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Abstract Let s denote the class of analytic and univalent functions in D, where D is defined as
unit disk, D :={z € C : |z] < 1} and having the Taylor representation form of S. We will determine
the estimation for the Toeplitz determinants where the elements are the Taylor coefficients of the
class close-to-convex functions in S.
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Introduction and Preliminaries

Let A denote the class of analytic functions normalized by f(0) = 0 = f'(0) — 1 in D, where D is defined
as the unitdisk, D :=={z € C : |z| < 1}. If f € A then f(z) has the following representation.

f(z)=z+2anz" 1)
n=2
We denote S as the class of univalent functions in A. There are three major subclasses in S that include
starlike functions, convex functions, and close-to-convex functions. Let S* represent the class of starlike
functions in S. A function f € A becomes a starlike function, if it satisfies the following condition,

Re[ /') j >0 )
1)
for z € D. In the starlike functions, it has an important member as well, as the class S is the Koebe
function that is defined as follows,

z

k(z)=——~ 3)
(1-2f
In most issues for the $* and S classes, the Koebe function play the role of extreme function. A function
f € Ais supposed to be a convex function, if it meets the following condition,

Re(1+zf”(Z)J>O (4)
/@)

for z € D. We denote CV for the class of convex functions in S. In 1952, Kaplan had stated that if function
f € S and if there exists a real number, a, where |a| < /2 and a function g(z) is convex which satisfy
these conditions,
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Re(ei“&]m (5)
gz)
where z € D [14]. Then the function f is a close-to-convex function. Alexander in 1916 showed the
connection between starlike and convex functions if function h(z) € S* then h(z) = zg'(z) where g(z) €
CV [10]. Hence, the condition (5) can also be written as

Re(eiazf—(z)j>0 (6)
hz)

where z € D. For all starlike and convex functions are close-to-convex functions. These can be
summarized by proper inclusion CV € S* € K € S. The class of close-to-convex functions is denoted by
K. From there, we are inclined to define a class of close-to-convex functions with new additional
parameters and find the coefficient estimates of Toeplitz determinants for the class defined.

Definition 1. The function f € A is said to be a close-to-convex if the starlike function g € S* exist, as

such that
Re(eiaLI(Z)J>5 @)
g(2)

where z € D, |a| < m/2,and cos(a) > §. This class is denoted by K, 5.

In many branches of mathematics, the Hankel matrices and determinants played significant role and
have several applications. There are several results of the Hankel determinants in the literature. The
early investigation of Hankel determinants for many classes of analytic functions started in the 1960s. In
1966 and 1967, Pommerenke had studied Hankel’'s determinants for the class of univalent functions
given by [6] (cited by [16]). After that, many recent papers have been concerned to the problem of finding
the estimate of Hankel determinants for various subclasses of univalent functions.

Each of them will have to deal with finding the upper bound for |a,a, — a2| of their own classes. Some
of the results, will also find the more general functional |a,a, — pa2| with the real u for various classes
of functions. For example, the results of [2], [3], [9], [12], [13], [17] and [18].

Closely connected to the Hankel determinants are the Toeplitz determinants. Along with the reverse
diagonal, the Hankel matrices have constant entries, while the Toeplitz matrices have constant entries
along with the diagonal. We referred [22] for a description of the application of the Toeplitz matrices to a
wide variety of areas especially in pure and applied mathematics. The symmetric Toeplitz determinant
T, (n) has been recently introduced by [7] for the analytic functions f of the form (1), defined as follows

ay Apyl "0 Qpag-l
Apy1 Ay Tt Qpag-2
Tq(”); . . . .
Aptg-19nrg-2 "** Ay
where n,q = 1,2,3,:-- and a; = 1. In particular,
1 ay as apy asz day
az a3 a3 a4 . .
T2(2):: , T2(3):: , T3(1): ay 1 a |, T3(2): asy dp as|.
as ap ag az
as dap 1 ag asz ap

The estimates of the Toeplitz determinant [T, (n)| for functions in the starlike and the close-to-convex
functions were studied by [7] for small values of n and p. Similarly, for the authors in [19] and [20], they
had studied the estimates of the Toeplitz determinants |T,(n)| for functions belonged to a certain conic
domain and bounded rotation, R respectively. There seems to be little in the literature concerning the
estimates of the Toeplitz determinants, aside from the result of [7]. The authors in [1] pointed out that
the result obtained by [7] is not valid because of the ¢, > 0 is not justified, since the functional |T, (n)| for
n,q = 1,2,3,-- is not rotationally invariant. Consequently, the authors in [7] agreed to retract their
research paper due to the results were not fully proved.
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In the following year, the authors in [1] came out with the sharp estimate for the Toeplitz determinants in
which the elements were the Taylor coefficients of functions in S and some of its classes. In this purpose
paper to give the estimates for Toeplitz determinants T, (n) for the class K,s which is the class of close-
to-convex functions. Let P represent the class of analytic functions p in the unit disk D, which has the
following form

0

p (z):1+chz" (8)
n=1
such that Re p(z) > 0 in the unit disk, D. These functions are sometimes called the Caratheodory
functions. Before we continue to prove the main result, we need some preliminary results for the functions
inP.

Lemma 2. [11, page 41]. For a function p € P of the form (8), the sharp inequality |c,| < 2 holds for
each n > 1. Equality holds for the function p(z) = (1 + 2)/(1 — 2).

Lemma 3. [8, Theorem 1]. Let p € P be the form (8) and u € C. Then

lcn —ucken il < 2max{1,|2u— 1|} for1 <k <n-1.
If |2 — 1| = 1 then the inequality is sharp for the function p(z) = (1 + z)/(1 — z) or its rotations.
If|2u— 1| < 1 then the inequality is sharp for p(z) = (1 +z™)/(1 — z™) or its rotations.

Lemma 4. [6, Theorem 1]. Let g € S* be in the form

0

g(z)=Z+anZ" (9)

n=2
Then, forany A € C,
|y~ 203 | < max{1| 3- 42
The inequality is sharp for Koebe function in the form (3) and its rotations if |3 — 44| > 1, and for (k(z?%))?

and its rotations if |3 — 41| < 1.

Lemma 5. [15, Theorem 2.2]. Let g € S* be in the form of (9). Then

ﬂ,bﬂbm —bn+m,1|é/1nm—(n+m—l) for A Z%,

where n,m = 2,3, ---. the inequality is sharp for the Koebe function in the form (3) and its rotations.

Lemma 6. [2, Theorem 3.1]. Let g € S* be in the form of (9). Then
‘b2b4 —bf‘sl,

and the inequality is sharp for the Koebe function, in the form (3) and its rotations.

Lemma 7. Let f € K, 5 be the form (1). Then

1 1 211
‘a2a4—2a32‘ﬁ— 340+ 148(4, 5 2 41204, 5 +364,5| |22 + 2110 52 1
72 81 8
Proof: Noted that,
fz)= Z+Zanz” =zt v ayz Fagst v (10)
n=2
o0
f'(z)zl-i—Znanz”_l = 1+2a,z+3a32° +4ayz> +--- (11)
n=2
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0
zf’(z)z Z+Znanz" = z+2a222 +3a3z3 +4a4z4 +--- (12)
n=2
g(z)=z+2bnz":z+b222+b3z3+b4z4+-~~ (13)
n=2
and
0
p(z):1+chz”:1+clz+czzz+c3z3+-~~ (14)
n=l

By referring to the definition 1, we have

o Zf'(Z)>5,where cos(a)>5’|a|<§ '

g(z)

A Caratheodory function exists, as p € P of the form (14) as such that,

eiaL(Z)—é‘:p(z). (15)

g(z)

Firstly, we need to find the representation theorem of class K, 5. Let f € S be in the form of (1), then from
Left-Hand Side (LHS) of the equation (15), it can be written in the form,

em%(zz))—é‘:em[l+2cnz"}—5,

n=1

and

o zf'(Z_) -0 —isin (a)z COS(O!)— 5+zemcn2n ,

gz)

which gives

e LN(Z) — 5 —isin (a)

gi)s(a)_ 5 =1+2[C0:;’;ﬁ]zn‘,

and
emzf((z))—J—isin(a) o
8\z n
=1+ z" 16
cos (a)— o ;qn (18)
eiac . . . .
where ¢, =| ——"— |. Then, we can relate the equation (16) to the function in P with
cos (a)— o

el zf&(z)) — & —isin(a)
8\z —
cos(a)—é‘ B p(z),
where p(z) has the form of (8). Take note that, cos(a) — § must always be positive. Next, we find the
coefficients of z, by using the following equation,
de 70 5 iin (@)= ple)(eos(a)-o)
g(z)

which implies,

()=l e pe) cos(a)—8)+ & +isin ()] (17)

Take note that, A,5 = cos(a) — § and from the Right-Hand Side (RHS) of the equation (17), we have
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o0 o0

(e‘“”) Z+an2n 1+chz" (cos(a)—6)+ 6 +isin(a)

n=2 n=l1

00 0

=(e7ia) Z+anz" cos(a)—§+2(cos(a)—§)cnz" +6 +isin(a)

n=2 n=l

o0 0
—ia n ia n
=(e )z+ E b,z" || e“ + E Ayscuz
n=2 n=l

Also, from the Left-Hand Side (LHS) of the equation (17), we have

zf'(z2)=z+ Znanz" = z242a,2% +3a32° +4ayzt +-

n=2
By comparing the coefficients of z in both LHS and RHS of the equation (17), we will get
2(12 = Aa5 e_iacl +b2

3(13 = Aa§ eilaCZ + Aa5 eila bZCl + b3

4614 = Aa5 e_iac3 + Aa§ e_ia szz +Aa5 e_ia b3Cl +b4

(18)
(19)
(20)

Now, we must find the equation a,a, — 2a2 by using the coefficients that we had obtained in (18), (19)

and (20). We let A = a,a,,

A= (Ej (Aad eilacl + bz)[zj(/laé‘ eilaC:; + Aad eila b202 + Aa5 ef'a b3Cl + b4)

= [%J [(Aa5)2 6‘72[0{ (6'103 +b2C’26’1 +b3C12 )+ Aa5 eiia (b4C1 +b26’3 +b226'2 +b3b2C1 )+ b4b2]
Also, by letting B = 2a2, we will have

B= [%] (Aaé' eiiaCZ + Aaé‘ eiia sz] +b3)z

= [g] [(Aa5Ye72ia (c% +2byche + bzzclz )+ A se’® (2b3b2q +2bscy )+ b32]

Then, we will subtract the equations of A and B that we have obtained so that it becomes A — B = a,a, —

2a%, and it yields

2 02 22
4_B< (Aa6)2672ia acs | byeye  biei 26y Abyeypey  2bjci
8 8 8 9 9 9

2 2
" Aa5 e—ia[b4cl n b2C3 i b2C2 i b3b201 _ 4b3b2C1 _ 4b302 }_’_ b4b2 _ 2b3 ‘|

8 8 8 8 9 9
and when simplify it further, we get
A-B= 7i2 [(9b4b2 ~16b3 )+ Ay se % (9by —23b3by )
(g5 )22 (0b, 1662 )+ 4, 5 e, (052 ~320,)
b Ay e by 0cy ~ 234 5 ¢ esey |+ (45 )P 2 Peres 1662 )]
By applying the triangle inequality for the equation (21), we have
72‘a2a4 242 ‘ < ‘9174172 —16b2 ‘+Aw|c1 |9, —23bsb, |
+(Aa5)2‘cf 985 1653 |+ 4 5 2| 903 ~325
+4y5|bs ”9(:3 “23A4, 57 %00 ‘+(Aa5)2‘9clc3 162 ‘

By letting ¥, = [9b,b, — 16b2|, Y, = |9b, — 23bsb,|, Ys = |9bs — 16b2|, Y, = |9b3 — 32bs|,

(21)

(22)
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Ys = |9¢3 — 234,45e"%cycq |, @and Yy = |9c;c; — 16¢Z|. Then, by applying the Lemma 4, 5, and 6, we will

get
2 2
Y, < 9‘1941;2—173 ‘+7|b3|
< 9+63
<72
Y, < 9‘[) _23b93bz

IA
\O
TN

N
w|&
|
N
~—

IN
—_
S
[\S}

IA

o
/N
\olﬂ

|

w
N— N}

IA
w
N
VR
w
|
oo | o
N—

< 60

For Y5 = 9c; — pucycq| < 18 max{1, |2u — 1|}, where 4 :2,4“5 ¢ @ Take note that,
9

2(29—3/1&5("“}—1

2 2
14 23 46 23 . 46 _ .
= [?+?cos(2a)—?é‘cos(a)} +[?sm(2a)—?é‘sm(a)} .

2
|2u-1] =

Firstly, we need to expand the equation (27) by letting

2 2
o= {% + %cos(Za)— %Ecos(a)} and O, = {% sin(Za)—% 5sin(a)} .

From Q; we will have,
_ 196 644 529 2, 2116 o ()
O = 81 + 8 cos(2a)+ . (cos(Za)) + . o (cos(a)) .
Then from Q, we will have,
0, = %(sin(Za))z - 2;6 5sm(za)sm(a)+%652 (sin(a))?
Hence, we will add both equations, Q, and Q,, so we will get

75 644 2116 » 2116
+0) =——+———cos2a )+ ——J5" -
A+ =T (22) 81 81

5sin(2a)sin(a)-

(23)

(24)

(25)

(26)

(27)

By letting f(a) = Q, + Q,, then we need to find the critical point of the equation by differentiating the

function f(a) with respect to a, so we will have

A1) 1288 Gy o) 2110 5 im0 )cos{r)  2snfeeos(2)

= é[sm(Za)(IZSS ~21165(cos(a)+ 2sin(a)cot(22) ) ) ]

(28)

After differentiating the function f(a), we will let the differential equation (28) to zero, and we will get
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é[sin(2a)(1288—21 165(cos(a )+ 2sin(a)cot(2a) ) ) ]=0-
Since the equation sin (2a) can only be equivalent to zero and we had obtained the following critical
points,
a=Zand a=0.
2
From the critical points that we had acquired, we know that,

2116682 1369 2116 .,
<=2 25
81 81 81

1+ <|2u-1f

and

2
’1+21165 Sl2y—1|§ /13694_211652
81 81 81

Therefore,

29
81 81 (29)

Again, by using Lemma 2 and 3 for the equation Y, we will have

Y5=‘9c3—23Aa5eiaczcl‘Sl8[ @Jr&&q

16
‘9clc3 ~16¢3 ‘ <9| ez —cq | +9| ¢y —?cg

<18+46 (30)
<64.

Hence, by using the relations of the equations (23), (24), (25), (26), (29) and (30), the inequality (22), we
will get

s 203 [< L (1,5)2)002)+ (45 2P 67)1 4,5 )60)

+Aa5(2)(18)[ %+_2;i6 52 ]+641

1 5 1369 2116 _,
<—|340+148(4 +1204 5 +364 D2 0s2
72[ ( “‘5) ad "‘{ 81 8l H

This concludes the proof.

Theorem 2.9. Let f € K,5 be in the form of (1). Then

340 148 , 120 36 1369 2116 ,
L) <4+4) 224204 P24 420y | |22 0
|7Q) {72 72<””5) 72 9T “‘{ 81 81 H

Proof. Let f € K5 be in the form of (1). Then by Lemma 7,

| T3(2)| = ‘ a% —2a2a32 —azaf +2a32a4 ‘

S|a2 |3+2|a2”a32‘+|a4”a2a4—2a32‘

340 148 , 120 36 1369 2116 _,
<4414 220 00y P20y 22y 20,2052
[72 72(“5) 72 7% T “‘{ 81 8l N

This concludes the proof. By letting § = 0 and a = 0, the results that were obtained can be reduced to
the result of [1].
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