for each 
sample item i. We also note that these two depth functions need the condition that the second moment of the 
population exists.  
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