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Abstract The Air Pollution Index (API) of Malaysia has increased consistently in recent 
decades, becoming a serious environment issue concern. In this paper, we analyzed daily integer 
value time series data for API in Sarawak from January to June in 2019 using generalized 
autoregressive conditional heteroskedasticity (GARCH) family for discrete case namely Poisson 
integer value GARCH (INGARCH), negative binomial integer value GARCH (NBINGARCH) and 
integer value autoregressive conditional heteroskedasticity (INARCH) models. The parameters of 
the models will be estimated using quasi likelihood estimator (QLE) and we compare their Aiken 
information criterion (AIC) and Bayesian information criteria (BIC) to determine the best model 
fitted the data. Besides, the forecasting performance will be measured by using mean square error 
(MSE) and Pearson Standard Error (𝜀𝑡). The results showed that INGARCH (1,1) and INARCH 
(1,0) performed inconsistent results since the conventional methods of NBINGARCH (1,1) 
outperformed the performance of INGARCH (1,1) and INARCH (1,0). However, consistent results 
were achieved as the  NBINGARCH (1,1) gave the smallest forecasting error compared to 
INGARCH (1,1) and INARCH (1,0). The findings are very important for controlling the API results 
in future and taking protection measure for conservation of the air. 
Keywords: Forecast Time series, Generalized Autoregressive Conditional Heteroskedasticity 
(GARCH), Air Pollution Index, Integer-Value.  

 

 
 

Introduction 
 
Air quality prediction has become a crucial area of environmental science due to negative effects of high 
concentrations of different contaminants on human health. The air quality is defined by the API. Many 
researchers have used time series analysis to estimate the concentration of different pollutants and air 
quality in the literature [1]. Air pollution consists of a mixture of gases and particulate matter in harmful 
quantities released into the atmosphere by natural or human [2]. Carbon monoxide (CO), ozone (O3), 
particulate matter (PM10), nitric oxide (NO), nitrogen dioxide (NO2), nitrogen oxides (NOx), and Sulphur 
dioxide (SO2) are the gases and particles involved. Air pollution is a fundamental problem in many parts 
of the world and it raises two important concerns. Firstly, the impact on human health and, secondly, on 
the environment [3]. It is extremely harmful and had been the causes of many deaths worldwide. It was 
estimated that 200,000 to 570,000 or about 0.4 to 1.1 per cent of global basis annual death recorded 
had been due to air pollution [4]. 
 
However, time series analysis has been used by many researchers in literature to predict the 
concentration of various pollutants and the air quality [5]. A hybrid model is proposed to deal with both 
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linear and nonlinear data of a station in Delhi during 1999 to 2003 [6]. Kumar [7] in 2011 predicted the 
air quality index of Delhi based on three models namely Autoregressive Integrated Moving Average 
(ARIMA), principal component regression and hybrid of the first two. It was found that the model 
demonstrated the highest performance accuracy compared to other models. Further the importance of 
various meteorological parameters in model 3 which is integration between ARIMA and principle 
component regression was assessed based on principal component analysis. In the same year, the short 
term prediction of the concentration of ozone in Albany, New York was presented by Tsakiri [8] based 
on vector autoregressive model and the Kalman filter. The performance of linear, nonlinear and hybrid 
model was checked using mean absolute percentage error and relative error. It was found that the hybrid 
model outperformed both the linear and nonlinear models. In 2012, the data of eight stations in central 
Taiwan have been analyzed by using multivariate time series analysis models namely Autoregressive 
Conditional Heteroscedasticity (ARCH) and GARCH [9]. The models selected both the photochemical 
and fuel factors for evaluating the various time series patterns. In two years ahead, Kadiyala [10] 
developed a model to manage the indoor air quality using multivariate time series model to manage the 
concentrations of both carbon dioxide and carbon monoxide. This prediction was applied to design an 
optimal ventilation system for vehicles. Next, there is researcher analyzed the patterns of the relationship 
between various air pollutants of an Alpine Italian province [11]. The dynamic multiple time series 
analysis is carried out using common autoregressive stochastic model to find the improvement level in 
the pollution during the last decade. In 2016, Hoi and Mok [12] proposed a model named time-varying 
autoregressive model with linear exogenous input (TVAREX) for predicting the daily concentration of 
PM10 based on Kalman filter based autoregressive model. The results of TVAREX model were 
compared to artificial neural network (ANN) model and it was observed that TVAREX outperformed ANN. 
The prediction was found to be most accurate when the time series components of temperature and 
solar radiation were taken into consideration. 
 
Integer-valued time series models have been widely used, especially integer-valued autoregressive 
models and integer-valued generalized autoregressive conditional heteroscedastic (INGARCH) models 
[13]. Rodrigo and Wagner [14] propose a general class of Integer-valued Generalized Auto Regressive 
Conditional Heteroskedastic (INGARCH) models based on a flexible family of mixed Poisson (MP) 
distributions. Next, they proposed class of count time series models contains the negative binomial (NB) 
INGARCH process as particular case and open the possibility to introduce new models such as the 
Poisson-inverse Gaussian (PIG) and Poisson generalized hyperbolic secant processes. In particular, the 
PIG INGARCH model is an interesting and robust alternative to the NB model. The author illustrates the 
flexibility and robustness of the MPINGARCH models through two real-data applications about number 
of cases of Escherichia coli and Campylobacter infections. The Poisson integer-valued GARCH model 
is a popular tool in modeling time series of counts. However, Zhu [15] consider a class of flexible bivariate 
Poisson INGARCH(1,1) model whose dependence is established by a special multiplicative factor. 
Stationarity and ergodicity of the process are discussed. Poisson INGARCH model, which is more 
flexible and allows for positive or negative cross-correlation. In the integer-valued generalized 
autoregressive conditional heteroscedastic (INGARCH) models, parameter estimation is conventionally 
based on the conditional maximum likelihood estimator (CMLE). However, because the CMLE is 
sensitive to outliers, Lee and Kim [16] consider a robust estimation method for bivariate Poisson 
INGARCH models while using the minimum density power divergence estimator. They demonstrate the 
proposed estimator is consistent and asymptotically normal under certain regularity conditions. 
 
Though majority of the research has been focused on the prediction of individual concentration of 
pollutants, there is a need to predict a single value that indicates the air quality. In this paper, the 
univariate time series analysis of the Kimanis, Limbang, ILP Miri, Kapit and Samarahan has been 
performed by using GARCH family namely INGARCH (1,1), NBINGARCH (1,1) and INARCH (1,0) 
models. INGARCH (1,1), NBINGARCH (1,1) and INARCH (1,0) models is used because the Air Pollution 
data is integer value which mean it is more accurate with the model. The detail about study area 
regarding the data description has been presented in the next section. Section 3 discusses the 
methodology for time series analysis of air index pollution dataset. A comparison between the 
performance evaluation results between INGARCH (1,1), NBINGARCH (1,1) and INARCH (1,0) has 
been discussed in Section 4. Hence, a conclusion has been presented in the last section. 
 
Materials and Data 
 
Description of sampling sites 
Sarawak were selected for this study due to variety of locations it offered; urban areas that consists of 
both living and working areas and have high population and suburban areas that are mainly residential 
area with a larger population than rural areas. Moreover, these locations have often been affected by 
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trans-boundary pollution from the neighbouring countries, which has been usually the main factor behind 
hazardous occurrences. This dangerous haze is caused by forest fires in Sumatra and Kalimantan. Due 
to the haze that hit the country, Malaysia ranks third in the world in the list of countries that record the 
highest API after Iran and Indonesia in 2019. In 2019, based on the API observations by the World Air 
Quality Index (WAQI) [17] Malaysia recorded an API reading of 271 while Iran and Indonesia are 385 
and 303 respectively. In total, five areas in Sarawak still recorded very unhealthy API readings including 
Kuching, Samarahan, Sri Aman, Sibu and Sarikei. Sarawak give the big impact on this air pollution 
because the location is near to the Kalimantan (Figure 1) where the forest fire happens [4]. This make 
the spread of the haze is more impact in Sarawak due to the direction of the wind blow faster the process 
of air pollution to happen here. Hence, due to the haze, a total of 2,649 schools were closed including in 
Sarawak while the number of asthma and conjunctivitis cases was found to be increasing based on 
monitoring from 31 haze sentinel clinics. Hence, Kimanis, Limbang, ILP Miri, Kapit and Samarahan have 
been choosing in this research to measure the air quality using GARCH family model for integer value. 
 
 

 
 

Figure 1. Sarawak-Kalimantan Map which is the location is side by side and cause the haze spread 
more easily to Sarawak from Kalimantan forest. 

 
 

Air quality index data 
The dateset use in this research is API. The frequency of the data collection is daily data within six (6) 
months from January 2019 until June 2019 (183 observations) to identify the API model. The data have 
been chosen from five (5) locations, Kimanis, Limbang, ILP Miri, Kapit and Samarahan which is located 
at Sarawak from the Department of Statistic Malaysia website [13]. Three statistical models; INGARCH 
(1,1), NBINGARCH (1,1) and INARCH (1,0) were used in forecasting the daily API data. 
 
Methodology 
 
Forecasting analyses 
Time series forecasting analysis using INGARCH (p,q), NBINGARCH (p,q), and INARCH (p,q) model 
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has been carried out for the prediction of air pollution index. The steps of the methodology of the time 
series analysis using INGARCH (p,q), NBINGARCH (p,q), and INARCH (p,q) model have been 
summarized in this section. In figure 2, show that the framework of the methodology which is divided into 
three phases. The first phase known as data collection, followed by second phase which is modelling 
assessment and lastly third phase, forecasting evaluation. 
 
The model of using INGARCH (p,q), NBINGARCH (p,q), and INARCH (p,q) are fitted in the form of (1,1) 
by QLE. The Poisson assumption is right to get a standard maximum likelihood estimator (MLE). 
However, if we assume a mixed Poisson distribution, we get a MLE. The vector of regression parameters 
is denoted by the symbol θ=(β0,β1,...,βp,α1,...,αq). The parameter space for the INGARCH (1,1) model 
with covariates is given by regardless of the distributional assumption [18]. 
 

                                                          Θ = %𝜃 ∈ 𝑅)*+*,*-;		𝛽1 > 0, 𝛽-,… , 𝛽), 𝛼-, … , 𝛼+,≥ 0,∑ 	𝛽9 +
)
9;- 	∑ 	𝛼< < 1+

<;- 	?																	(1) 
 
 

Next, the efficacy of the ARCH is investigated. Until running simulations with the time series combination 
of ARCH and GARCH models, the model calibration phase must be completed first to ensure that the 
residual series is not connected to the first order series, often known as white noise, and that the model 
is acceptable. In testing the presence of ARCH effect, the generalised autoregressive representation of 
the squared residuals ( û2) with the the error (𝑒𝑡) is given as: 
 

                                                                                  𝑢BCD = 𝑏1 + 𝑏-𝑢CF-D + 𝑏D𝑢CFDD + 𝑏G𝑢CFGD +. . . +𝑏+𝑢CF+D + 𝑒C                         (2) 
 

After that, the residual square test is used to see if the model has the ARCH effect. The significance of 
the parameters 𝑏i indicates the presence of conditional volatility (ARCH effect) under the null hypothesis 
of no ARCH effect: 
   
																																																																		𝑏1 = 𝑏2 = 𝑏3 =. . . = 𝑏𝑞 = 0                                                         (3) 
 
Therefore, before running the model, the ARCH (1) effect is tested to clarify that the API data is significant 
with the GARCH family model: 
 
                                                                      𝑢BCD = 𝑏0 + 𝑏1𝑢CF-D   + 𝑒𝑡                                                             (4) 

 
 
The Lagrange multiplier (LM) test is being used to test for the arch effect before running the GARCH 
family model. Iterative nonlinear calculations for estimating model parameters can only be done with the 
model that has ARCH effectiveness [9]. 

 
After that, the data were tested for stationary using the Augmented Dickey–Fuller (ADF) test, with the 
null hypothesis (H0) being that the time series is non-stationary. The ADF test revealed that the time- 
series data were non-stationary (p > 0.05), indicating that they were non-stationary. The INGARCH (1,1), 
NBINGARCH (1,1), and INARCH (1,0) model’s value were chosen based on the (AIC) value, which is 
given as follow. 
 

												AIC),+ =
FD<M(OPQRORSTU	VRWTVRXYYU)*D,

M
≈ 𝑙𝑛(𝜎_D) + 𝑟

D
M
+ constant                         (5) 

 
 

where 𝑛 is the number of data observations, r=p+q+1 and 𝜎2 is the maximum likelihood prediction. 
 
We have tested different values of α and β parameters ranging from 0 to 5, while d was chosen to be 1 
based on ADF test. We found that the best INGARCH (1,1) model that gives the lowest AIC values is 
(1,1). 
 
Hence, three model under the GARCH family have been chosen which are called as INGARCH (1,1), 
NBINGARCH (1,1), and INARCH (1,0) model. 
 
a. INGARCH (p,q) 
In this subsection, we focus on INGARCH (p, q) model given by equation (6) [18]. 
 

                                                                             𝜆C = 𝛼1 + ∑ 𝛼_𝑋CF_ +
)
_;- ∑ 𝛽i𝜆CFi

+
i;-                                         (6) 
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Figure 2. Framework of the methodology 

 
 
 
where 𝛼0 > 0, 𝛼𝑖 ≥ 0 , 1 ≤ i ≤ p , βj ≥ 0 , 1 ≤ j ≤ q. 
 
b. NBINGARCH (p,q) 
Let {Xt} be a time series of counts for Air Pollution Index. We assume that conditional on Ft−1, the random 
variables X1, . . . , Xn are independent and the conditional distribution of Xt is specified by a normal 
binomial distribution. To be specific, we consider the following model: 

 
                                                                                                        𝑋C|𝐹CF- : 𝑁𝐵(𝑟, 𝑝C)                                                              (7)   

 
where Ft−1  is the r-field generated by {Xt , Xt−2,. . . }, r is a positive number and pt satisfies the model. 

 
                                                      -F)p

)p
= 𝜆C = 𝛼1 + ∑ 𝛼_𝑋CF_ +

)
_;- ∑ 𝛽i𝜆CFi

+
i;-                                        (8) 

 
where α0 > 0, αi ≥ 0 , βj ≥ 0 , i=1,...,p, j=1,...,q ,p ≥ 1, q ≥ 0. 
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c. INARCH (p,q) 
The purely autoregressive INARCH (p, 0) model is also called an (p, 0) model by [19]. The (p, 0) model 
is defined as equation (9). 
 

                                                                                                         𝜆C = 𝛽1 + ∑ 𝛽_𝑋CF_
)
_;-                                               (9) 

where t ∈ Z, β0 > 0, βi ≥ 0 , , i=1,...,p. 
 

Evaluation performance 
For forecasting, the model with the lowest AIC and BIC value was chosen. In terms of the mean square 
error, the optimal 1-step-ahead predictor  𝑌rM*-  for Yn+h  , given Fn. The past of the process up to time n 
and potential covariates at time n+1, is the conditional expectation λn+1. By construction of the model the 
conditional distribution of 𝑌rM*-	is a Poisson (equation 6) respectively Negative Binomial (equation 7) 
distribution with mean λn+1. An h-step-ahead prediction 𝑌rM*s	for Yn+h  is obtained by recursive 1- step-
ahead predictions, where unobserved values Yn+1,..., Yn+h−1 are replaced by their respective 1- step-
ahead prediction, h ∈ N. 
 
Pearson residual is the statistical tests that is used to measure the model validation. The model is 
adequate if the Pearson residuals is close to one [20]. The Pearson residual is given by: 
 

																																																																																																			𝜀𝑡 = tuFvwpx

yvwpx*	z{p
|	}~|

                                                  (10) 

 
Where, X1 …X183  is the observation for API, εt is Pearson residuals for the GARCH family model. Hence, 
the fitted values are denoted by 𝜆�C. 
 

Results and Discussion 
 
The time series graph shown in Figure 3 explained that the pattern for the graph is irregular because 
there is a huge different for the highest and lowest values. The comparison for the graph pattern indicates 
that there is a minor change between Kimanis, Limbang, ILP Miri, Kapit and Samarahan. There is high 
volatility in the graph throughout the dateset from January 2019 until June 2019. The volatility also 
indicates there is ARCH effect in our result. The highest mean is ILP Miri with the value 48.53 and the 
lowest mean which is Samarahan with the value 33.30. 
 
The skewness result of Air Index Pollution for Limbang and ILP Miri show that the data is substantially 
skewed distribution because the number of skewness is less than -1. Meanwhile, the skewness result 
for Bintulu, Kimanis, Kapit and Samarahan are between -1 and +1 indicates non substantially skewed 
distribution. The kurtosis for all the dateset is not approached to 3, so the dateset has no "heavy tails" 
and no “light-tailed”. Therefore, the distributions exhibiting skewness and/or kurtosis that exceed these 
guidelines are considered nonnormal [21]. From the result we can conclude that, the distribution in 
nonnormal behaviour because all the result are non- zero for both skewness and kurtosis. 
 
The autocorrelation functions (ACF) of time series can be used to infer their stability or instability, as well 
as memory characteristics: Short-memory processes with non-zero autocorrelations at only a few lags 
are stable, whereas long-memory processes with major autocorrelations on many lags are unstable. 
Therefore, in this research lag (1,1) is using for INGARCH and NBINGARCH whereas the INARCH 
model is using lag (1,0). Stationary means that the statistical characteristics of a process under study do 
not change over time [22]. The Air Pollution Index is a stationary which mean the p-value is less than 
0.05. When the result is less than 0.05, the H0 is rejected and H1 is accepted. Hence, the result is 
significant for stationary test using the ADF test. 
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                                                 Figure 3. Time Series Graph for Kimanis, Limbang, ILP Miri , Kapit and Samarahan 
 

Then, the volatility of the data is being evaluated to make sure there is ARCH effect in API database. 
The ARCH effect is being evaluated by using Langrage multiplier (LM) test. The result shows, that there 
is ARCH effect in the model because the p-value is less than 0.05. In univariate time series models, the 
LM test for ARCH is widely used as a specification test [23]. 
 

 
Table 1. Statistical summary 

 
Location Mean Skewness Kurtosis Unit Root test Arch Effect 
Kimanis 42.47 0.51 -0.35 -3.6245** 75.3820*** 
Limbang 39.77 -0.15 -1.41 -3.7054** 48.9190** 
ILP Miri 48.53 -0.56 -0.03 3.4451** 44.5040** 
Kapit 35.51 0.54 -0.42 -3.8292** 111.0600*** 
Samarahan 33.30 0.32 -0.75 -3.6815** 64.6250*** 
NOTE: ** p<0.01, ***<0.001 

 
 

The performance evaluation results of the model based on Air Pollution Index value only. To evaluate 
the performance of the models, the data were tested by using ADF. This is to ensure the data is stationary 
before running the GARCH family model. Hence, the performance for INGARCH (1,1), NBINGARCH 
(1,1) and INARCH (1,0) is being compared by using AIC and BIC. The lowest AIC indicates the best 
model. The best model for ILP Miri and Bintulu is INARCH (1,0) model. Furthermore, INGARCH (1,1) 
model prove that it shows the best model for Kapit only. Besides, majority location for Kimanis, Limbang, 
Kapit and Samarahan. indicates that NBINGARCH (1,1) is the best model. By comparing the results 
shown in Table 2, we can see that INGARCH and NBINGARCH (1,1) model is in good agreement with 
the actual values (p-value > 0.05). 
 
The autocorrelation function of respond residuals are identical for the INGARCH (1,1) NBINGARCH (1,1) 
and INARCH (1,0) model. Their empirical autocorrelation functions, does not exhibit any serial and 
correlation or seasonality which has not been taken into account by the models. Marginal Calibration can 
be assessed by taking the difference between the average predictive cumulative distribution function 
(c.d.f.) and the empirical c.d.f. of the observations. Minor fluctuations about zero are expected if the 
marginal calibration hypothesis is true. Therefore, to assess marginal calibration and sharpness of the 
prediction, the marginal calibration plot is constructed for these data. Figure 4 depicts the marginal 
calibration plots for the air pollution index data which indicate that the NBINGARCH (1,1) model approach 
to zero for all location. 
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Table 2. Performance GARCH model comparison 
 
 
 
 
 
 
. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                      

      NOTE: ** p<0.01, ***<0.001 
 

 
According to the Pearson Standard Error (𝜀𝑡) results shown in Table 3, NBINGARCH(1,1) model 
outperformed the INARCH(1,0) and INGARCH (1,1) model. This is because NBINGARCH(1,1) model 
for Kimanis, Limbang, ILP Miri, Kapit and Samarahan has the lowest value of 𝜀𝑡. However, INARCH (1,0) 
and INGARCH(1,1) could only perform better in ILP Miri and Kapit alternatively. This two methods 
showed inconsistent results in the best forecast for API in different types of background area. The graph 
for NBINGARCH (1,1) forecasting API data for stations Kimanis, Limbang, ILP Miri, Kapit, and 
Samarahan are shown in Figure 4 . Meanwhile, Figure 5 show graphically comparison of model fit for 
API data between model INARCH(1,0), NBINGARCH(1,1) and INGARCH(1,1). This prove that the best 
forecasting model is NBINGARCH(1,1) because the NBINGARCH line fitted to actual line. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Location Parameter INGARCH (1,1) NBINGARCH (1,1) INARCH (1,0) 
Kimanis µ 4.73*** 4.73*** 5.29*** 
 α 1.77-5** 1.77-5** - 
 β 0.89** 0.89** 0.88** 
 AIC 1252.21 1243.73 1250.88 
 BIC 1261.77 1256.48 1257.26 
Limbang µ 11.4*** 11.4*** 11.14*** 
 α 2.76-5** 2.76-5** - 
 β 0.714** 0.71** 0.72** 
 AIC 1399.071 1324.02 1397.10 
 BIC 1408.63 1336.77 1430.475 
ILP Miri µ 10.62*** 10.60*** 11.62*** 
 α 0.01** 0.01** - 
 β 0.77** 0.77** 0.76 
 AIC 1207.14 1205.01 1203.23 
 BIC 1214.57 1219.89 1209.61 
Kapit µ 9.73*** 9.73*** 15.80*** 
 α 0.25** 0.25** - 
 β 0.47** 0.47** 0.56** 
 AIC 1220.52 1243.47 1224.38 
 BIC 1230.08 1253.03 1230.76 
Samarahan µ 6.59*** 6.59*** 11.92*** 
 α 0.30** 0.30** - 
 β 0.50** 0.50** 0.64** 
 AIC 1286.38 1251.58 1292.46 
 BIC 1295.94 1264.33 1298.83 
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(a) Kimanis                                                                      (b) Limbang 

 
Figure 4. Marginal calibration plot after model fitting to API data from January 2019 until June 2019 in 
(a) Kimanis, (b) Limbang, (c) ILP Miri, (d) Kapit and (e) Samarahan. 
 
 
 
 

(c) ILP Miri (d) Kapit 

(e) Samarahan 
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Figure 5. The graph show the actual value (black line) and the forecast value (red line) according to 
NBINGARCH(1,1) model (best forecasting model). The prediction interval (red square) are designed to 
ensure a global coverage rate of 90% (Forecasting accuracy) in (a) Kimanis, (b) Limbang, (c) ILP Miri, 
(d) Kapit and (e) Samarahan. 

 
Table 3. MSE and  𝜀𝑡 Performance for comparison with different forecasting methods 

 

Model MSE 𝜀𝑡	
Kimanis   

INGARCH (1,1) 55.64 1.32 
NBINGARCH (1,1) 55.64 0.98 
INARCH (1,0) 55.31 1.29 
Limbang   

INGARCH (1,1) 85.61 2.20 
NBINGARCH (1,1) 85.61 0.98 
INARCH (1,0) 85.58 2.21 
ILP Miri   

INGARCH (1,1) 42.21 0.89 
NBINGARCH (1,1) 42.21 0.89 
INARCH (1,0) 42.08 0.92 
Kapit   

INGARCH (1,1) 41.54 1.14 
NBINGARCH (1,1) 41.54 0.98 
INARCH (1,0) 41.86 1.14 
Samarahan   

INGARCH (1,1) 47.49 1.47 
NBINGARCH (1,1) 47.49 0.98 
INARCH(1,0) 47.89 1.48 
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Conclusions 
 

This paper discussed the model comparison, namely INGARCH (1,1), NBINGARCH (1,1) and INARCH 
(1,0). The primary goal of this study was to identify the most efficient time series methods in air quality 
forecasting model using GARCH family model concerning the daily API in five locations in Sarawak, 
Malaysia. The results from this study shows that NBINGARCH (1,1) is the best model for Kimanis, 
Limbang and Samarahan which is due to it low value of AIC and BIC compared to  INGARCH(1,1) and 
INARCH (1,0) . Besides, INARCH (1,0) and INGARCH (1,1) are the best model for ILP Miri and Kapit 
respectively. Hence, this prove that the NBINGARCH (1,1) model was capable of treating modelling and 
forecasting index values of API. NBINGARCH (1,1) proved to be a flexible and intelligent forecasting 
method that is a useful and effective tool for modelling the complex and poorly understood processes. 
Although with univariate model, whereby the input was from the best both INARCH (1,0) and INGARCH 
(1,1) lags, the NBINGARCH (1,1) will be able to give more accurate predictions for the observed API at 
all five sites compared to the conventional ARCH family INARCH (1,0) and INGARCH (1,1). Therefore, 
we can suggest that the simplest NBINGARCH (1,1) can be used for future forecasting of air pollutants 
for univariate integer value since it is good to predict fluctuating series, which contain trend and 
seasonality, such as air quality data. 
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