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Abstract  Recently, the emergence of various applications to use EEG has evolved the EEG 
device to become wearable with fewer electrodes. Unfortunately, the process of removing artefact 
becomes challenging since the conventional method requires an additional artefact reference 
channel or multichannel recording to be working. By focusing on frontal EEG channel recording, 
this paper proposed an alternative single-channel eye blink artefact removal method based on the 
ensemble empirical mode decomposition and outlier detection technique. The method removes 
the segment of the potential eyeblinks artefact on the residual of a pre-determined level of 
decomposition. An outlier detection technique is introduced to identify the peak of the eyeblink 
based on the extreme value of the residual signal. The results showed that the corrected EEG 
signal achieved high correlation, low RMSE and have small differences in PSD when compared to 
the reference clean EEG. Comparing with an adaptive Wiener filter technique, the corrected EEG 
signal by the proposed method had better signal-to-artefact ratio. 
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Introduction 
 
Electroencephalogram (EEG) is one of the techniques to record brain signals by using electrodes affixed 
on the scalp following the standard 10-20 systems [1]. EEG is non-invasive and safe, making it the most 
preferable modality for recording brain activities in various clinical and non-clinical applications [2]. For 
example, epilepsy diagnosis [3, 4], brain-computer interface [5, 6] and cognitive studies [7, 8]. Earlier 
EEG experiments required plenty of preparation with many electrodes and wires attached to the scalp. 
In recent years, the emergence of other applications on using EEG evolves the EEG device into portable 
with fewer electrodes, ergonomic and wireless. This innovation allows the EEG experiments to be 
performed outside of the laboratory environment [9]. However, the drawback of fewer electrodes is the 
processing of artefact removal becomes challenging because of fewer signal sources. Thus, this study 
will address this issue by proposing an alternative method to remove artefact, focusing on a single frontal 
EEG channel. 
 
EEG recorded on frontal lobe area usually contaminated by eye blink artefact [10]. Eye blinks can 
produce a very large potential compared to the EEG signal, lasting between 50 and 500 milliseconds at 
a rate of 20 times per minute [11]. Due to its high magnitude, it is crucial to remove the eye blink signal 
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as it will lead to undesirable results in the EEG signal analysis [12]. The easiest way to prevent eye blink 
artefacts is by asking the participant to avoid blinking. Though, it is not practical for a subject to limit eye 
blinking for a long period of an experiment [13]. Therefore, the eye blink signal will always be present in 
the EEG recording. The simplest method is by removing the contaminated EEG segment or using a 
bandpass filter to remove the 0–12 Hz electrooculography (EOG) frequency band. However, since the 
eye blink overlaps with the EEG signal, these methods may lead to the loss of some important EEG data 
[14].  
 
The traditional method to suppress eye blink artefact is by using regression and adaptive filter technique. 
Both methods require an artefact reference channel, therefore, it is not suitable to be used for mobile 
EEG devices since most of them do not provide the reference channel. The other way is by decomposing 
the EEG signal into several components without the aid of artefact reference channel. The most popular 
decomposition technique is the independent component analysis (ICA) [15]. ICA assumes that the 
recorded EEG signal is an instantaneous linear mixture of several independent sources (i.e., pure EEG 
signal and artefact signals). Thus, ICA decomposed the EEG signal into several independent 
components (ICs) and then discarded the ICs containing the potential artefact. The remaining ICs are 
reconstructed as the corrected EEG [16]. However, since ICA requires a sufficient number of EEG 
channels, it is not working well when using a single or few numbers of EEG channels [17]. 
 
Otherwise, wavelet transform (WT) and empirical mode decomposition (EMD) offers a good technique 
in decomposing non-stationary EEG signals even using a single EEG channel [16]. WT transforms the 
EEG signal from the time domain to a time-frequency domain into a set of coefficients based on a scaled 
and shifted process of a mother wavelet function [18]. Briefly, the EEG signal is filtered into a low pass 
subband (i.e., approximation) and a high pass subband (i.e., detail). After decomposition, components 
that contain artefacts are discarded and the corrected EEG signal is obtained by adding up the detail 
coefficients at each level of decomposition. Though, WT is unable to remove artefacts that overlap with 
EEG signals in spectral properties [18, 19]. Moreover, without having prior knowledge of the interest 
signal, it would be difficult to choose WT’s optimal basis function [20]. 
 
Huang et.al. [21] has proposed a heuristic technique to decompose non-stationary and non-linear signals 
called EMD. EMD decomposes a signal into a series of intrinsic mode functions (IMF) through an iterative 
method called the sifting process. In that process, the local extremes of a signal are identified and 
interpolated to form an upper and lower envelope. Then, the mean envelope is subtracted and assigned 
as the IMF. The sifting process is stopped when the residual signal exhibit a monotonic function [21]. 
IMF can be defined according to the following conditions: (i) the total number of local extrema and the 
number of zero-crossings must be equal or differ at most by one, and (ii) the mean value of upper and 
lower envelope is zero. After decomposition, IMFs containing artefact signals can be discarded. The 
corrected signal is obtained by summing up the remaining IMFs. Unlike WT, EMD is a data-driven 
algorithm, it decomposes nonlinear and non-stationary signals naturally without a priori knowledge of the 
signal [22, 23].  
 
According to the above discussion, EMD-based method offers a good decomposition on removing eye 
blink artefacts based on the following conditions: (i) feasible for a single or few numbers of EEG channel, 
(ii) do not require artefact reference channels (i.e., prior knowledge) and (iii) completely a data-driven 
method. The original EMD method is sensitive to noise and faced a mode mixing problem. Wu and 
Huang [24] have overcome this issue by proposing a noise-assisted method called the ensemble 
empirical mode decomposition (EEMD), which gives a major improvement of the original EMD. Hence, 
this study is proposed to implement EEMD to decomposed EEG signal and removing the eye blink 
artefact with the aid of outlier detection technique. The detailed procedures of the proposed method are 
described in the methodology section. 
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Data description 
Modelling of eye blink artefact 
 
The shape of an eye blink artefact was generated by averaging 10 samples of eye blink spikes from a 
raw EEG signal. The raw EEG signal was recorded on the frontal lobe (i.e., AF3) at 128 Hz of sampling 
rate [25]. Initially, the raw EEG signal was detrended to remove the DC offset. Then, a high pass filter 
with 0.5 Hz of cut-off frequency was used to remove the low-frequency noises. Later, the eye blink 
artefacts were identified and extracted manually by referring to the landmark properties of an eye blink 
as described in [26]. Figure 1 depicts the segmentation and the average of the eye blink artefact. The 
average eye blink artefact was then composed with a series of 10 seconds of white noise signals such 
 

c(t)= s * average eye blink + n(t)    (1) 
 
where c(t) is the created eye blink artefact signal, s is a random value to scale the amplitude of the eye 
blink artefact and n(t) is the series of the white noise signal. For analysis purposes, the signal-to-noise 
ratio (SNR) of the white noise signal is varied in the experimental. 
 

 
 

 

 
 

Figure 1. (a) Segmentation of eye blink artefacts, (b) the average of eye blink artefact. 
 
 
Modelling of contaminated EEG signal 
The modelling of the contaminated EEG signal was composed of a clean EEG signal and the created 
eye blink artefact signal. The clean EEG signal was taken from [27], particularly at AF3 channel, within 
the resting state segment with closed eyes. It is claimed to be an artefact-free EEG, thus it will be used 
as the reference of a clean EEG signal for this study. Since the reference EEG signal was recorded at 
500 Hz, the signal was downsampled to 128 Hz to match the sampling frequency of c(t). The model of 
the contaminated EEG signal was defined as follows:  
 

y(t)	=	x(t)	+	c(t)     (2) 
 
where y(t) is the model of the contaminated EEG signal, and x(t) is the reference clean EEG. Figure 2 
illustrates the steps to model the contaminated EEG signal. Note that the average eye blink artefact was 
duplicated ten times with different amplitude and time scales. 

(b) 

(a) 
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Figure 2. Steps to model the contaminated EEG signal. 
 

Methodology 
 

The proposed method 
Figure 3 shows the framework of the proposed method. Initially, a normalized EEG signal is decomposed 
using EEMD with a pre-determined level of IMF. From its residual signal, the extreme values are 
identified. Note that, the residual term in this work refers to the summation of remaining unselected IMFs 
and the decomposition residual. An outlier detection technique is established to identify extreme values 
that differ significantly from the typical amplitude of an EEG signal. The identified outlier is assumed as 
the peak of an eye blink. Next, the segment of the eye blink artefacts is removed from the residual signal. 
The removed segment data is then reconstructed by using the cubic spline interpolation method. Finally, 
the decomposed EEG signal is reconstructed by summing up all the IMFs and the artefact-free residual 
signal to obtain the corrected EEG signal. 
 
The detailed algorithm of the proposed method is briefly explained as follows: 
1. Signal normalization: The EEG signal is normalized using the standard deviation method: 
 

𝑧(𝑡) = 	
𝑦(𝑡)
𝜎   (3) 

 
where z(t) is the normalized EEG signal and σ is the standard deviation of signal y(t). 
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Figure 3. The framework of the proposed eye blink artefact removal technique. 
 
2. Ensemble empirical mode decomposition: The decomposition processes of the contaminated 
EEG signal, y(t) using EEMD are as follows: 
i. Add a series of white noise, ωn(t) with an amplitude, a to z(t), such zn(t) = z(t) + a*ωn(t). In this 

study, the amplitude of the added noise, a was set to 0.4. 
ii. Find the local extrema of zn(t) such that local minima, emin(t) and local maxima, emax(t). 
iii. Construct an upper envelope, u(t) and lower envelope, b(t) by connecting the series of emin(t) and 

series of emax(t) using the cubic spline interpolation method. 
iv. Calculate the mean of the envelopes, 𝑚(𝑡) = *(+),-(+)	

.
. 

v. Compute the difference, d(t) = zn(t) – m(t). 
vi. Repeat steps (ii) to (v) until d(t) satisfies the basic conditions of IMF. If d(t) meets the conditions of 

IMF, assign d(t) as the first IMF such IMF1=d(t). This repetition is called the sifting process. 
vii. Generate the residual such that r(t) = zn(t) – IMF1.  
viii. Repeat steps (ii) to (viii) to find the next IMFs by replacing zn(t) as r(t). Note that, in this study, the 

process is stopped at a pre-determined level of IMF.  
ix. Repeat steps (i) until (viii) for n number of ensembles with different white noise series, ωn(t), and 

obtain the ensemble mean of the corresponding IMFs as the result. In this study, the number of 
ensembles used was 200. 

 
Determination of decomposition level 
Referring to step (viii), the level of extracted IMF was determined by finding the highest correlation 
between the residual, r(t) and the created eye blink artefact signal, c(t). An analysis was conducted by 
repeating the decomposition process with different level of extracted IMF. Then, the correlation was 
computed for each decomposition process as shown in Table 1. The highest correlation was 0.973, 
obtained from the residual signal when the level of extracted IMF was 3. Hence, for future EEMD 
decomposition, this value is preferred. 
 

Table 1.  Correlation of corresponding IMFs and the created eye blink artefact signal, c(t). 

Number of IMF extracted from signal, y(t) Correlation at residual signal, r(t) 
1 0.959 
2 0.964 
3 0.973 

 4  0.929 
5 0.821 

 
Figure 4 shows the EEMD decomposition of the signal y(t) into three level of IMFs. The r value is the 

Normalized 
EEG signal EEMD 

Find extreme points 
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segment removal 
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Pre-determined level of 
IMFs  
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Pearson’s correlation of IMFs and residual with the created eye blink signal, c(t). The correlation r 
indicates that the residual, r(t) is approximately similar to c(t). Hence, it is feasible to remove eye blink 
artefact from r(t) of three extracted IMFs. The peak of the eye blink is identified using the proposed outlier 
detection method as explained in the next step. 
 

 

 
 

Figure 4. EEMD decomposition of the contaminated EEG signal, y(t) with three level of IMFs. 
 

3. Outlier Detection: The typical peak-to-peak amplitude range of an EEG signal can reach up to 
100 µV when measured from the scalp [10, 28]. Based on this fact, the outlier detection is 
established to identify an extreme value that has an amplitude difference larger than 100 µV from 
its closer extreme value. The procedures of the detection are explained below: 
i. Find extreme values of the residual signal, r(t). 
ii. Find the outlier(s) from the extreme values based on the following condition: 

Let E be the set of the extreme values with k number of elements.  
If (Ek+1 – Ek) > 100 µV, assign Ek+1 as an outlier. 

 
4. Eyeblink artefact segment elimination: The outlier obtained in the previous step is assumed as 

the peak of the potential eye blink artefact. Hence, the lower base data points of the detected eye 
blink spike are taken from the nearest local minima on both sides (i.e., Ek and Ek+2) of the detected 
peak, Ek+1. Finally, the eye blink signal artefacts are removed from r(t) by eliminating data points 
from Ek to Ek+2. The residual signal was then reconstructed using a piecewise cubic spline 
interpolation method. Figure 5 illustrates the steps on removing the potential eye blink spikes. 

 
5. Signal reconstruction: This study assumed y(t) was only contaminated with eye blink artefacts. 

Thus, the corrected EEG can be obtained by adding the IMFs and the reconstructed residual signal 
such  

 

𝑌(𝑡) =0𝐼𝑀𝐹4 + 𝑟7

7

489

 (4) 

 
where Y(t) is the corrected EEG signal, IMFi is the set ensemble means of IMF and rj is the 
reconstructed residual signal r(t). The corrected EEG signal was then evaluated using 
performance metrics described in the next section. 



 

 
737 

Sha’abani et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 17 (2021) 731-741 

 
 

Figure 5. The processes involved in removing eye blink spikes. 
  
Performance metrics 
The performance of the proposed method was evaluated by measuring the similarity between the 
corrected EEG, Y(t) and the reference clean EEG signal, x(t) using Pearson’s correlation, root mean 
square error (RMSE) and power spectral density (PSD) differences. Pearson’s correlation quantifies 
the relationship between the corrected and the original clean EEG signal. While RMSE calculates the 
differences (i.e., error) between Y(t) and x(t). The Pearson’s correlation and the RMSE are defined as 
follow: 
 

𝑟 =
	∑ [𝑥(𝑡) − 𝑥]? [𝑌(𝑡) − 𝑌@]A
+89

B∑ [𝑥(𝑡) − 𝑥]? . ∑ [𝑌(𝑡) − 𝑌@].A
+89

A
+89

 (5) 

 

𝑅𝑀𝑆𝐸 = F∑ [𝑥(𝑡) − 𝑌(𝑡)].A
+89

𝑁  (6) 

 
where N is the signal length, and 𝑥̅ and 𝑌@ are the mean of signal x(t) and Y(t) respectively.  
 
The power spectral density (PSD) differences, epsd between Y(t) and x(t) across the brainwave 
frequencies (i.e., δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), β (13–30 Hz) and γ (30–45 Hz)) are also 
determined. The PSD is calculated using Welch’s method [29]. A lesser epsd indicates that the 
frequency properties of Y(t) are close to x(t).  
 
In addition, the performance of the proposed method has been compared with an adaptive Wiener 
filter. The purpose of comparing with Wiener filter is to evaluate the feasibility of the proposed method 
in removing eye blink artefact even not using an artefact reference signal. A signal-to-artefact ratio 
(SAR) [30] was used to evaluate the performance of both artefact removal methods. SAR is calculated 
before and after the artefact removal process by using these equations: 
 

𝑆𝐴𝑅JKL+MN4LM+OP = 10	𝑙𝑜𝑔9V W
𝑠𝑡𝑑[𝑥(𝑡)]

𝑠𝑡𝑑[𝑥(𝑡) − 𝑦(𝑡)]Z (7) 
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𝑆𝐴𝑅JK[[OJ+OP = 10	𝑙𝑜𝑔9V W
𝑠𝑡𝑑[𝑥(𝑡)]

𝑠𝑡𝑑[𝑥(𝑡) − 𝑌(𝑡)]Z (8) 

 
where std refers to standard deviation. Method that has higher SAR value indicates a better artefact 
removal process [31]. 
 

Results and discussion 
 

Figure 6 shows the comparison of the EEG signal before and after the artefact removal process by the 
proposed method. As can be seen, the PSD of x(t) was altered from P1 to P2 after the eye blink artefact 
was added into the signal. In P2, most of the power between 0 Hz and 10 Hz was coming from the eye 
blink artefact. In Figure 6 (c), the eye blink artefacts were successfully eliminated from y(t) after the 
proposed eye blink removal process was implemented. Subsequently, the PSD of the EEG signal was 
successfully recovered as illustrated in P3. 

 

 
 

Figure 6. Comparison of time series EEG signal and the PSD between (a) x(t), (b) y(t) and (c) Y(t). 
 

An analysis has been conducted to observe the performance of the proposed method under different 
SNR conditions. For comparison, an adaptive Wiener filter has been implemented on the same 
contaminated EEG signal, y(t). Table 2 shows the results of the correlation, r and the RMSE of the 
analysis. In general, the proposed method showed a higher correlation and less RMSE than the Wiener 
filter approach. These results indicate that the EEG signal corrected by the proposed method has a 
strong positive correlation and less distortion than the Wiener filter approach. However, the 
performance decreased with SNR = -20 dB. 
 

Table 2.  Comparison of correlation and RMSE of the proposed method with the Wiener filter approach. 

SNR (dB) Proposed method Wiener filter 
r RMSE r RMSE 

0 0.87 5.74 0.54 9.27 
-5 0.87 6.03 0.52 9.36 
-10 0.85 6.52 0.51 9.45 
-15 0.79 7.95 0.50 9.55 
-20 0.63 11.84 0.43 10.01 
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Table 3 shows the comparison of the epsd by the proposed method and the Wiener filter across the 
brainwave subbands. In general, the proposed method has a smaller epsd than the Wiener filter 
approach. A positive epsd was observed on the proposed method because there was still a small 
fraction of the eye blink that exists in the EEG signal after the removal process. However, the amount 
of the residual eye blink artefact is much smaller than the amount being removed. Meanwhile, the epsd 
of the Wiener filter approach showed a negative value, which indicates that the approach excessively 
removed the EEG signal. This is shown in Figure 7 where the EEG signal corrected by the Wiener filter 
was degraded, while the proposed method successfully preserved most of the frequency component 
of the EEG signal. 
  

Table 3.  Comparison of epsd of the proposed method and the Wiener filter at each brainwave subbands. 

SNR Proposed method Wiener filter 
epsd _δ epsd _θ epsd _α epsd _β epsd _γ epsd _δ epsd _θ epsd _α epsd _β epsd _γ 

0 +3.55 +1.82 +0.64 +1.18 +0.93 -26.25 -14.71 -23.61 -9.12 -0.09 
-5 +5.96 +1.51 +1.25 +2.37 +1.39 -26.15 -14.53 -24.24 -9.43 -0.41 
-10 +7.12 +1.50 +1.03 +2.94 +3.37 -26.34 -14.32 -24.29 -9.70 -0.81 
-15 +7.41 +0.69 +3.36 +11.19 +9.03 -25.64 -14.44 -24.79 -9.89 -0.90 
-20 +11.53 +2.88 +3.67 +32.78 +24.30 -26.64 -14.98 -29.88 -9.72 -0.39 

 
 

 
 

Figure 7. The comparison between (a) the clean EEG signal and the corrected EEG signal by (b) the 
proposed method and by (c) the Wiener filter at SNR = 0 dB. 

 
Figure 8 shows the SAR of the EEG signal before and after the artefact removal process for the 
proposed method and the Wiener filter over 0 dB to -20 dB of SNR conditions. Generally, the SAR of 
the EEG signal was increased after using both eye blink artefact removal processes. Over the SNR 
conditions, the SAR value of the proposed method decreased as the SNR value decreased, but the 
Wiener filter approach did not show any significant changes. By comparing SAR values, the proposed 
method has a better SAR than the Wiener filter approach. This shows that the proposed method 
outperforms the Wiener filter approach in eliminating the eye blink artefact. However, at SNR = -20 dB, 
the SAR of the proposed method was less than the Wiener filter approach. 
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Figure 8. SAR of the EEG signal before and after the eye blink artefact removal over 0 dB to -20 dB 
of SNR conditions. 
 

Conclusion 
 

In this paper, the eye blink artefact removal method for EEG signal based on EEMD and outlier 
detection technique has been proposed. The significance of this method is it can be used on a single 
EEG channel and does not require an EOG reference channel. The experiment on simulated EEG 
data demonstrated that the proposed method is capable to remove the eye blink artefact and retain 
most of the time and frequency component of the EEG data. The proposed method is also compared 
with the conventional Wiener filter approach. The SAR results showed that the proposed method is 
better than the Wiener filter approach in removing the eye blink artefact. 
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