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Abstract Forecasting is an important role in organizations for decision making and planning. 
This research is to forecast the cyclical and non-cyclical weekly stock prices on the Stock 
Exchange of Thailand by using the models of Geometric Brownian motion, Fourier’s series, and 
Cauchy initial value problem. The accuracy and performance of the models are based on the 
minimum root mean squared percentage error which is the error between actual and forecasted 
stock prices. The results showed that Geometric Brownian motion is suitable for forecasting both 
cyclical and non-cyclical stock prices because of minimum error. Moreover, the confidence 
intervals of forecasted stock prices are demonstrated. Therefore, Geometric Brownian motion 
should be selected to describe the movement of stock prices in Thailand. 
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Introduction 
 

One of the many problems which involves making a decision is forecasting. The forecasting was 
employed in what the outcome is in the future. The good performance of forecasting leads to the good 
performance of profitability of the organization. The organization which can forecast future events will be 
able to manage uncertain future events better than the organization with unknown information in the 
future. Several processes in an organization even individually still require forecasting in that it is the most 
accurate in order to improve and analyze the processes. Namely, forecasting has widely been used in 
such processes as the production process, inventory process, marketing process, personal financial 
process, etc. Thus, forecasting is an important key of a successful organization and person.  In particular, 
forecasting the price of risky assets which is an uncertainty of price movement. For example, the 
organization needs the most forecasting techniques for forecasting the food of animal in the future on 
future contracts and options so as to plan the animal food to be enough in case of lacking production 
corp. Investors try to simulate and forecast the movement of risky assets for capital gain.  They need 
accurate forecasting techniques for simulating the movement of the risky asset. 
 
A lot of research has been studied about forecasting techniques. One of the best methods for forecasting 
is Box–Jenkins technique (see Box and Jenkins [1]) based on the linear relation among random variables 
with lagging time. Auto-Regressive Integrated Moving Average (ARIMA) models of the Box-Jenkins 
technique is a mathematical model for representing the forecasting on time series. Later, the extension 
of the ARIMA model has been used to apply in many fields. The next-day electricity prices using ARIMA 
models on the spot market of mainland Spain and Californian were forecasted [2]. The ARIMA model to 
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forecast commodity prices was employed [3]. The emission of Carbon Dioxide in Bangladesh using 
ARIMA (0, 2, 1) model which is the best fitted model was modeled and forecasted [4]. ARIMA (1, 2, 1) 
for forecast the annual total Carbon Dioxide in China. The trend of Carbon Dioxide in China is likely to 
increase was constructed [5]. The forecasting model for curly red chili price at retail level using ARIMA 
(1, 1, 9) model was constructed [6].  ARIMA (1, 1, 2) model to forecast monthly malaria incidence 
between 2018 and 2019 in Kumasi Metropolis was used [7].  The monthly price in selected markets from 
April 2000 to December 2014 of Bengalgram using ARIMA (1,1,1) model was forecasted [8].  Meanwhile, 
the data with high volatility have been often seen in real applications. Several researchers have been 
studied in combination between ARIMA model and Generalised AutoRegressive Conditional 
Heteroskedasticity (GARCH) model on high volatility real data especially financial data. The volatility of 
gold future contract (GF10J16) using ARIMAGARCH model based on the gold future price movement 
followed normal, t, and generalized error distributions and compare cumulative of return of 
ARIMAGARCH model was forecasted [9]. The machine health condition generated from vibrated signal 
to explain the condition of the wear and fault on the machine using ARMAGARCH was estimated and 
forecasted [10]. The ARMAGARCH model to forecast mean and volatility in short-term (hourly, weekly, 
monthly) of electricity prices was applied [11]. The network traffic based on the ARIMAGARCH model 
for capturing the traffic characteristics and traffic network controlling was predicted [12]. The proposed 
model has better accuracy of forecasting than fuzzy autoregressive integrated moving average model. 
Oil prices and volatility of the returns of oil prices using Hybrid ARIMAGARCH model were forecasted.  
Hybrid ARIMA (33, 0, 14) GARCH (1, 2) model based on dynamic and static procedure is suitable for 
the returns of oil prices. The static procedure was better performance than dynamic procedure [13]. In 
addition, combined models between ARIMA models and artificial intelligence models such as Neural 
Networks model, Support vector machines, etc. have been widely used for forecasting. ARIMA model 
and Support vector machines which is a new artificial neural network technique to model the stock price 
were combined [14]. A hybrid model between ARIMA and neural networks to forecast the real data was 
used. The combined model between ARIMA and artificial neural network technique performed better 
than the single model, ARIMA or artificial neural network model [15]. ARIMA and a fuzzy regression 
model for forecasting the exchange rate of NT dollars to US dollars were combined [16]. The commodity 
of the future trend of Iran’s crude steel consumption using fuzzy ARIMA model which provided 
significantly improved accuracy was forecasted [17].  Fuzzy seasonal ARIMA forecasting short - term 
model which is a combined model between fuzzy and seasonal ARIMA model for forecasting time series 
data of Taiwan machinery industry and the soft drink was presented [18]. As mentioned in the above 
research works, it found that the general time series data is the most selected to be the samples of the 
research works. The most forecasting models are based on ARIMA or combination between ARIMA 
model and artificial intelligent model which are suitable for linear pattern of time series data.  
 
This research is focused on the random and periodic models -- Geometric Brownian motion, Fourier’s 
series, and Cauchy initial value problem-- for forecasting cyclical time series data on the Stock Exchange 
of Thailand.  However, time series data with cyclical patterns specifically stock price movement on the 
Stock Exchange of Thailand is sampled as the sample of this research. It is important for investors to 
find a suitable chance in taking profit and capital gain on the investment if there is the best model for 
describing and forecasting the time series data movement or stock price movement.  Therefore, cyclical 
stock price as cyclical time series data is an interesting issue for studying its price movement and 
forecasting of cyclical stock price. The stock price samples of both non-cyclical and cyclical stocks of 
this study are selected by the Stock Exchange of Thailand.  Also, the non-cyclical stock price is brought 
to compare the methods for this research with the cyclical stock price. 
 

Materials and methods 
 

In this section, some fundamental knowledge and background about the characteristics of cyclical stocks 
and non-cyclical stocks are described as the materials for this research (see [19]). In addition, the 
methods for forecasting the stock prices: geometric Brownian motion (see [20]), Fourier’s series (see 
[21]), and Cauchy initial value problem (see [22]) are shown as follows: 
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Materials 
Cyclical and Non - cyclical Stock Price 
Business cycle is a change of a business by the changing of economic factors which affect the stock 
prices. The business cycle is influenced by the external and internal economic factors of the economic 
system. The range of time in the business cycle depends on the strength of the global economy. In 
addition, the business cycle consists of 4 stages as follows: 
 
1. Expansion is an increase in the range of economic factors such as production, employment, 

revenue. The direction of the investment is in an increasing trend. 
2. Boom is the range which is increased by the strategic planning. It is a maximum point of the business 

cycle. The economic factors in particular the production cost and the price of finished goods are also 
the highest. 

3. Recession is the range in which the investment direction decreases. The demand for finished goods 
and employment are also in the decrease.  

4. Depression is the range which is in the minimum point of the business cycle. The economic system 
is a contraction such as low production and high unemployment. 

5.  
Thus, the stock prices which depend on the business cycle are called cyclical stock (sometimes called 
offensive stock or aggressive stock) price; otherwise non-cyclical stock (sometimes called defensive 
stock) prices. Namely, the cyclical stock is the stock which is influenced by the economic cycle. The price 
movement of the cyclical stock depends on the movement of economic expansion and economic 
depression. This phenomenon makes a cycle on the stock price. In general, the cyclical stock has the 
behavior of its stock price movement in up and down followed by the business cycle such as automobile 
stock price which is a non-essential goods for consumers. On the other hand, the non-cyclical stock has 
the behavior of its stock price independent movement because its business company produces the 
essential goods for consumers such as food stock price which is a necessary commodity for consumers 
even during the depression economic period. Thus cyclical stock is opposite of non-cyclical stock. For 
some examples on the Stock Exchange of Thailand, some cyclical stocks consist of: construction 
materials company, paper and printing materials company, industrial tool and machinery company, 
vehicle and equipment company, automobile company, airline company, jewelry company, etc., but 
some non-cyclical stocks consist of: public utility company, infrastructure company, beverage company, 
food company, medical company, etc. 
 
Thus, the cyclical stock is a risky stock in the point of view of many investors because the Beta ( ) 
value is higher than non-cyclical stock. The Beta value is a statistic on the Capital Asset Pricing Model 
(CAPM) for measuring the risk of stock with respect to the total market value with each other's linear 
relationship. For this research, the CAPM is an important model for studying the linear relationship 
between the return on individual stock and the return on the Stock Exchange of Thailand index. The Beta 
value of CAPM model can be used for evaluation of the risk and the return of individual stock with respect 
to the Stock Exchange of Thailand. If the Beta value of individual stock is high, then the individual stock 
will be high risk and high return. It can be defined as 
 

                                                                                                                    (1) 

where  is an expectation return on risky stock price, 

            is an expectation return on market value, 

             is a return on risk free assets. 
 
If the Beta value equals 1 then the return on market value increases (decreases) 1% and the return of 
risky stock price will also increase (decrease) 1%. That is, the risky stock equally risks the market.  
If the Beta value is greater than 1 then the return on market value increases (decreases) 1% and the 
return of risky stock price will also increase (decrease) more than 1%. If the Beta value is less than 1 
then the return on market value increases (decreases) 1% and the return of risky stock price will also 
increase (decrease) less than 1%. 
 
Drift and Volatility of Stock Price 
Let  be a stock prices at time .  The expected value and variance of stock prices are calculated on 
the return which  is defined as 
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Drift of stock prices is defined as 

 

and volatility of stock prices is defined as 
 

 

 
Geometric Brownian Motion 
Let be an initial state of the stock price at time .  The stock price is a random variable at time  

.  Given  and ,  the model for stock price is moved by the discrete model as 
 

                                                                               (2) 
 
where  is a drift of stock price, 
 
           is a volatility of stock price, 
          is an i.i.d.  
 
For continuous model, the time interval and  for  are considered. From discrete 
model on Equation (2), are evaluated.  As  and , discrete model 
transformed into continuous model as 
 

 

 
Taking logarithm on both sides, 
 

                                                                                    (3) 

From Taylor’s series of with small , Equation (3) becomes 

                                                                      (4) 

where                               

              + higher term of            

From the Central Limit Theorem, term in Equation (4) follows the normal random variable with 

mean and variance  .  Namely,                                                  

                                                                                                            (5) 
Thus, the stock prices at time  become 
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Because  in Equation (2) is the i.i.d. random variable,  

                         for  

and is independent with . 

Therefore, for , the stock prices can be described on the model as 

                                                                                  (6) 
where i.i.d.  . 

 
Fourier’ s Series 
The concept of Fourier’s series is to estimate given function by using a periodic trigonometric function. 
Namely, the origin of continuous Fourier’s series is generated by the convergent trigonometric series of 
the form for estimating : 
 

       
              
 
where and  are called the coefficients of Fourier’s series for some 
positive integer .  Here, these coefficients are real.  

The above series can be rewritten on  as 

 

                                                                 (7) 
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For discrete Fourier’s series, the concept on the substitution of summation to integral is adopted to derive 
the discrete case. Taking the summation on both side of Equation (7), 
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Thus, 

 

 

Thus, 

 

 
Ordinary differential equations of Cauchy initial value problems 
 The Cauchy initial value problem is an ordinary differential equation which is formed as 
 

                                                                                                       (8) 

 
The method for solving Equation (8) is based on the methods given by Lascsáková (see [22]). The 
particular solution solved from Equation (8) is 
 

                                                                                                             (9) 
 
For any point , Equation (9) can rewrite and can be evaluated as 

                                                                                                          (10) 

where  . 

 
However, the solution as in Equation (10) should specifically be agreement with the real data which be 
growth as exponential function. Lascsáková (see [22]) extended the numerical method for solving 
Equation (8) with assumptions in that the data possesses trend and exponential growth as. 
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Methods 
Data Collection 
Data for this research was gathered from the Stock Exchange of Thailand. The weekly data at close 
price can be classified into two groups: cyclical stock and non-cyclical stock from 13/12/2004 to 
10/02/2020. Additionally, in sample starts at 13/12/2004 to 02/01/2017 and out of sample starts at 
09/01/2017 to 10/02/2020. 
The backgrounds of the sample companies as the cyclical stocks consist of the followings. 
 
1. CH. Karnchang Public Company Limited (stock name: CK) is the Construction Services sector in 

The Stock Exchange of Thailand. The company is a developer of basic infrastructure and operation 
of construction business.   

2. Italian-Thai Development Corporation Limited (stock name: ITD) is the construction services sector 
in The Stock Exchange of Thailand. The company is also a developer of basic infrastructure which 
originated by Thai and Italian. 

3. Nawarat Patanakarn Public Company Limited (stock name: NWR) is the construction services 
sector in The Stock Exchange of Thailand. The company operates its business as construction 
contractor, manufacturer, and joint venture. 

4. Thoresen Thai Agencies Public Company Limited (stock name: TTA) is a transportation and 
logistics company in The Stock Exchange of Thailand. The company operates its business in 
shipping, offshore service, agrochemical, and investment. 

 
The backgrounds of the sample companies as the non-cyclical stocks consist of the followings 
 
1. Bangkok Hospital (stock name: BDMS) is a health care service in The Stock Exchange of Thailand. 

The aims of the company to provide medical services with warmth and completion. 
2. CP All Public Company Limited (stock name: CPALL) is a commerce sector in The Stock Exchange 

of Thailand. The company operates its business in convenience stores. 
3. Charoen Pokphand Foods Public Company Limited (stock name: CPF) is the food and beverage 

sector in The Stock Exchange of Thailand. The company is a group of companies which operates 
its business in an agro-industrial and food industry. 

4. Thai Union Group Public Company Limited (stock name: TU) is the food and beverage sector in 
The Stock Exchange of Thailand. Its business is operated on frozen and canned seafood. 

 
Computation of forecasting the stock prices 
In this section, the procedures for forecasting some stock prices: cyclical and non-cyclical on the Stock 
Exchange of Thailand are proposed as follows:  
 
Procedure 1: forecasting the stock prices by Geometric Brownian motion 
Let drift and volatility of stock prices be and respectively on time interval . 
Step 1: Calculate initial values 
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                    ;  
                     If    
                           

                           
                     End 
               End 
Step 3: If ,   stop 
             otherwise repeat  Step 2 
            End 
 
Procedure 2: forecasting the stock prices by Fourier’s series 
Let of stock prices on time interval  
Step 1:  initial values 
           for some  

          for some  

          for some  
Step 2:  Calculate coefficients of Fourier’s series 

          

          

          

Step 3: Estimate Fourier’s series 

           

Procedure 3: forecasting the stock prices by Cauchy initial value problem  
Let of stock prices on time interval  
Step 1: Calculate initial values 
             

             

Step 2: Calculate 
             

            

            

            

            

             

Step 3: Estimate solutions of Cauchy initial value problems 
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In this research, the better method for forecasting is measured in minimum value of Root Mean Squared 
Percentage Error (RMSPE). The formula for RMSPE can be defined as 
 

                                                               (11) 

 
where  is an observation,  is a predicted value. 
 
The criteria for decision the performance of forecasting model as follows: 
 
 

Table 1.  Measurement of forecasting performance. 

RMSPE Forecasting Accuracy 
 Highly accurate 
 Fairly accurate 

 Reasonably accurate 
 Unreasonably accurate 

 
 
Confidence Intervals for predicted stock prices 
The 95% confidence intervals for predicted stock prices are based on any random variable  
Standardization of to standard normal is applied by transformation  

 

 

 

 
So, is the 95% confidence interval for predicted stock prices. 

Let be stock prices movement simulated by Geometric Brownian motion. 
The 95% confidence interval for is 

 

Let be stock prices movement simulated by Fourier’s series. 

The 95% confidence interval for is 

 

Let  be stock prices movement simulated by Cauchy initial value 

problem. The 95% confidence interval for is 
 

 

Results and discussion 
 

This section is focused on the results and output analysis from forecasting models based on Geometric 
Brownian Motion, Fourier’s series, and Cauchy initial value problem. Weekly data was sampled from 
cyclical and non-cyclical stocks on The Stock Exchange of Thailand. The basic statistics, forecasting 
models, and errors are demonstrated and compared as follows. 
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Basic statistics and Beta value of cyclical and non-cyclical stock 
prices 

 
Table 2.  Basic statistics for cyclical stock price. 

 
 

 

 

 

 

 

 

 

 

Table 3.  Basic statistics for non-cyclical stock price. 

Descriptive Statistics BDMS CPALL CPF TU 
Mean 11.74032 33.56777 19.53577 13.13002 
Standard Error 0.31468 0.93906 0.39638 0.21526 
Median 9.90000 34.62500 24.40000 14.43750 
Mode 25.00000 5.40000 25.00000 6.36762 
Standard Deviation 8.85587 26.42747 11.15505 6.05787 
Sample Variance 78.42651 698.41122 124.43522 36.69780 
Kurtosis -1.58423 -1.10234 -1.42453 -1.51999 
Skewness 0.26629 0.38715 -0.33607 -0.16547 
Range 25.61000 85.80000 38.45000 19.28458 
Minimum 1.39000 2.70000 2.80000 3.71542 
Maximum 27.00000 88.50000 41.25000 23.00000 
Sum 9298.32999 26585.670000 15472.33000 10398.97735 
Beta 0.63 0.91 0.90 0.94  

 
Table 2 and table 3 showed the basic statistics and Beta value. Obviously, cyclical stock price have the 
Beta value which is larger than Beta value of non-cyclical stock price. 
 
Geometric Brownian motion for cyclical and non-cyclical stock 
prices 
The important parameters for Geometric Brownian motion are drift and volatility of cyclical stock price 
and non-cyclical stock price showed in Table 4. 
 
As shown is Table 4, the volatilities of cyclical stock prices are higher than the volatilities of non-cyclical 
stock prices. However, the drift of cyclical stock prices are lower than the drift of non-cyclical stock 
prices. 

 
 
 
 
 
 
 

Descriptive Statistics CK ITD NWR TTA 
Mean 15.89576 4.97227 0.98778 16.40542 
Standard Error 0.32761 0.07975 0.02502 0.29144 
Median 12.39020 4.44173 0.79000 15.73750 
Mode 26.75000 5.10000 0.50760 9.05000 
Standard Deviation 9.21990 2.24436 0.70419 8.20198 
Sample Variance 85.00661 5.03717 0.49589 67.27245 
Kurtosis -1.60955 -0.50651 1.81058 1.24307 
Skewness 0.19906 0.58974 1.35136 0.98683 
Range 31.72073 10.61630 3.85176 46.57680 
Minimum 2.02927 1.45000 0.10450 3.60000 
Maximum 33.75000 12.06630 3.95626 50.17680 
Sum 12589.43799 3938.03739 782.31872 12993.08927 
Beta 1.40 1.61 1.20 1.52 
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Table 4.  Parameters of Geometric Brownian motion model of cyclical and non-cyclical stock prices. 

Cyclical Stock Prices 

 CK ITD NWR TTA 

Drift 0.003365388 0.001574302 0.003599534 0.000269615 

Volatility 0.062700335 0.069334042 0.085138181 0.061015614 

Non-cyclical Stock Prices 

 BDMS CPALL CPF TU 

Drift 0.00499242 0.005990429 0.004142155 0.002724249 

Volatility 0.040551543 0.04447965 0.041964702 0.036392105 

 
Fourier’s series for cyclical and non-cyclical stock prices  
The Fourier’s series estimations for the cyclical stocks are as follows: 
1.  CH. Karnchang Public Company Limited (stock name: CK)  
     Fourier’s series for estimation of CK stock price is 
                       
          
2.  Italian-Thai Development Corporation Limited (stock name: ITD)  
     Fourier’s series for estimation of ITD stock price is 
                        
         
3.  Nawarat Patanakarn Public Company Limited (stock name: NWR)  
     Fourier’s series for estimation of NWR stock price is 
                        
         
4.  Thoresen Thai Agencies Public Company Limited (stock name: TTA) 
     Fourier’s series for estimation of TTA stock price is 

                   
         
 
The Fourier’s series estimations for the non - cyclical stocks are as follows: 
1.  Bangkok Hospital (stock name: BDMS) 
     Fourier’s series for estimation of BDMS stock price is 
                        
         
2.  CP All Public Company Limited (stock name: CPALL)  
     Fourier’s series for estimation of CPALL stock price is 
                        
         
3.  Charoen Pokphand Foods Public Company Limited (stock name: CPF)  
     Fourier’s series for estimation of CPF stock price is 
                        
          
4.  Thai Union Group Public Company Limited (stock name: TU) 
     Fourier’s series for estimation of TU stock price is 
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Comparison of Results among Geometric Brownian motion, 
Fourier’s series, and Cauchy initial value problem 
Next, the graphs of actual stock price, predicted stock price by Geometric Brownian motion, Fourier’s 
series, and Cauchy initial value problem are plotted for comparison of the results. Also, the comparison 
of the errors are provided as follows. 
 

 
 

Figure 1. Cyclical CK and ITD stock prices. 
 
 

 
Figure 2. Cyclical NWR and TTA stock prices. 

 
 

According to Figure 1 and Figure 2, the graphs of cyclical stock price stock prices were plotted to 
compare the predicted stock prices with actual prices. Obviously, predicted stock prices by both 
Geometric Brownian motion and Cauchy initial value problems approached the actual stock prices while 
predicted stock prices by Fourier’s series fluctuated and trended around the actual prices. 
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Figure 3 Non-cyclical BDMS and CPALL stock prices 

 

 
Figure 4. Non-cyclical CPF and TU stock prices. 

 
 
According to Figure 3 and Figure 4, the graphs of non-cyclical stock price prices were plotted to compare 
the predicted stock prices with actual prices. It found that predicted stock prices by both Geometric 
Brownian motion and Cauchy initial value problems changed slightly around the actual stock prices while 
predicted stock prices by Fourier’s series trended down and trended up the actual prices. For comparison 
of the forecasting errors, the RMSPE are adopted to compare amongst the forecasting methods as 
follows. 
 
As can be seen from Table 5, the performances of forecasting models on cyclical and non-cyclical stock 
prices using Geometric Brownian motion (RMSPE=0.007082387 and 0.002666017), Fourier’s series 
(RMSPE=1.223996238 and 0.062644341), and Cauchy initial value problem (RMSPE=0.014683423 
and 0.071304403) are in highly accurate level because all averages of RMSPE on each of the methods 
are less than 5%. Furthermore, compared each of the methods between cyclical and non-cyclical stock 
prices, Geometric Brownian motion and Fourier’s series on non-cyclical stock prices are better 
performances than on cyclical stock prices because the averages on the both methods are less than on 
non-cyclical stock prices. Whereas, Cauchy initial value problem method on cyclical stock prices is a 
better performance than on non-cyclical stock prices because the average of Cauchy initial value 
problem method on cyclical stock prices is lower than on non-cyclical stock prices.  
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Table 5.  RMSPE for weekly forecasting on stock prices. 
 

RMSPE  
Stock name Cyclical stock prices 

GBM Fourier Cauchy Average 
CK 0.004115606 0.088262533 0.00154409 0.031307410 
ITD 0.006748499 0.722771263 0.005597916 0.245039226 
NWR 0.011202130 2.936043833 0.047366956 0.998204306 
TTA 0.006263311 1.148907321 0.004224731 0.386465121 
Average 0.007082387 1.223996238 0.014683423  

RMSPE 
Stock name Non-cyclical stock prices 

GBM Fourier Cauchy Average 
BDMS 0.002693709 0.018187255 0.002626916 0.007835960 
CPALL 0.002556077 0.046442753 0.000631458 0.016543429 
CPF 0.003002090 0.002173560 0.279774346 0.094983332 
TU 0.002412193 0.183773796 0.002184891 0.062790293 
Average 0.002666017 0.062644341 0.071304403  

 
 
Predicted stock prices and its confidence intervals 
Confidence intervals for predicted stock prices are shown as in Table 6 and Table 7. 

 
Table 6. Confidence Interval for prediction of cyclical stock prices. 

 

Week Stock Name Forecasting Model Prediction 95% Confidence Interval 
783 CK GBM 19.75268455 14.00848551 25.49688 

  Fourier 29.13458677 19.24865666 39.02052 

  Cauchy 19.200001 13.98477899 24.41522 

 ITD GBM 1.520496099 0 3.672866 

  Fourier 2.745093166 0 5.618781 

  Cauchy 1.5101466 0 3.64157 

 NWR GBM 0.423845786 0 1.009666 

  Fourier 2.242715514 1.341089516 3.144342 

  Cauchy 0.45042715 0 1.055447 

 TTA GBM 4.526042438 0.518776251 8.533309 

  Fourier 14.1872274 4.508681921 23.86577 

  Cauchy 4.185922451 0.243597006 8.128248 
784 CK GBM 19.15820636 13.41400732 24.90241 

  Fourier 29.59350724 19.70757713 39.47944 

  Cauchy 19 13.78477799 24.21522 

 ITD GBM 1.520272688 0 3.672643 

  Fourier 3.316416678 0.442728934 6.190104 

  Cauchy 1.6 0 3.731423 

 NWR GBM 0.3882982 0 0.974119 

  Fourier 2.299851718 1.39822572 3.201478 

  Cauchy 0.47 0 1.075019 

 TTA GBM 4.224629355 0.217363168 8.231896 

  Fourier 12.38494158 2.706396097 22.06349 

  Cauchy 4.464304723 0.521979279 8.40663 
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Table 7. Confidence Interval for prediction of non-cyclical stock prices. 
 

Week Stock Name Forecasting Model Prediction 95% Confidence Interval 
783 BDMS GBM 24.55002961 20.35596202 30.30006923 

  Fourier 25.18620771 20.01842852 30.3539869 
  Cauchy 26.90009313 22.07813475 31.72205151 
 CPALL GBM 80.52442125 61.93928641 99.10955608 
  Fourier 71.65794137 55.08655763 88.22932511 
  Cauchy 71.60115722 54.32183176 88.88048268 
 CPF GBM 27.06420501 23.05781251 31.0705975 
  Fourier 27.004773 37.18660203 56.24998939 
  Cauchy 27.004773 22.51695055 31.49259545 
 TU GBM 13.8255846 9.492567774 18.15860143 
  Fourier 14.34223888 20.93571559 33.98615502 
  Cauchy 14.34223888 9.93399854 18.75047922 

784 BDMS GBM 25.89561593 19.577976 29.52208321 
  Fourier 25.5096696 20.34189041 30.67744879 
  Cauchy 26 21.17804162 30.82195838 
 CPALL GBM 69.98793022 51.40279539 88.57306506 
  Fourier 71.92825662 55.35687289 88.49964036 
  Cauchy 72 54.72067454 89.27932546 
 CPF GBM 26.66821389 22.6618214 30.67460639 
  Fourier 46.96292612 37.43123244 56.49461979 
  Cauchy 27 22.51217755 31.48782245 
 TU GBM 13.6274064 9.294389571 17.96042323 
  Fourier 27.52170178 20.99648207 34.04692149 
  Cauchy 14 9.59175966 18.40824034 

 
 

Conclusions 
 

In this research, the methods for forecasting stock prices in a weekly period consisting of cyclical and 
non-cyclical stock prices collected on the Stock Exchange of Thailand were proposed. The comparison 
of forecasting error and accuracy of forecasting models based on RMSPE were demonstrated and 
compared.  Also, the confidence intervals of predicted stock prices were proposed. Based on the sample 
stock prices, it was found that the cyclical stock prices take the higher risk than non-cyclical stock prices 
because the Beta values of cyclical stock prices are greater than non-cyclical stock prices. The results 
showed that Geometric Brownian motion and Fourier’s series performed on non-cyclical stock prices 
better than on cyclical stock prices based on RMSPE which is a highly accurate level. While Cauchy 
initial value problem performed on cyclical stock prices better than on non-cyclical stock prices based on 
RMSPE which is also a highly accurate level. Overall, all averages on the methods for forecasting 
provided a good performance because all of the RMSPEs were less than 5% which is highly 
accurate.  Furthermore, compared amongst Geometric Brownian motion, Fourier’s series, and Cauchy 
initial value problem, the result showed that Geometric Brownian motion is a good performance method 
for forecasting both cyclic and non-cyclical stock prices because RMSPE as the error between actual 
and predicted stock prices is minimum. The benefits of this research are the efficient ways for making 
decisions for analysts working such as marketing research in forecasting sales, prediction on future 
contract of commodities in ingredient companies, as well as investment on securities in the financial 
sector, etc. However, future research works can be extended to other asset movements apart from stock 
prices and combined forecasting should be considered for future research works. 
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