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Abstract  A non-Newtonian mathematical model of blood flow described as the Hershel-
Bulkley fluid model in a stenosed artery is studied together with the effect of its chemical reaction. 
The expressions of the shear stress, velocity, mean velocity, and relative velocity in the plug and 
non-plug flow field were evaluated. The convective-diffusion equation was solved using the 
Taylor-Aris technique subjected to the relevant boundary condition in determining the 
concentration as well as the relative and effective axial diffusivity of the solute. The efficiency of 
the dispersion process was affected by the presence of chemical reactions and stenosis in blood 
flow. The normalised velocity decreased as the power-law index and yield stress increased. The 
height and length of the stenosis, as well as the power-law index, increased with an increase in 
the parameters of the chemical reaction rate. In contrast, the relative axial diffusivity and effective 
axial diffusivity showed a reverse behaviour. The existence of stenosis restricted the blood flow 
and drug dispersion. In short, this study improved the understanding of the physiological 
processes involved in the dispersion of drugs and nutrients in the circulatory system. Furthermore, 
it proved that the dispersion of a solute in the blood flow happened at a low shear rate through 
narrow arteries.  
 
Keywords: Blood flow, Convective-diffusion equation, Chemical reaction, Herschel-Bulkley fluid, 
Stenosis.  

 
Introduction 
 
The theory of dispersion has wide applications in different fields of science and engineering including 
chemical engineering [1], biomedical engineering [2], physiological fluid dynamics [3], and environmental 
sciences [4]. The concept of axial dispersion was first introduced by Taylor [5] who investigated 
theoretically and experimentally the solute dispersion in a straight tube moving at a mean velocity. He 
reported that the combination of molecular diffusion and the mean velocity eventually led the solute to 
diffuse at a molecular diffusivity of 𝐷"## = 𝑎&𝑤(& 48	𝐷(⁄ , where 𝐷( is the molecular diffusivity, 𝑤( is the 
mean axial velocity, and 𝑎 is the radius of the tube. Later, Aris [6] who executed the method of moments 
found that Taylor’s dispersion theory was only valid when 𝐷"## ≥ 𝐷(. Therefore, Aris enhanced the 
dispersion theory by including the effect of axial molecular diffusion, 𝐷"## = 𝐷( + 𝑎&𝑤(& 48	𝐷(⁄ .  
 
Various mathematical models have been proposed to study the dispersion of a solute in blood flow 
subjected to stenosis by using a cylindrical tube. The blood flow in a stenosed artery is distinct from 
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normal arteries [7]. The abnormal growth of deposits such as fats, lipids, and cholesterol along the arterial 
wall can cause a reduction in the diameter of the artery, thus disturbing the normal flow of blood. The 
arterial wall becomes thickened and hardened with these accumulations. Consequently, a plaque is 
formed and leads to an artery narrowing that is generally referred to as atherosclerosis or stenosis. 
Sriyab [8] mentioned that the study of blood flow in a stenosed artery is vital for the understanding of 
circulatory diseases. According to Shah [9] as well as Mishra and Siddiqui [10], when blood flows through 
an artery with stenosis in certain regions, the issue of solute dispersion becomes more complicated. To 
date, numerous researchers have investigated and reported on the flow of blood through an artery with 
stenosis [11-15].   
 
One of the essential characteristics during the dispersion phase is the impact of a chemical reaction on 
both the solute and blood in the arteries. The chemical reaction is known as protein binding. Protein 
binding can minimise blood flow diffusion by reducing the solute molecules. Kori [16] stated that the 
process of diffusion becomes more difficult when the fluid is chemically reactive. Many reactions take 
place in the human body, including phase exchange, partitioning, boundary uptake, and oxygen binding 
to haemoglobin [17]. These reaction processes may occur in the bulk flow or at the boundary of the wall. 
Bird et al. [18] observed that solute dispersion occurred simultaneously with a chemical reaction, such 
as ester hydrolysis and gas absorption in an agitated tank. Ratchagar and Kumar [19] delineated that 
the blood flow concentration reduced as the chemical reaction rate increased in a stenosed artery. 
Meanwhile, Mwapinga et al. [20] reaffirmed that chemical reactions reduced the mass concentration 
while the presence of stenosis affected the flow of blood.  
 

In addition, Sharp [21] used Taylor–Aris’s dispersion theory to study the shear-augmented dispersion in 
Casson, Bingham, and power-law fluids. He observed that an effective molecular diffusion relied on 
certain rheological parameters of the fluid, for instance, the yield stress for Bingham fluid and Casson 
fluid and the power-law index for power-law fluid. A fluid is said to be Newtonian if it can flow through a 
large artery (diameter > 3mm) at a high shear rate (>100s-1). In contrast, it shows a non-Newtonian 
behaviour if it flows in a small arterial (diameter < 3 mm) at low shear rates. As mentioned by Tu and 
Deville [22], the non-Newtonian Herschel-Bulkley (H-B) fluid is advantageous as it can be reduced to the 
Newtonian, power-law, and Bingham fluid by applying the appropriate parameters. Mazumdar [23] 
concurred with Tu and Deville [22] and stated that the non-Newtonian H-B fluid model would provide 
more specific results compared to the power-law fluid model due to the presence of yield stress, apparent 
fluid viscosity, and power-law index. Hence, due to the similarities, he concluded that the H-B fluid model 
is the best representative of the blood flow. 
 

In another study, by considering blood as H-B fluid, Jaafar et al. [24] used Taylor-Aris’s dispersion theory 
and studied the impact of chemical reactions on a uniform dispersion of a solute in blood flow. The axial 
diffusion of the solute in H-B fluid was seen to be more significant compared to Casson fluids. Similarly, 
Mukahal et al. [25] analysed the advection and dispersion of a passive solute in the steady unidirectional 
flow of a thin uniform rivulet using Taylor-Aris’s dispersion theory. In order to determine the time-
dependent relationship that enhanced the dispersion coefficient, Salerno et al. [26] used Taylor-Aris’s 
dispersion theory with the Brinkman approach. Furthermore, Westerbeek et al. [27] also studied the 
reduction of Taylor–Aris dispersion by lateral mixing for the purpose of chromatographic applications. 
They demonstrated that the Taylor–Aris dispersion coefficient was reduced by a factor of 3 in a channel. 
Hence, based on previous works in the literature, there is a lack of studies on the steady dispersion of a 
solute in blood flow with the inclusion of a chemically active species in a stenosed artery using Taylor-
Aris’s dispersion theory. The study of solute dispersion in a non-Newtonian fluid is vital to produce 
realistic results that better represent physical problems. Furthermore, the knowledge of the rheological 
parameters is necessary to understand any effects of non-Newtonian rheology on solute dispersion. By 
solving this problem, the effective axial diffusivity of solute in narrow arteries can be predicted. 
Specifically, this study aimed to evaluate the effects of reactive chemical species in a stenosed artery 
using Taylor-Aris’s theory that was only addressed individually in previous studies.  
  

Mathematical Formulation 
 

Consider a chemically reactive solute along a tube that is miscible in the fluid and undergoes a first-order 
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reaction in the bulk flow. The blood flow is assumed to be steady, laminar, axially symmetrical and fully 
developed uni-directional.  
 
Governing Equations 

The cylindrical polar coordinates (𝑟̅, 𝜓4, 𝑧̅) where 𝑟̅ and 𝑧̅  indicates the radial and axial coordinates and 
𝜓4  is the azimuthal angle is considered. This works will ignore the fluid velocity in 𝑟̅ direction as its 
magnitude is negligibly small and only accounts in a 𝑧̅ direction. Hence, 𝑢48̅ = 𝑢49: = 0 [28]. Due to the 
axial symmetry, the velocity 𝑢4<̅ is uniform and independent in both 𝜓4  and 𝑧 ̅  directions. Thus, the 
continuity equation in the one-dimensional flow can be reduced as: 

 (1) 

The motion is a steady flow which means there is no variation concerning time and the gravitational 
acceleration 𝑔̅8̅ = 𝑔̅9: = 𝑔̅<̅ = 0 for the horizontal flow [29]. The simplified form in the axial and radial 
direction of momentum equations can be written as:  

 (2) 

 (3) 

where 𝜕𝑝̅/𝜕𝑧̅ is the pressure gradient and 𝜕/𝜕𝑟̅ is the changes in the radial coordinate. According to 
Singh et al. [30], the H-B fluid constitutive equation is indicated as: 

 (4) 

where 𝜏̅ is the shear stress, 𝜏B̅ is the yield stress, and 𝜂D is the H-B fluid viscosity coefficient with 
dimension (𝑀𝐿GH𝑇G&)J𝑇 and n is the power-law index. Equation (4) displays normal shear flow in the 
field when 𝜏̅ > 𝜏̅B while plug flow field takes place when 𝜏̅ < 𝜏̅B. Bessonov et al. [31] stated that whenever 
the yield stress is greater than the shear stress, the fluid in the region will not flow but just merely be 
carried along by the fluid particles in the adjacent shear flow region. The equation of the transport of a 
species with first-order chemical reaction in the fluid is  as follows: 

 (5) 

 (6) 

where 𝐶H̅ is the solute concentration at plug flow field, 𝐶̅& is the solute concentration at the outer flow 
field, 𝑢4G is the plug flow velocity, 𝑢4M is the outer flow velocity, 𝑢4( is the mean velocity, 𝑅4 is the parameter 
of the chemical reaction rate, 𝑢OG = 𝑢4G − 𝑢4(  is the relative velocity in the plug flow field and 𝑢OM = 𝑢4M −
𝑢4( is the relative velocity in the non-plug flow field.  

Initial and Boundary Conditions 

Equations (2) define the nonlinear system of a differential equation for the unknown shear stress 
subject to the following boundary condition: 

0.zu
z

¶
=

¶

1 ( ),p r
z r r

t¶ ¶
= -

¶ ¶

0,p
r
¶

=
¶

( ) ( )1 ,   if  and ,

            0         ,  if  and 0 ,

n

y y p
H

y p

r r R zdu
dr r r

t t t t
h

t t

ì- - ³ £ £ï= í
ï < £ <î

1 1
1

ˆ1 ,
m

C u Cr RC
r r r D z

-æ ö¶ ¶¶
- =ç ÷¶ ¶ ¶è ø !

2 2
2

ˆ1 ,
m

C u Cr RC
r r r D z

+æ ö¶ ¶¶
- =ç ÷¶ ¶ ¶è ø !

t



 

 
460 

Abidin et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 17 (2021) 457-474 

 is finite at   (7) 

For the unknown velocity 𝑢4, there is a no-slip condition at the wall of the circular pipe. As the fluid is 
viscous, it sticks to the pipe wall and thus the no-slip boundary condition is given by: 

 at  (8) 

The boundary conditions in the plug and non-plug flow fields for solute concentration are as follows:  

         at , (9) 

        at . (10) 

               at , (11) 

            at . 
(12) 

 where 𝐶̅Q is the solute concentration at the plug flow field. 

Geometry of Stenosis 

Following Chitra and Karthikeyan [32], the geometry of the stenosis in the dimensional form may be 
written as:  

 (13) 

where 𝑅R is the arterial radius, 𝛿̅ is the height of stenosis, 𝑙R̅ is the length of a stenosis, 𝑧̅ is the longitudinal 
(axial) distance, 𝑟̅ is the transverse (radial) distance, 	𝑑̅ is the stenosis location, 𝐿4 is the artery length and 
𝑅4(𝑧)̅ is the stenotic artery radius. 
 
 

 
 

Figure 1. The geometry of the stenosis in an arterial segment. 
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The introduction of some of the non-dimensional variables: 

  (14) 

where 𝑢4R is the fluid characteristics velocity (centreline velocity), 𝑢 is the velocity, 𝑢M, 𝑢G is the non-plug 
and plug flow velocities, 𝑢( is the average velocity, 𝑟 is the transverse (radial) distance, 𝑟Q is the radius 
of the plug core field, 𝑧 is the longitudinal (axial) distance, and 𝑃𝑒 is the modified P𝑒́clet number. Using 
non-dimensional variables in (14), the corresponding equations and boundary conditions from Equations 
(1) until (13) are as follows, 

 (15) 

 (16) 

 (17) 

 (18) 

 (19) 

 (20) 

 is finite at  (21) 
 at  (22) 

 at  (23) 

 at  (24) 

 at , (25) 

 at , (26) 

 (27) 

 
Method of Solution 

To solve equation (13) subject to the boundary condition equation (8), the shear stress 𝜏̅ should be 
obtained by integrating equation (2) with respect to 𝑟̅ subject to the boundary condition equation (7)
Hence, the expression for the shear stress is obtained as follows:  
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 (28) 

Since (𝜏B̅/𝜏̅) ≪ 1, disregard the terms (𝜏̅B/𝜏̅)[ and higher powers of (𝜏̅B/𝜏̅), the constitutive equation in 
Equation (4) can be summarised as follows: 

   (29) 

In order to differentiate between the velocity in the non-plug flow field and plug flow field, the velocity in 
the non-plug flow field is defined as 𝑢4M(𝑟̅) and is given by:  

 
   

(30) 

where  𝑟̅Q  is equal to the yield stress over a pressure gradient that can be described as the plug core 
radius: 

 (31) 

By evaluating Equation (30) at 𝑟̅ = 𝑟̅Q, the plug flow field velocity can be described as: 

 (32) 

The dimensional form of the mean velocity, 𝑢4( in a circular pipe, is: 

 (33) 

where 

 (34) 

and 

 (35) 

 

When 𝑟̅Q = 0 and n = 1, Equation (33) is deduced as the Newtonian fluid mean velocity. In order to 
compute the values of blood velocity, the normalised velocity is defined to reduce some physical 
quantities for simpler evaluation. Using a similar approach by Sharp [16] as shown in Figure 3, the H-B 
normalised velocity profile can be derived by dividing the velocity 𝑢4, (𝑢4 = 𝑢4G(𝑟̅Q)  if 0 ≤ 𝑟̅ ≤ 𝑟̅Q and 𝑢4 =
𝑢4M(𝑟̅) if 𝑟̅Q ≤ 𝑟̅ ≤ 𝑅4(𝑧̅)  in both outer and plug flow fields with mean velocity, 𝑢4(. It is defined as:  

The normalised velocity of blood  (36) 

The non-dimensional velocity of blood in the outer flow field is given by: 
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  (37) 

and the non-dimensional velocity of blood in the plug flow field is:  

 (38) 

The mean velocity in non-dimensional is given as:  

 (39) 

The plug flow field of relative velocity in the non-dimensional form is:  

 (40) 

and the non-plug flow field of relative velocity is:  

 (41) 

Equation (19) is solved analytically pertaining to the boundary conditions in (23) and (24) to get the solute 
concentration in the plug flow field in terms of modified Bessel function: 

 (42) 

where  𝐽R  is the first kind of zeroth-order modified Bessel function. 

Due to the complexity to solve Equation (20) analytically, it is solved numerically using the Mathematica 
software with the boundary conditions (25) and (26). The expression of solute concentration in the non-
plug flow field is very lengthy, thus it is not presented here. The flux (flow rate) of solute over a cross-
section of the geometry in a circular pipe flow at constant, 𝑧 is:  

 (43) 

Hence, the flux of solute can be simplified as:  

 (44) 
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where 

 (45) 

and 

 (46) 

The solute effective axial diffusivity can be obtained by dividing Equation (44) with −(𝜕𝐶/𝜕𝑧) as follows: 

 (47) 

It can be re-written as:  

 (48) 

 

Results and discussion 
The objective of the study was to analyse the behaviour of the blood flow for steady dispersion through 
a narrow circular pipe to simulate the presence of stenosis and reactive species in the bulk flow. The 
study also aimed to portray the non-Newtonian behaviour and the effects of the various physical 
parameters on the velocity distribution of blood as well as the relative and effective axial diffusivity of the 
solute. The normalised velocity of blood was calculated in dimensional terms where the relative axial 
diffusivity and effective axial diffusivity of the solute was evaluated in non-dimensional terms for 
simplicity. The range of the parameter values used in this study was as follows: yield stress 𝑟Q ∶ 0 − 0.2 
[33]; power-law index 𝑛 ∶ 0.6 − 1.4 [34]; rate of chemical reaction parameter 𝑅 ∶ 0 − 10 [35;36]; stenosis 
height 𝛿 ∶ 0.05 − 0.25 [19]; longitudinal (axial) distance 𝑧 ∶ 3.9 − 5 [37], and P𝑒́clet number 𝑃𝑒 ∶ 4 − 20 
[38]. The analysis results in Figure 2-14 and Table 1-2 were computed and generated using Mathematica 
software.  
 
Normalised Velocity Distribution 
 
Figure 2 depicts the normalised velocity profiles of different fluids when 𝑙R̅ = 3, 𝑑̅ = 2, 𝑧̅ = 4,  and 𝛿̅ =
0.01. It shows the effect of plug core radius and power-law index on the normalised velocity of the blood 
flow in the stenosed artery. The physically meaningless negative values of the parameter 𝑟̅  are used to 
show the symmetry of the normalised velocity profile at the centreline, 𝑟̅ = 0. The normalised velocity 
decreases when the power-law index n and yield stress increase. When n = 0.95 for (H-B fluid), the 
normalised velocity is higher than the normalised velocity when n = 1 (Bingham fluid). The normalised 
velocity when 𝑟̅Q = 0.04 (H-B fluid) is lower than the normalised velocity when 𝑟̅Q = 0 (power-law fluid). 
An increase in the yield stress can lead to a higher accumulation of red blood cells at the centre of the 
artery, hence reducing the velocity of blood flow. It can be seen that the normalised velocity of the 
Newtonian fluid model is marginally higher than H-B and Bingham fluid models and slightly higher than 
the power-law fluid model. However, the Newtonian and power-law fluids are suitable for larger arteries 
without yield stress (𝑟̅Q = 0) when the red blood cells do not accumulate in the central area, while H-B 
and Bingham fluids are good for narrow arteries. 
 
According to Taylor [5], the dispersion process can be affected by the normalised velocity profile. A 
higher normalised velocity profile achieve a more effective diffusivity of solute. H-B fluid model consists 
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of the power-law index n that can decrease the viscosity and increase the velocity. It is clear that the 
normalised velocity profile of H-B fluid is higher than Bingham fluid when n = 0.95. Thus, it can be 
concluded that H-B fluid is a better fluid model to be considered in a narrow artery at a low shear rate as 
it is more closely related to the actual physiology and it can help the medicine to move faster in the blood 
flow. Interestingly, the normalised velocity profile is in good agreement with Figure 2 of Sankar et al. [39] 
in the absence of stenosis. 
 

 
Figure 2. Variation of normalised velocity profiles of different fluids when 𝑙R̿ = 3, 𝑑̅ = 2, 𝑧̅ = 4  and 𝛿̅ =
0.01.   

 

Relative Axial Diffusivity 
 
The variation in the relative axial diffusivity of the solute against plug core radius, 𝑟Q for different values 
of chemical reaction rate parameter, stenosis height, stenosis length, and power-law index are shown in 
Figure 3,  
Figure 4, and Figure 5, respectively. This subsection presents the behaviour of the chemical reaction 
parameter rate and its effects on the relative axial diffusivity. The variation of relative axial diffusivity of 
the solute against plug core radius, 𝑟Q for different values of chemical reaction rate parameter and 
stenosis height, is illustrated in Figure 3. The effect of the relative axial diffusivity on the stenosis height, 
𝛿 is significant to determine the size of stenosis. As the stenosis height increases, the stenosed artery 
becomes narrower and affects the normal blood flow in the artery. It also delineates that an increase in 
the chemical reaction rate parameter and stenosis height will result in the decrease of relative axial 
diffusivity of the solute due to the reduction of the blood viscosity. When the chemical reaction rate 
parameter increases, more solutes react with the fluid, thus the dispersion of solute decreases.
  
 
Figure 4 displays the variation of relative axial diffusivity of the solute against plug core radius, 𝑟Q for 
different values of chemical reaction rate parameter and stenosis length. As the length of stenosis, 𝑙R 
increases from 4 to 6, while the other parameters, 𝛿 = 0.1, 𝑑 = 2, and	𝑧 = 4 stay constant, the radius of 
the stenosed artery, 𝑅(𝑧) monotonically increases. The rise in the plug core radius can increase the 
viscosity of the fluid, therefore, minimises the relative axial diffusivity of the solute. It is postulated that 
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the increase in the chemical reaction rate parameter decreases the relative axial diffusivity slowly as the 
length of stenosis decreases because of the increase in the amount of solute that undergoes the 
chemical reaction in the bulk flow. The variation of relative axial diffusivity of the solute against plug core 
radius, 𝑟Q for different values of power-law index and chemical reaction rate parameter is shown in Figure 
5. The analysis shows that when the chemical reaction rate parameter increases, the relative axial 
diffusivity of solute decreases as the power-law index increases. This is because viscosity is an essential 
influence of the power-law index on the velocity profile. In other words, it is velocity gradient-dependent. 
Physically, the velocity gradient decreases with the increase of the power-law index, and the viscosity 
increases. When the viscosity increases in the blood flow, the solute movement becomes slower, and 
hence, the relative axial diffusivity decreases.   
 

 
                                        (a)                                                                              (b) 

 
                                         (c)                                                                                (d) 
Figure 3. Variation of the relative axial diffusivity of the solute against plug core radius, 𝑟Q for different 
values of stenosis height and chemical reaction rate parameter (a) R=0, (b) R=1, (c) R=5, and (d) R=10 
when  𝑙R = 3, 𝑑 = 2, 𝑛 = 0.95, and	𝑧 = 4. 
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                                        (c)                                                                                (d) 
 
Figure 4. Variation of the relative axial diffusivity of the solute against plug core radius, 𝑟Q for different 
values of stenosis length and chemical reaction rate parameter (a) R=0, (b) R=1, (c) R=5, and (d) R=10 
when 𝛿 = 0.1, 𝑑 = 2, 𝑛 = 0.95, and 𝑧 = 4. 
 

 
                                            (a)                                                                             (b) 

 
                                            (c)                                                                                 (d) 
Figure 5. Variation of the relative axial diffusivity of the solute against plug core radius, 𝑟Q for different 
values of the power-law index and chemical reaction rate parameter (a) R=0, (b) R=1, (c) R=5, and (d) 
R=10 when 𝛿 = 0.1, 𝑑 = 2, 𝑙R = 3, and	𝑧 = 4. 
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5, 𝑛 = 0.95 and 	𝑧 = 4. It is found that at lower values of Péclet number (Pe = 4 and 8), the effective axial 
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20), it decreases considerably with an increase in the yield stress. One possible reason is the increase 
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of the red blood cells at the centre that reduces the velocity of blood, hence slowing down the effective 
axial diffusivity of solute. It is also noted that the effective axial diffusivity increases with the increase of 
the Péclet number. When the Péclet number increases, the convection of solute in the blood flow is 
dominant compared to diffusion at the early stage of intravenous medication. So, the concentration of 
medicine is higher when arrived at the targeted area, thus explaining the higher effective axial diffusivity 
of solute at the targeted area. Jaafar [40] stated that when Pe = 0, the effective axial diffusivity is constant 
and no changes occur with yield stress because the diffusion takes place in the overall dispersion 
process as compared to convection. 
 
Next, the variation of the effective axial diffusivity of a solute against plug core radius,	𝑟Q for different 
values of power-law index and chemical reaction rate parameter when 𝛿 = 0.1, 𝑑 = 2, 𝑙R = 3, and 𝑧 = 4 
are illustrated in Figure 7. As mentioned by Hussain et al. [41], the power-law index represents the 
apparent whole blood viscosity. When the power-law index decreases, the viscosity decreases, thus the 
blood moves slower along with the axial distance and produced an increase in the effective axial 
diffusivity of solute. Figure 8 depicts the variation of the effective axial diffusivity of a solute against plug 
core radius,	𝑟Q for different values of stenosis height and chemical reaction rate parameter when 𝑛 =
0.95, 𝑑 = 2, 𝑙R = 3, and 𝑧 = 4. As the stenosis height increases, the stenosed artery becomes narrower 
due to the accumulation of cholesterols, fats, lipids, and other unwanted substances at the arterial wall, 
ultimately disrupting the blood flow. It is also observed that the effective axial diffusivity decreases when 
the chemical reaction and stenosis height increase. The degree of solute binding to blood proteins affects 
the effectiveness of solute dispersion. An increase in the chemical reaction between the solute and blood 
in the blood flow will increase the number of molecules that undergo the chemical reaction, at the same 
time reducing the solute concentration. Hence, a decrease in the solute concentration causes the 
effective axial diffusivity of solute to decrease as the stenosis height increases. The bound solutes are 
inactive. Only the free and, unbound solutes can react at the target sites in the tissues.  
 
The estimates of the effective axial diffusivity of solute in H-B fluid flow for different values of stenosis 
length, 𝑙R when the chemical reaction rate parameter, 𝑅 = 5 is presented in Table 1. It is observed that 
the effective axial diffusivity of the solute decreases slowly with an increase in the yield stress. Increasing 
yield stress causes the accumulation of red blood cells at the centre, hence reducing the blood velocity. 
As the stenosis length increase, the effective axial diffusivity of the solute decreases marginally.   
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                                           (c)                                                                              (d) 
Figure 6. Variation of the effective axial diffusivity of the solute against plug core radius, 𝑟Q for different 
values of the P𝑒́clet number and chemical reaction rate parameter (a) R=0, (b) R=1, (c) R=5, and (d) 
R=10 when 𝛿 = 0.1, 𝑑 = 2, 𝑙R = 5, 𝑛 = 0.95, and 𝑧 = 4. 
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Figure 7. Variation of the effective axial diffusivity of the solute against plug core radius, 𝑟Q for different 
values of the power-law index and chemical reaction rate parameter (a) R=0, (b) R=1, (c) R=5, and (d) 
R=10 when 𝛿 = 0.1, 𝑑 = 2, 𝑙R = 3, and 𝑧 = 4. 
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                                          (a)                                                                             (b) 

           
                                           (c)                                                                              (d) 
 
Figure 8. Variation of the effective axial diffusivity of the solute against plug core radius, 𝑟Q for different 
values of the stenosis height and chemical reaction rate parameter (a) R=0, (b) R=1, (c) R=5, and (d) 
R=10 when	𝑑 = 2, 𝑙R = 3, 𝑛 = 0.95, and 𝑧 = 4. 
 
 
Table 1. Estimates of the effective axial diffusivity of solute in H-B fluid flow for different values of stenosis 
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0.01, 0.02, 003, 0.04 and 0.05. The physiological data of some blood vessels with their diameters in Das 
and Saha [42] were used in this study to estimate the normalised velocity profiles of the solute in blood 
flow. The blood velocity can be studied by analysing the normalised velocity with equation (36). As 
mentioned by Sharp [21], the fully developed velocity profile is not parabolic but it exhibits a core region 
of constant velocity and an outer region with a velocity gradient as shown in  
 
Figure 9. As the stenosis height increases, the normalised velocity profiles decrease marginally with a 
decreasing diameter of the blood vessels. The blood moves slower along the axial distance as the 
velocity decreases. In the aorta, the flow initially increasing until 𝑟̅ = 0.2, after that the flow experiences 
a core region before decreasing at 𝑟̅ = −0.2 until it reaches the minimum velocity. In the femoral artery, 
the flow increases until 𝑟̅ = 0.13, then the flow experiences a core region and starts to decrease at 𝑟̅ =
−0.13 until it reaches the minimum velocities.  
 
Meanwhile, in carotid artery, at the beginning, the flow also increases until 𝑟̅ = 0.1. Then, it experiences 
a core region and starts to decrease at 𝑟̅ = −0.1 until it reaches the minimum velocities. The maximum 
velocities of the blood vessels are 1.83-1.87	𝑐𝑚	𝑠GH, 1.62-1.72 𝑐𝑚	𝑠GH, and 1.42-1.62 𝑐𝑚	𝑠GH 
respectively, with an increase in the stenosis height. At the maximum radius, the normalised velocity, 
𝑢4 𝑢4( = 0⁄  due to the effects of vessel walls on the blood fluid and the adhesion of blood fluid particles to 
the boundary wall of the vessel under no-slip condition. Bessonov et al. [31] stated that the erythrocyte 
concentration is greater near the axis, while platelets are more commonly localised near the wall. The 
velocity profiles are parabolic in simulations that involve only plasma particles. However, in simulations 
with erythrocytes, the velocity profiles are flat in the middle of the vessel because of the high erythrocyte 
concentration.  
 
The variation of the relative axial diffusivity and effective axial diffusivity of solute in blood vessels when 
𝛿̅ = 0.08,  𝑟̅Q = 0.2, 𝑑̅ = 2, 𝑙R̅ = 3, 𝑛 = 0.95, and 𝑧̅ = 4 is tabulated in Table 2. Aorta, the largest artery that 
carries oxygenated blood away from the heart to all parts of the body, has the largest diameter with a 
radius of 1 cm. Meanwhile, the femoral and carotid arteries have a radius of 0.5 cm and 0.4 cm, 
respectively. As seen in Table 2, as the radius of the artery decreases, the axial diffusivity of the solute 
also decreases. Theoretically, it implies that the chemical reaction that occurs between the medicine and 
blood proteins tends to decrease the relative diffusivity of the solute. These results reveal that since the 
chemical reaction rate parameter is considered, a number of medicine molecules that undergo the protein 
binding decreases the relative diffusivity of solute. The degree of binding of the solute to blood proteins 
also affects the effectiveness of solute dispersion. This is because an increased chemical reaction 
between the solute and blood in the blood flow tends to increase the number of molecules that undergo 
the chemical reaction, thus reducing the amount of solute concentration. Hence, the decrease in the 
solute concentration causes the effective axial diffusivity of the solute to decrease. The highest level of 
effective diffusivity of solute in the blood flow shows that the medicine in the blood flow achieves the 
highest efficiency.  
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                                                                                       (c)                                                                              
 
Figure 9. Variation of normalised velocity profiles against radial coordinate when 𝛿̅ = 	0.01, 0.02,	  
0.03, 0.04 and 0.05 for (a) aorta, (b) femoral artery, and (c) carotid artery. 

Table 2. Variation of the relative axial diffusivity and effective axial diffusivity of solute in blood vessels 
when 𝛿̅ = 0.08,  𝑟̅Q = 0.2, 𝑑̅ = 2, 𝑙R̅ = 3, 𝑛 = 0.95, 𝑅4 = 5, and 𝑧̅ = 4. 
 

Blood vessels Radius (cm) 
𝐸l𝑟̅Qm
𝐴&l𝑟̅Qm

 1 +
𝑃𝑒&

48 j
𝐸l𝑟̅Qm
𝐴&l𝑟̅Qm

o p
1

𝑅4(𝑧̅)q
r 𝑅4(𝑧̅)(cm) 

Aorta 1.0 0.454 1.151 0.88 
Femoral artery 0.5 0.008 1.003 0.38 
Carotid artery 0.4 0.001 1.000 0.28 

 
 
Conclusion 

 
In summary, the problem of steady dispersion of a solute in blood flow with the inclusion of reactive 
species in a stenosed artery can be solved by varying the physical parameters. The yield stress plays 
an essential role in the determination of blood viscosity and velocity profiles in the blood flow. The 
normalised velocity of blood, relative axial diffusivity, and effective axial diffusivity of solute decrease with 
an increase in the power-law index and yield stress of the blood flow. Thus, the power-law index and 
yield stress affect the flow behaviour of blood. When the power-law index and yield stress increase, the 
concentration of red blood cells at the centre also increases. Thus, the velocity of blood, relative axial 
diffusivity, and effective axial diffusivity of solute decrease. The stenosis height, stenosis length, and 
power-law index increase with an increased chemical reaction rate parameter while the relative axial 
diffusivity of solute shows a reversed behaviour. The increase of the chemical reaction rate parameter 
reduces the concentration of solute. The decrease of the solute concentration can be due to the presence 
of chemical reactions that can lead to the consumption or destruction of chemical species. The effective 
axial diffusivity increases considerably with an increase in the Péclet number because the solute 
movement to the targeted area is higher, thus, increasing the diffusivity of solute. The increment in 
stenosis height, stenosis length, and power-law index also reduces the effective axial diffusivity of solute. 
From the results obtained in this mathematical analysis, there is a significant difference between the flow 
quantities computed in the presence of chemical reaction and stenosis when compared with an absence 
of chemical reaction and stenosis. Hence, our mathematical analysis contributes significant improvement 
to the field of mathematical modelling of the steady dispersion of a solute in blood flow through narrow 
arteries in the presence of chemical reactions and stenosis. 
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