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ABSTRACT 

This paper explores the integrability of the Korteweg-de Vries (KdV) hierarchies via a renowned group theoretical 
approach. Briefly this work employs the group representation method in identifying a (physically significant) 
nonlinear dynamical system as an integrable Hamiltonian system. 

| Integrability | KdV hierarchy | Group theoretical approach | 

1. Introduction 

Extensive studies on group representations and the foundations of mechanics of recent years have found that the 
dual space g ∗ to the Lie algebra g  of a Lie group G, supports a natural Poisson structure (refer Weinstein [23], 
Schmid [18]). We consider here that the form of the Poisson structure of the group theoretical approach 
(primarily related to works by Kirillov [12], Konstant [13], Souriau [21]) represents the symplectic structure of 
the KdV hierarchy’s Hamiltonian system. This is obtainable from g ∗ of an infinite dimensional Lie algebra g  - 
algebra of formal pseudo differential operator of negative degree. Subsequently the KdV hierarchy acts as a 
Hamiltonian system on a coadjoint orbit of the Lie algebra dual space of the pseudo differential operator. Recent 
research works (refer Drinfeld & Sokolov [8], Sato [18], Frenkel [9]) based on similar arguments have 
successfully shown that intrinsically certain integrable systems or categorically Zakharov-Shabat-Ablowitz-
Kaup-Newell-Segur (ZS-AKNS) system acts as a Hamiltonian system on a coadjoint orbit of the affine Lie 
algebra dual space. 

Interestingly, within the framework of Lax approach and Gelfand-Dickey programme, the Lax pairs represent the 
Hamiltonian system and thus the pairs can reside and operate in g . Strictly speaking, this formulation exhibits a 
coherent connection between Lax representation and mechanics on the coadjoint orbit space of a Lie group 
action. This manifestation would naturally explain our motive to exhibit the integrability of the KdV hierarchies 
via this group theoretical approach. 

This paper is organized as follows: section 2 briefly describes the Gelfand-Dickey programme, section 3 outlines 
concisely the meaning of integrability in this formulation by considering two relevant theorems, and section 4 
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tersely explores the integrability of the KdV hierarchies (or simply the system of generalised KdV equation) by 
reworking on two important propositions. Finally we end this paper with some comments on this approach. 
 
 
2. The Gelfand-Dickey Programme 
 
Gelfand and Dickey [11] developed the algebra and variational calculus in the ring of polynomial functions of 

TSk ,Η∈ϕ  and their derivatives with respect to x, where TS ,Η  is the function space with integers S ≥ 0, T∈ R. 

Lax [14] earlier expressed the KdV in the form [ ] ( )txLBLL xt ,;, 2 ϕ+−∂==  and 

( )χχ ⋅∂+∂+∂= xxxB 34  with ϕχ
4
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By using the symbolic technique and expressions involving the resolvent diagonal and fractional powers to L, 
Gelfand and Dickey [10] were able to show the Lax representation in the ‘symbol space’; i.e.  
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which is equivalent to the system of equations 
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where K a polynomial function. Essentially equation (1) embodies the KdV hierarchies or the system of 
generalised KdV equation. In addition, it can be shown (refer Gelfand and Dickey [10]) that the KdV hierarchies 
are equivalent to the Hamiltonian equations 
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since (1) can be written as  
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ϕ ,    the variational derivative of H (representing the gradient of jH ) 

and J the skew symmetric matrix consisting of the differential operator of the form  
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If ∈kj HH ,  C/ DC (C, a ring of polynomial function ...),(),( , xx xkk ϕϕ  modulo DC, D differential ring), 

+∈ Zkj,  are two functionals over C, then J would define the Poisson bracket 
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and interestingly Gelfand and Dickey [10] had shown that all the first integrals jH  of the system (2) would 
form the involutive system, i.e.  
 

{ } +∈∀= ZkjHH kj ,,0,  
 
 
3. Concept of integrability in this formulation 
 
Dynamical formulation in this framework is based on the following facts: 
 

A. Infinite dimensional representation theory for each Lie G is well connected to a finite dimensional 
representation of G. The representation acts in the dual space g∗ to g for G and is called the coadjoint 
representation. 

 
B. Orbit of a Lie group in a space of coadjoint representation represents a symplectic manifold and can be 

interpreted as phase space of a system of Hamiltonian mechanics. The Lie group is a symmetry group.  
 
The splitting of a Lie algebra into a direct sum of vector spaces for several Lie algebras is found (Konstant [13], 
Symes [22]) to be responsible for the integrability of a Hamiltonian system with Lax representation. The 
Konstant-Symes theorem discusses elaborately this key aspect. 
 
Konstant-Symes Theorem (refer Adler & van Moerbeke [2])  
 
Let g be a Lie algebra having a direct sum decomposition of vector spaces as follows  
 

,khg ⊕=  
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h and k are Lie subalgebras. Assume that g can be identified with its dual vector space, g∗ via a nondegenerate 
bilinear form and ad-invariant ( ).,⋅⋅ Subsequently it is induced on  g∗ a direct sum decomposition   

,khg ⊥⊥∗ ⊕=  
The nondegeneracy of ( )⋅⋅ , , would naturally derive the association of ⊥h ∼ ∗k  and  ⊥k ∼ ∗h ; whereby if ⊥h  

were to be identified with ∗k , then it inherits a symplectic structure on the coadjoint orbit of ∝∈ kA , AΘ  . 

Let ⊂∝k  ⊥h  is an invariant submanifold with respect to the coadjoint action k on ⊥h ∼ ∗k , and suppose 

)( ∝ka is an algebra of functions in S(g∗) (or at least defined on a neighbourhood of ∝k ) which is Ad∗-

invariant on g∗. When the functions are restricted to ∝k , )( ∝ka forms an involutive system; i.e. a system 

with commutative integrals of Poisson type on ∝k or on the orbit ∝k , via the symplectic structure orbit. In 

addition, if )(H j
∝∈ ka then the Hamiltonian vector fields ( ) ∝∝ ∈∈ kk A;TAX AH j

, can be written as   

( ) +
∗ ∈= ZjAadAX

jj BH ;   

( ) hGhk
h H j

∈−=⊂∈ ∏⊥∝ AB,A j ; ∏h
a canonical projection which maps g and g∗ into h along k; 
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∗ ,;),(g  

This means that the system of Hamiltonian equations take the form of   
AadA Bt

∗=   

If  ( )⋅⋅ ,  is symmetry for g ∼ ∗g  and ad∗ = - ad, then (*) and (**) can be represented by the Lax equation 

( ) [ ]jHt B,AAXA
j

== .  

 
Remark 1 
 
We discuss here several important remarks that can be concluded from the above theorem: 

a. The coadjoint orbit ∝k of the dual space algebra Lie g represents the ‘phase space’ of a system of 
Hamiltonian mechanics and certainly the Lax pairs naturally live in g. 

b. The coadjoint orbit ∝k inherits the symplectic structure, and thus is defined the Poisson bracket over it. 

For two functions jH and kH  over AΘ , it is found that  

{ }( ) ( )AadAadAHH
kj BBAkj
∗∗= ,, ω  

    = [ ]( )kj B,B,A  
            This equation can also be expressed as   

{ }( ) ( ) [ ]( )kj

g~g

kjkj B,B,AB,A,BAH,H =
∗

=  

   

            which means that the gradient  ( )AH k  in the direction of 
jHX is given by   

           { }( )AH,H kj . 



  Z. A. Aziz / Journal of Fundamental Sciences 3 (2007) 137-149 141

c. The function ( ) ∗⊥∝
−⊂∈ 1;

gj AdAAH hk   invariant over g∗, g ∈ G.  This characteristic is 

expressed via the condition   
        

( )AtAt
j eAeH

dt
d −=0 t=0 [ ]( ) ∝∈∀= kG

jH A,A,A,  

=  [ ]( ),A,A,
jHG  

 
            i.e.  [ ]( ) 0=A,A,

jHG via the nondegeneracy of ( )⋅⋅ , . 

d. The integrability condition via Konstant-Symes theorem actually states that, if ( )AH j  and ( )AH k  are 

independent and Ad∗-invariant over g∗, then  
i. { } 0=kj H,H  over the coadjoint orbit  +

∝ ∈∀ Zk,j;k , 

ii. [ ] 0=
kj HH X,X ,  where the vector fields 

jHX  and  
kHX  are commutative. 

 
The result below shows the relevancy of the algebra g of the formal pseudo differential operators in Gelfand-
Dickey programme and within this group theoretical formulation. 
 
Theorem  (refer Adler [1]) 
Let orbit 

1pΘ via ∗∈ k1p  be the coadjoint action G over ∗k , that is ( ){ }∏ ∞
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where k∈21 , qq , thus ( ) ( ) ( ) ( )ϕϕ PSPpHH ,2

∗∈== k&  a polynomial in kϕ and derivatives 

νϕ
xk ,

with respect to x; k = 0,1, … , n and υ = 1,2, …, then the induced Hamiltonian vector field via ω is given  
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j

H
δϕ
δ

 is the variational formal derivative with respect to jϕ . In addition, the formal Poisson bracket, basically 

from ω, {⋅ , ⋅}, is given by  
 

{ } [ ]( ) )(,,,;,,)(, 22
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+ ∈∈= kSHHZsrGGppHH srHHsr sr
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Finally, the Poisson structure is the Poisson bracket when 01 1 == −nn ,ϕϕ  

where [ ] CCC nnk ⊂≡∈ ϕϕϕ ...,,0 and correspondingly [ ]nnn IDCC ϕϕ ...,,0=      � 
 
 
Remark 2 
 
a) Conclusions extracted from the above theorem related to the form of

1pΘ , tangent space 
12 ppT Θ , and the 

orbit’s symplectic structure, 
2pω , are clearly derived from this group theoretical formulation (particularly from 

Konstant-Symes theorem). Following Gelfand-Dickey programme, ∗∝ ⊂∈ kk2p , and 
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b) Construction of )( ∗∈ kSGH , associated with a localized function H at 2p , i.e.  
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P is a polynomial function in kϕ and derivatives νϕ
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with compact support in x. Thus by following such 
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 is the variational formal derivative of P with respect to jϕ . 

In Frechet sense, this becomes  
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                        ( ) ( ) ,...
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δϕ
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whereas the Hamiltonian vector field of the orbit structure 
1pΘ , HX  , generated by H at 2p  is given by  
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i.e. the normal form of the isospectral Lax equation. 
1pΘ inherits the symplectic structure, 

12 2; pp p Θ∈ω , and 

thus defined over it a Poisson bracket; i.e. for two functions 
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Interestingly, by using the above results and the standard binomial identities, Adler [1] was able to show that  
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which is equivalent to the Gelfand-Dickey formula, i.e. the form of a KdV hierarchy, when 

;0,1 1 == −nn ϕϕ i.e. in the ∝k background. This indirectly validates the integration of the Gelfand-Dickey 
programme and the applied group theoretical approach. 
 
c) Both equations (3) and (4) are localised with values )( 2pG

k
H ∗

 at x and are dependent on the values at x of 

kϕ and derivatives νϕ
xk ,

, and various variational derivatives H. This fact implies that the right hand sides of 

equations (3) and (4) are admissible without any assumptions on the compactness of H and 2p ; i.e. )( 2pG
k

H ∗
 

and )( 2pX H  are rigorously defined. 

d) Decisively, the KdV hierarchy acts as an Hamiltonian system over the coadjoint orbit 
1pΘ , the dual space 

∗k of Lie algebra g of formal pseudo differential operator. 
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4. Integrability of the KdV hierarchies 
 
We have ℘ be the Lie algebra of the formal pseudo differential operator, ;kh +=℘  

∞= ,0ah  (symbol algebra of non-negative type formal pseudo differential), and 1,−∞−= ak  (symbol algebra of 
negative type formal pseudo differential). (· , ·) is defined via the trace functional and becomes the symmetrical 
inner product, then ⊥⊥∗ +=℘≈℘ kh , where adad −===== ∗∗⊥∗⊥ ,khkh,kh  with the 

Ad*-invariant submanifold is given by { }2,0 −
∝ += n

n aξk ,  whereas )( ∝∈℘= kaTrH n
mm , m = 0,1, … . 

 
From Konstant-Symes theorem we can observe the following pertinent propositions for the KdV hierarchies. 
 
Proposition 1  
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Proposition 2 

Let ∝∈ k2p  and n
mm TrH ℘= ; m = 0,1, … , then the Hamiltonian equation for the KdV hierarchy is of the 

form  
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Furthermore, mH is in involution with respect to the Poisson bracket.   
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                 0=  , i.e. Hm is in involution w.r.t. Poisson bracket.    � 
 
Remark 3 
a) The results above imply that mH forms sets of (invariant) integral orbit in involution over ∝k , whereas ∝k  
contains more than one coadjoint orbits. Moreover, mH is ∗Ad -invariant over ∗k and comes from the 
statement  
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and thus via Konstant-Symes theorem we have the Lax equation (6). As a conclusion, following this perspective 
naturally shows the complete integrability of the KdV hierarchies. 
 
b) From the results above, we examine the Lie geometric structure of the well-known KdV equation: 

06 =+− xxxxt ϕϕϕϕ                                                 (7) 

Let n = 2 and setting ,0,1 12 == ϕϕ appropriately with respect to Gelfand-Dickey programme, which requires 

that the coadjoint orbit over ∝k  is given with conditions that the integral orbit are invariants, 

i.e. ∫ =2ϕ constant, ∫ =1ϕ constant. Thus if ∝∈+= k2
2 ξϕp  (letting 0ϕϕ = ); i.e. 2p  is related to the 

time independent Schroedinger operator with potentialϕ , then via equation (3) we have  
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)(, ∝∈ kaHH kj  with kj PP ,  are respectively polynomials to the integrals kj HH , . By employing the Lie 
bracket operation, we have 
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This simply means that the Poisson structure on ∝∈Θ k
2p  can be written as (via (5)) 
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J represents the Poisson bracket. 
 
By following the Konstant-Symes theorem and the above-mentioned theorem, this bracket is based from the 
symplectic structure at any coadjoint orbit in ∝k ; i.e. we can write  
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Furthermore we can deduce that (via equation (4)) 
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the other terms are ignored since these are of negative degree. If we assume that there exists an algebraic 
isomorphism between the ‘formal pseudo differential operator space’ and ‘symbol space’, then 

δϕ
δPDpX H 2)( 2 −=  

If 23
3 2

1
xPP ϕϕ +==  and xD ∂= , then the vector fields for the orbit 

2pΘ structure is given by  

ϕϕϕϕ ∂−= )6( xxxxHX  , 
evolution field of the KdV (7). 
From the results above and together with the flow generated by HX (coadjoint action of G on ∗k ), definitively 
we can conclude that the dynamical system related to KdV is a Hamiltonian mechanical system over the 
coadjoint orbits in ∝k . 
 
 
5. Concluding Remarks 
 
We have shown briefly that the above group theoretical formulation exhibits a coherent connection between Lax 
representation and mechanics on the coadjoint orbit space of a Lie group action. Clearly this framework is largely 
based on sterling works done by Adler [1], Lebedev & Manin [15] and Berezin & Perelomov [4], which asserts 
firstly that the relevant symplectic structure is the symplectic structure of the relevant orbit and secondly the 
integrability of the KdV hierarchy’s dynamical system and its Lax representation are closely related to the Lie 
algebra splitting. This manifestation naturally explains the integrability of the KdV hierarchies via this group 
theoretical approach. In fact, we think that the approach is also applicable to other general class of nonlinear 
partial differential equations (eg. Drinfeld [7], Semenov-Tian-Shansky [20], Terng & Uhlenbeck [23]). We 
believe (as Palais [17]) that the secret sources of soliton symmetries and as well as the many remarkable 
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properties of soliton equations are closely related to the existence of large and non-obvious groups of symplectic 
automorphisms. These groups would act on the phase spaces of these Hamiltonian systems (the coadjoint orbit 
space of a Lie group action) and leave the Hamiltonian function invariant. Furthermore, this framework simply 
brings forth further understanding with respect to the link between (affine) Lie algebra representations and 
integrable systems. 

The concept of integrability, which is being extended to infinite dimensions or to partial differential equation, is 
just a portion of a rich structure found in the class of ‘completely integrable’ equations or the ‘soliton’ equations 
residing within the integrable systems (as Batlle [3]). The ‘unreasonable effectiveness’ of these full-blown 
structures can be seen in the remarkable recent emergence of a most exotic range of actively researched 
disciplines: two dimensional quantum field theory, intersection theory on the moduli space of Riemann surfaces, 
integrable hierarchies, matrix integrals, random surfaces, Gromov-Witten invariants, and many more (eg. Chen et 
al [5], Dijkgraaf [6], Marshankov [16]).  
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