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Abstract The lazy cop number is the minimum number of cops needed for the cops to have a 
winning strategy in the game of Cops and Robber where at most one cop may move in any one 
round. This variant of the game of Cops and Robber, called Lazy Cops and Robber, was 
introduced by Offner and Ojakian, who provided bounds for the lazy cop number of hypercubes. In 
this paper, we are interested in the game of Lazy Cops and Robber on a Cayley graph of n copies 
of . 
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Introduction 
 
The game of Cops and Robber is a well-known two-player game played on a finite connected undirected 
graph. It was independently introduced by Quilliot [10], and Nowakowski and Winkler [8]. Initially, the first 
player occupies some vertices with some number of cops (multiple cops may occupy a single vertex) 
and then the second player occupies a vertex with a single robber. After that the cops and robber move 
alternatively along the edges of the graph. On the cops’ turn, each of the cops may remain stationary or 
move to an adjacent vertex. On the robber’s turn, he may remain stationary or move to an adjacent 
vertex. The move of a cop followed by the move of the robber constitutes one round of the game. The 
cops win if after a finite number of rounds, one of them can move to catch the robber, that is, the cop 
and the robber occupy the same vertex. In the game of Cops and Robber, the main objective is to study 
the cop number, i.e. the minimum number of cops required to catch the robber, introduced by Aigner and 
Fromme [1]. The most famous unsolved question in this context is Meyniel’s conjecture [7]: the cop 
number of a connected graph with n vertices is . 
 
Many variants of Cops and Robber have been studied. See [5, 12, 14, 13] for some of the related 
problems. We are interested in a variant introduced by Offner and Ojakian [9], where at most one cop 
moves in any one round. It is called the game of Lazy Cops and Robber and the lazy cop number is the 
minimum number of cops required to catch the robber in this setting. Let  be the lazy cop number 
of a graph G. Offner and Ojakian [9] gave lower and upper bounds for the lazy cop number of the 
hypercube. The lower bound was later improved by Bal, Bonato, Kinnersley, and Pralat [3], by using the 
probabilistic method coupled with a potential function argument. They also studied the game of Lazy 
Cops and Robber on random graphs and graphs on surfaces [4]. 
 
Cop number of a Cayley graph has been studied by Frankl [7]. We are interested in the lazy cop number 
of the Cayley graph of 
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with generating set 

 
where 

 
Here, . Note that  is an abelian group. In fact, if with 

 

then, , where the operation in each coordinate is taken 

modulo . The Cayley graph of  is the graph with vertex set  and  are 
adjacent to each other if and only if  

  for some . 
This means that if  and  differ at coordinate -th and they are adjacent, then 

 
So,  for all  and the Cayley graph is a 2n-regular graph. We shall denote the 
Cayley graph by . 

Note that when , the graph  is a hypercube . When , the graph  is a special 
case of the generalized hypercube considered in [11]. 
 
The main result of this study is to give a lower bound and an upper bound for the lazy cop number of 

. They are established in the next two sections. 
 

Upper bound 
 

Given a graph with vertices , the distance between  and  is the number of edges in a shortest 

path connecting them. A dominating set of an undirected graph with vertex set  is a set  such 
that every vertex in  has at least one neighbour in . It is clear that by occupying a dominating 
set of a graph, the cops win.  So the lazy cop number (and also the cop number) of a graph is bounded 
above by the size of the smallest dominating set of the graph. 
 
Lemma 2.1 [2, Theorem 1.2.2 on p. 6] A graph with  vertices and minimum degree  has a 

dominating set of size at most . 

Theorem 2.2 Let be positive integers. If , then, 

 

Proof. Let  denote the subgraph of  with vertex set 

. 

That is, the subgraph generated by all the vertices with the first coordinate equal to . Note that it has 

 vertices and each vertex is of degree . By Lemma 2.1,  has a dominating set of 
size at most 
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                                                                              (1) 

where the last inequality follows from . 
 

We have  cops that can be used. Initially, the cops can dominate ,  and . Cops 

occupying  will be coloured with black, cops occupying  will be coloured with blue, and cops 

occupying  will be coloured with red. If the robber chooses an initial position with the first coordinate 

equal to  or , then he will be caught immediately. So, the robber has to choose a position with first 
coordinate not equal to or . At first, the black and red cops should remain in place, while the blue 

cops rearrange themselves one by one to dominate . During this process, the robber cannot have 

moved to the position with first coordinate equal to . In order to do so, the robber must have moved to 
the position with first coordinate equal to  or . He will be caught by the black or red cops dominating 

 and , respectively. Hence, after the blue cops have dominated , the robber will be at position 

with the first coordinate not equal to and . 
 

Suppose that after some time, the black cops are dominating , the red cops are dominating , the 

blue cops are dominating  and the robber is at position with the first coordinate not equal to 

 and . Now, the black and blue cops should remain in place, while the red cops rearrange 

themselves one by one to dominate . As before, after the red cops have dominated , the robber 

will be at position with the first coordinate not equal to  and . Proceeding in this 

manner, the robber will be caught when the red cops and blue cops dominated  and . This 
completes the proof of the theorem. □ 

 
Lower bound 

 
Before we proceed to the lower bound, we define the following. Let  and 

                                                         .      (2) 

Then, . Here,  is the floor function, that is the largest integer less than or equal 

to . 
Let  

                                                                                      (3) 

Then, , , . 

The following is Stirling’s formula, which is quoted from [6, 3.6.2 on p. 31]. 
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Lemma 3.1 

 

Proof. Note that . So, for sufficiently large , 

.  By Stirling’s formula,  

 

 

where the last inequality follows from . □ 

 

Lemma 3.2  For ,  is a strictly decreasing sequence. 

Proof.  Since   is a decreasing function, we have 

 

for sufficiently large . □ 
 
We are now ready to prove a lower bound on . Our proof is a generalization of [3, Theorem 
1] and [11]. 
 
Theorem 3.3  Let  be  positive integers. Then, for sufficiently large  (independent of ), 

. 

 

Proof. Let  be the number of cops that differ at  coordinates from the robber’s position. We say 
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that a cop differ at  coordinates from the robber’s position has weight , where  is as defined in 

equations (3). Let the potential function  be defined as 

 

Recall that  . If the cops can catch the robber on their turn, then some cop must be at distance 1 
from the robber. This implies that the cop differs at exactly 1 coordinate from the robber’s position. So, 

, just before the cops’ turn. To show that the robber can evade the cops indefinitely, we need to 
show that the robber can always move right before the cops’ move, 

                                                                          (4) 
Without loss of generality, all cops start at the same vertex and the robber starts at a vertex with  
coordinates different from the cops. Therefore,  and hence (4) holds. Suppose that before the cops 
make their move, the potential function is such that (4) is satisfied.  
 
Let the coordinate of the robber be  right before the cops’ move. Suppose that on the cops’ 

turn, a cop  moves from vertex  to vertex . Suppose  and  differ at exactly  coordinates. 

Note that  because  So, . If  and  also differ at or  coordinates, then  

the robber may remain in  and the condition (4) is maintained. So, we may assume that  and   

differ at   coordinates. We shall choose two distinct integers  and  based on coordinates for 

which  and   differ. Let  be the set of  all  for which the -th coordinate of  and  are 

different. If , then choose  and  to be any integer in . If , then choose 

.  
 
Let  represent the total weight of all cops that they differ at  coordinates from   with  

other than . Let  represent the total weight of all cops at distance at least  from  other 

than .  
 
The robber’s strategy is to move to a vertex such that the condition (4) is maintained. We will show that 
such a vertex always exists by computing the expected potential function for all possible vertices the 
robber can move to.  Note that we only allow the robber to move to a vertex that differs with  at 

coordinate  where . For each , the robber can only move to

.  Thus, the robber has  possible vertices to move to.  

 
We claim that the expected value of  is at most 

                                                                                                (5) 

after the robber’s move in each one round. 

Proof of claim (5). Let  and  differ at coordinates  where . Before the robber’s 

move,  has weight . Let  represent the expected weight of  after the robber’s move. 

 
Suppose . If the robber moves to a vertex   that differs with  at coordinate  and 

, then the number of coordinates that  and  differ is . Suppose the robber moves 
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to a vertex that differs with  at coordinate  and . Note that the robber can only move to 

. Let  be the value of the -th coordinate of . 

 
If , then  the number of coordinates that  and  differ is , 

and  the number of coordinates that  and  differ is . In this scenario, 

one of the choices of the robber will reduce the weight by 1, whereas the other choice will maintain the 
weight. Similarly, the same conclusion holds, if . If , then any of the two choices of 

the robber will maintain the weight. By Lemma 3.2, ,  we may assume that for each 

, one of the choices of the robber will reduce the weight by 1, whereas the other 

choice will maintain the weight. 
Hence, 

 

Similarly, if , then  

 

Finally, if , then 

 

In either case, we have 

 

for sufficiently large  as . By summing up each cop’s individual contribution toward the 

potential, we see that after the robber’s move, (5) holds. □ 
 
Next, we claim that the expected value of  is at most  

               (6) 
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Proof of claim (6).  Let  and  differ at  coordinates, where . Before the robber’s move, 

 has weight . After the robber’s move, the change in the weight of  is either 0,  , or 

. Recall that  for all . If , then the change of weight in  is 0. If 

, then the change of weight in  is either 0, , or  

where the last inequality follows from Lemma 3.2.  If , then the change of weight in  is either 

0, , or . Hence, the change of weight in  is at most .  

 

Since  and by Lemma 3.1, we see that after the robber’s move, total change in the 
weight of  is at most 

 

If the total number of cops is at most , then the expected change in  is at most  

 

and (6) follows.  □ 
 
Recall that on the cops’ turn, a cop  moves from vertex  to vertex . We shall assume that  

and  differ at exactly  coordinates, whereas   and  differ at exactly  coordinates.  
 
Case 1. Suppose . Recall that the robber is allowed to move to a vertex that differs with  at 

coordinate  where . So, after the robber’s move, (5) and (6) hold. 

Since  has weight  before its move, we have  

                                                                    (7) 

After the robber's move,  also has weight . Combining (5), (6) and (7), the total expected potential 
is at most 

 

where the second to last inequality follows from  and . 
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maintained. 
 
Case 2. Suppose . Then,  and  differ at exactly 2 coordinates.   In this scenario,  moves 

from a vertex of weight  to another vertex of weight . We note here that there is the possibility 

that other cops are at vertex with weight .  Recall that the robber is allowed to move to a vertex that 

differs with  at coordinate  where . So, after the robber's move, (5) and (6) hold. 

 
Since  has weight  before its move, we have  

                                                             (8) 

After the robber's move,  also has weight . Combining (5), (6) and (8), the total expected potential 
is at most 

 

where the second to last inequality follows from  and . Again, the robber may 

maintain (4) is satisfied. 
 

Case 3. Suppose . Then,  and   differ at exactly  coordinates. Again, like the 
previous cases, after the robber's move, (5) and (6) hold. 
Since  has weight  before its move, we have . Thus, 

                                              .                                      (9) 

Now,  has weight   just before the robber's move. Let  represent the expected weight of  

after the robber's move. If , then . If , 

then . 

Hence, the expected potential is at most 

 

where the last inequality follows from  .  

This completes the proof of the theorem. □ 
 
Combining Theorem 2.2 and Theorem 3.3, we obtain our main result as given below. 
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Main Results 
 

Theorem 4.1 Let  be a positive integer and let . Then for sufficiently large , we have 

 

Proof. The upper bound follows readily from Theorem 2.2, while the lower bound follows from Theorem 

3.3 by taking .     □ 
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