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Abstract Let 𝑆 denote the class of analytic and univalent functions in 𝐷, where 𝐷 is defined as 
unit disk, 𝐷 ≔ {𝑧 ∈ 𝐶 ∶ |𝑧| < 1}  and having the Taylor representation form of 𝑆. We will determine 
the estimation for the Toeplitz determinants where the elements are the Taylor coefficients of the 
class close-to-convex functions in 𝑆. 
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Introduction and Preliminaries 
 
Let 𝐴 denote the class of analytic functions normalized by 𝑓(0) = 0 = 𝑓3(0) − 1  in 𝐷, where 𝐷 is defined 
as the unit disk, 𝐷 ≔ {𝑧 ∈ 𝐶 ∶ |𝑧| < 1}. If  𝑓 ∈ 𝐴 then 𝑓(𝑧) has the following representation. 

   (1) 

We denote 𝑆 as the class of univalent functions in 𝐴. There are three major subclasses in 𝑆 that include 
starlike functions, convex functions, and close-to-convex functions. Let  𝑆∗ represent the class of starlike 
functions in 𝑆. A function 𝑓 ∈ 𝐴  becomes a starlike function, if it satisfies the following condition, 

   (2) 

for 𝑧 ∈ 𝐷. In the starlike functions, it has an important member as well, as the class 𝑆 is the Koebe 
function that is defined as follows, 

   (3) 

In most issues for the 𝑆∗ and 𝑆 classes, the Koebe function play the role of extreme function. A function 
𝑓 ∈ 𝐴 is supposed to be a convex function, if it meets the following condition, 

   (4) 

for 𝑧 ∈ 𝐷. We denote 𝐶𝑉 for the class of convex functions in 𝑆. In 1952, Kaplan had stated that if function 
𝑓 ∈ 𝑆 and if there exists a real number, 𝛼, where |𝛼| < 𝜋/2 and a function 𝑔(𝑧) is convex which satisfy 
these conditions, 
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   (5) 

where 𝑧 ∈ 𝐷 [14]. Then the function 𝑓 is a close-to-convex function. Alexander in 1916 showed the 
connection between starlike and convex functions if function ℎ(𝑧) ∈ 𝑆∗ then ℎ(𝑧) = 𝑧𝑔′(𝑧) where   𝑔(𝑧) ∈
𝐶𝑉 [10]. Hence, the condition (5) can also be written as 

   (6) 

where 𝑧 ∈ 𝐷. For all starlike and convex functions are close-to-convex functions. These can be 
summarized by proper inclusion  𝐶𝑉 ⊆ 𝑆∗ ⊆ 𝐾 ⊆ 𝑆. The class of close-to-convex functions is denoted by 
𝐾. From there, we are inclined to define a class of close-to-convex functions with new additional 
parameters and find the coefficient estimates of Toeplitz determinants for the class defined. 
 
Definition 1. The function 𝑓 ∈ 𝐴 is said to be a close-to-convex if the starlike function 𝑔 ∈ 𝑆∗ exist, as 
such that 

   (7) 

where 𝑧 ∈ 𝐷,  |𝛼| < 𝜋/2, and  cos(𝛼) > 𝛿. This class is denoted by 𝐾EF. 
 
In many branches of mathematics, the Hankel matrices and determinants played significant role and 
have several applications. There are several results of the Hankel determinants in the literature. The 
early investigation of Hankel determinants for many classes of analytic functions started in the 1960s. In 
1966 and 1967, Pommerenke had studied Hankel’s determinants for the class of univalent functions 
given by [6] (cited by [16]). After that, many recent papers have been concerned to the problem of finding 
the estimate of Hankel determinants for various subclasses of univalent functions. 
 
Each of them will have to deal with finding the upper bound for |𝑎H𝑎I − 𝑎JH|  of their own classes. Some 
of the results, will also find the more general functional |𝑎H𝑎I − 𝜇𝑎JH|   with the real 𝜇 for various classes 
of functions. For example, the results of [2], [3], [9], [12], [13], [17] and [18]. 
 
Closely connected to the Hankel determinants are the Toeplitz determinants. Along with the reverse 
diagonal, the Hankel matrices have constant entries, while the Toeplitz matrices have constant entries 
along with the diagonal. We referred [22] for a description of the application of the Toeplitz matrices to a 
wide variety of areas especially in pure and applied mathematics. The symmetric Toeplitz determinant 
𝑇M(𝑛) has been recently introduced by [7] for the analytic functions 𝑓 of the form (1), defined as follows 

 

where 𝑛, 𝑞 = 1,2,3,⋯ and 𝑎S = 1. In particular, 

, ,      ,  . 

The estimates of the Toeplitz determinant |𝑇M(𝑛)| for functions in the starlike and the close-to-convex 
functions were studied by [7] for small values of 𝑛 and 𝑝. Similarly, for the authors in [19] and [20], they 
had studied the estimates of the Toeplitz determinants |𝑇M(𝑛)|  for functions belonged to a certain conic 
domain and bounded rotation, 𝑅 respectively. There seems to be little in the literature concerning the 
estimates of the Toeplitz determinants, aside from the result of [7]. The authors in [1] pointed out that 
the result obtained by [7] is not valid because of the 𝑐S > 0 is not justified, since the functional |𝑇M(𝑛)| for 
𝑛, 𝑞 = 1,2,3,⋯ is not rotationally invariant. Consequently, the authors in [7] agreed to retract their 
research paper due to the results were not fully proved. 
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In the following year, the authors in [1] came out with the sharp estimate for the Toeplitz determinants in 
which the elements were the Taylor coefficients of functions in 𝑆 and some of its classes. In this purpose 
paper to give the estimates for Toeplitz determinants 𝑇M(𝑛) for the class  𝐾EF which is the class of close-
to-convex functions. Let 𝑃 represent the class of analytic functions 𝑝 in the unit disk 𝐷, which has the 
following form 

   (8) 

such that 𝑅𝑒	𝑝(𝑧) > 0 in the unit disk, 𝐷. These functions are sometimes called the Caratheodory 
functions. Before we continue to prove the main result, we need some preliminary results for the functions 
in 𝑃. 
 
Lemma 2. [11, page 41]. For a function 𝑝 ∈ 𝑃 of the form (8), the sharp inequality |𝑐Z| ≤ 2  holds for 
each 𝑛 ≥ 1. Equality holds for the function 𝑝(𝑧) = (1 + 𝑧)/(1 − 𝑧). 
 
Lemma 3. [8, Theorem 1]. Let 𝑝 ∈ 𝑃 be the form (8) and  𝜇 ∈ 𝐶. Then  

|𝑐Z − 𝜇𝑐^𝑐Z_^| ≤ 2𝑚𝑎𝑥{1, |2𝜇 − 1|} for 1 ≤ 𝑘 ≤ 𝑛 − 1. 
If |2𝜇 − 1| ≥ 1 then the inequality is sharp for the function 𝑝(𝑧) = (1 + 𝑧)/(1 − 𝑧) or its rotations.  
If |2𝜇 − 1| ≤ 1  then the inequality is sharp for 𝑝(𝑧) = (1 + 𝑧Z)/(1 − 𝑧Z) or its rotations. 
 
Lemma 4. [6, Theorem 1]. Let 𝑔 ∈ 𝑆∗ be in the form  

   (9) 

Then, for any 𝜆 ∈ 𝐶,  

 

The inequality is sharp for Koebe function in the form (3) and its rotations if |3 − 4𝜆| ≥ 1, and for (𝑘(𝑧H))H 
and its rotations if |3 − 4𝜆| < 1. 
 
Lemma 5. [15, Theorem 2.2]. Let 𝑔 ∈ 𝑆∗ be in the form of (9). Then  

  for  , 

where 𝑛,𝑚 = 2,3,⋯. the inequality is sharp for the Koebe function in the form (3) and its rotations. 
 
Lemma 6. [2, Theorem 3.1]. Let 𝑔 ∈ 𝑆∗ be in the form of (9). Then  

, 

and the inequality is sharp for the Koebe function, in the form (3) and its rotations. 
 
Lemma 7. Let 𝑓 ∈ 𝐾EF be the form (1). Then  

. 

Proof: Noted that, 
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  (12) 

  (13) 

and 

  (14) 

By referring to the definition 1, we have 
 

, where  . 

A Caratheodory function exists, as 𝑝 ∈ 𝑃 of the form (14) as such that, 

. (15) 

Firstly, we need to find the representation theorem of class 𝐾EF. Let 𝑓 ∈ 𝑆 be in the form of (1), then from 
Left-Hand Side (LHS) of the equation (15), it can be written in the form, 

, 

and 

, 

which gives 

, 

and 

 , (16) 

where . Then, we can relate the equation (16) to the function in 𝑃 with 

, 

where 𝑝(𝑧) has the form of (8). Take note that, cos(𝛼) − 𝛿 must always be positive. Next, we find the 
coefficients of z, by using the following equation, 

 

which implies, 

  (17) 
Take note that, 𝐴EF = cos(𝛼) − 𝛿 and from the Right-Hand Side (RHS) of the equation (17), we have 
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Also, from the Left-Hand Side (LHS) of the equation (17), we have 

 

By comparing the coefficients of 𝑧 in both LHS and RHS of the equation (17), we will get 
  (18) 

  (19) 

  (20) 

Now, we must find the equation 𝑎H𝑎I − 2𝑎JH by using the coefficients that we had obtained in (18), (19) 
and (20). We let 𝐴 = 𝑎H𝑎I, 

 

 

Also, by letting 𝐵 = 2𝑎JH, we will have 

 

 

Then, we will subtract the equations of 𝐴 and 𝐵 that we have obtained so that it becomes  𝐴 − 𝐵 = 𝑎H𝑎I −
2𝑎JH, and it yields 

 

and when simplify it further, we get 

  (21) 

By applying the triangle inequality for the equation (21), we have 

  (22) 

By letting 𝑌S = |9𝑏I𝑏H − 16𝑏JH|, 𝑌H = |9𝑏I − 23𝑏J𝑏H|, 𝑌J = |9𝑏J − 16𝑏HH|, 𝑌I = |9𝑏HH − 32𝑏J|, 

( ) ( )( ) ( )
ú
ú
ú

û

ù

ê
ê
ê

ë

é
++-

÷÷
÷

ø

ö

çç
ç

è

æ
+

÷÷
÷

ø

ö

çç
ç

è

æ
+ åå

¥

=

¥

=

- addaa sincos1
12

izczbze
n

n
n

n

n
n

i

( ) ( ) ( )( ) ( )
ú
ú
ú

û

ù

ê
ê
ê

ë

é
++

÷÷
÷

ø

ö

çç
ç

è

æ
-+-

÷÷
÷

ø

ö

çç
ç

è

æ
+= åå

¥

=

¥

=

- addadaa sincoscos
12

izczbze
n

n
n

n

n
n

i

( )
÷÷
÷

ø

ö

çç
ç

è

æ
+

÷÷
÷

ø

ö

çç
ç

è

æ
+= åå

¥

=

¥

=

-

12 n

n
n

i

n

n
n

i zcAezbze da
aa

!++++=+=¢ å
¥

=

4
4

3
3

2
2

2

432)( zazazazznazzfz
n

n
n

2122 bceAa i += - a
da

312233 bcbeAceAa ii ++= -- a
da

a
da

41322344 bcbeAcbeAceAa iii +++= --- a
da

a
da

a
da

( ) ( )41322321 4
1

2
1 bcbeAcbeAceAbceAA iiii +++÷

ø

ö
ç
è

æ+÷
ø

ö
ç
è

æ= ---- a
da

a
da

a
da

a
da

( ) ( ) ( )[ ]241232
2
23214

2
1312231

22
8
1 bbcbbcbcbcbeAcbccbcceA ii +++++++÷
ø
ö

ç
è
æ= -- a

da
a

da

( )231229
2 bcbeAceAB ii ++÷
ø

ö
ç
è

æ= -- a
da

a
da

( ) ( )[ ( ) ]2323123
2
1

2
2122

2
2

22 222
9
2 bcbcbbeAcbccbceA ii +++++÷
ø

ö
ç
è

æ= -- a
da

a
da

( )

ú
ú
û

ù
-+÷

÷
ø

ö
ç
ç
è

æ
--++++

ú
ú
û

ù

ê
ê
ë

é

÷
÷
ø

ö
ç
ç
è

æ
---++=-

-

-

9
2

89
4

9
4

8888

9
2

9
4

9
2

888

2
324231231232

2
23214

2
1

2
2122

2
2

2
131223122

bbbcbcbbcbbcbcbcbeA

cbccbccbccbcc
eABA

i

i

a
da

a
da

( ) ( )[
( ) ( ) ( )

( ) ( ) ( )]2231
22

1232

3
2
22

2
23

2
1

22

2341
2
324

169239

329169

239169
72
1

ccceAcceAcbeA

bbceAbbceA

bbbceAbbbBA

iii

ii

i

-+-+

-+-+

-+-=-

---

--

-

a
da

a
da

a
da

a
da

a
da

a
da

( )
( ) 2

231
2

1232

3
2
22

2
23

2
1

2

2341
2
324

2
342

169239

329169

239169272

cccAcceAcbA

bbcAbbcA

bbbcAbbbaaa

i -+-+

-+-+

-+-£-

-
da

a
dada

dada

da



 
  

 
675 

  Cik Soh et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 17 (2021) 670-677 

 𝑌j = |9𝑐J − 23𝐴EF𝑒_kE𝑐H𝑐S|, and 𝑌l = |9𝑐S𝑐J − 16𝑐HH|. Then, by applying the Lemma 4, 5, and 6, we will 
get 

  (23) 

   (24) 

  (25) 

  (26) 

For 𝑌j = 9|𝑐J − 𝜇𝑐H𝑐S| ≤ 18max{1, |2𝜇 − 1|}, where .Take note that, 

  (27) 

 
Firstly, we need to expand the equation (27) by letting 

 and  . 

From 𝑄S we will have, 

. 

Then from 𝑄H we will have, 

. 

Hence, we will add both equations, 𝑄S and 𝑄H, so we will get 

. 

By letting 𝑓(𝛼) = 𝑄S + 𝑄H, then we need to find the critical point of the equation by differentiating the 
function 𝑓(𝛼) with respect to 𝛼, so we will have 

  (28) 

After differentiating the function 𝑓(𝛼), we will let the differential equation (28) to zero, and we will get 
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. 

Since the equation sin	(2𝛼) can only be equivalent to zero and we had obtained the following critical 
points, 

 and . 

From the critical points that we had acquired, we know that, 

 

and 

 

Therefore, 

  (29) 

Again, by using Lemma 2 and 3 for the equation 𝑌l, we will have 

  (30) 

Hence, by using the relations of the equations (23), (24), (25), (26), (29) and (30), the inequality (22), we 
will get 

 

This concludes the proof. 
 
Theorem 2.9. Let 𝑓 ∈ 𝐾EF be in the form of (1). Then 

 

Proof. Let 𝑓 ∈ 𝐾EF be in the form of (1). Then by Lemma 7, 

  

This concludes the proof. By letting 𝛿 = 0 and 𝛼 = 0, the results that were obtained can be reduced to 
the result of [1]. 
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