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ABSTRACT 
 
A problem of sequential sampling from an Exponential Distribution is considered in this research. The problem is formulated in the stochastic dynamic 
programming framework and the objective is to determine a control policy maximizing the total expected reward. It is assumed that under standard 
assumptions the control limit policy is optimal. Two types of optimal stopping problems are considered. First one is the problem of sampling without 
recall that once the decision maker cannot return to that observation at a later time, the second type of optimal stopping problems is sampling with recall 
where the decision maker can select any observation which he has taken earlier.  
 
|Stochastic dynamic programming | Optimal stopping problem | Exponential distribution |  
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1. INTRODUCTION 

 
The problem to be treated in this research is in the 

category of problems of optimal stopping. In each of these 
problems, the statistician takes observation sequentially, 
and at each stage he must decide whether to stop and suffer 
a specified stopping risk or continue and the next 
observation at some specified sampling cost. 
Two types of optimal stopping problems are considered. 
First one is the problem of sampling without recall that once 
the decision maker can not return to that observation at a 
later time, the second type of optimal stopping problems is 
sampling with recall where the decision maker can select 
any observation which he has taken earlier.  

The optimal stopping problems have been studied 
by Macqueen and Miller [1]. Sakaguchi [2] considered 
problems involve sampling from a distribution with 
unknown mean. Kramer and Starr [3] characterized the 
optimal stopping rule and its distribution in a size dependent 
search. Application of optimal stopping rule in size 
dependent search has been extended by Bellout [4]. 
In this research, posterior state of the process after taking 
each sample has been determined through Bayesian 
inference.  

The Bayesian process control focuses on 
determining the optimal control policy based on the 
posterior probability minimizing the total expected cost 
over a finite horizon, or the long-run expected average cost. 
 
Corresponding author at: 1Department of Industrial Engineering, Faculty of 
Engineering, Yazd University, Yazd, Iran, E-mail addresses: 
fallahnezhad@yazduni.ac.ir) 

 
Makis [5] applied Bayesian control through POMDP 
(partially observable Markov decision process) framework 
in a multivariate process mean control problem. He 
developed the optimal stopping rule through control limit 
policy which minimizes the total expected cost. 
The early contributions to Bayesian process control are the 
models by Girshick and Rubin [6] and Bayesian control 
design are considered by Tagaras and Nikolaidis [7], Makis 
and Jiang [8]. 

One application of this model is Stock-Option 
Model (Ross [9]). Suppose that you own an option to buy 
one share of the stock at a fixed price, say c, and you have 
N days in which to exercise the option. You need never 
exercise it, but if you do it at a time when the stock's price is 
t, then your profit is t-c. What strategy maximizes your 
expected profit? 
If ( )nV t  denote the maximal expected profit when the 
stock' price is t and the option has n additional days to run, 
then ( )nV t  satisfies the optimality equation 

( ) ( ) ( ){ }1max ,n nV t t c V t f t dt−= − ∫  

With the boundary condition 
( ) { }0 max ,0V t t c= −  

where ( )f t denotes the distribution function of t. 
The problem is formulated in the stochastic 

dynamic programming framework and the objective is to 
determine a control policy maximizing the total expected 
reward. It is assumed that under standard assumptions the 
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control limit policy is optimal. Also the posterior 
distribution of the state of the system is determined through 
Bayesian approach. 

This paper is organized as follows: Problems of 
sampling without recall comes in the second section. 
Properties of optimal stopping rule for the problems of 
sampling with recall come in section three. The conclusions 
are presented in the final section. 
 
2. SAMPLING WITHOUT RECALL 

 
2.1     Sampling without Recall with finite stages 
 

We assume that a sequential random sample 

1 2, ,...T T is taken from an exponential distribution for 
which it is known that the d.f. is F. We suppose that there is 
constant upper bound n (n>1) on the number of 
observations which can be taken. At the jth stage of the 
sampling process (j=1, 2… n-1), after the values 

1 1 2 2, ,..., j jT t T t T t= = =  have been taken, the decision 

maker either can stop and accept the value jt  as his reward 

or continue sampling and take 1jT + . If he has not stopped 

earlier, he must stop and accept the final observed value nt  
as his reward. This is a problem of sampling without recall, 
once the decision maker cannot return to that observation at 
a later time. 

Let N denote the random number of observations 
which have been taken under a stopping rule. The problem 
is to find an optimal stopping rule that maximizes the 
expected reward ( )NE T .  

At any stage of the sampling process, the state of process is denoted by the value of the most recent observation gathered, t, and 

optimal stopping rule is ( )n i iV t− . Since the decision 
maker must stop and accept the final observed value t as his 
reward, it is concluded that ( )0V t t=  for t−∞ < < ∞ . 
Since the decision maker is taking samples without recall 
from a known distribution, the value of expected reward vj 
from taking one more observation and then continuing 
depends on the number of j remained observations in an 
optimal stopping rule. After one more observation t has 
been gathered, the expected reward from the optimal 
continuation over the remaining j-1 stages is ( )1jV t− , 
hence the expected reward vj satisfies the following 
equation, 
 

( )( ) ( )1 1 ( )j j jv E V t V t f t dt
∞

− −−∞
= = ∫                      (1) 

the expected reward ( )jV t from the optimal stopping rule 
is maximum of the reward from stopping t ,and the expected 
reward from continuing, vj,, thus following is concluded, 

( ) { }max ,j jV t t v=                                                       (2) 

Since ( )0V t t= and from equations (1) and (2), the 

functions 1 2, ,...V V  and the numbers 1 2, ,...v v  are 
evaluated successively. 

Let vj, j=0, 1, 2… n, denote the maximum expected 
reward. It can be proven that (Degroot [10]) the optimal 
stopping rule for problem is to continue sampling whenever 
an observed value j n jt v −<  and to stop the process 
elsewhere. Values of vj can be determined from following 
equations. 

( )
( )

1

1j j F j

v E t

v v T v+

=

= +
 

( ) ( ) ( )
j

F j jv
T v t v dF t

∞
= −∫                                         (3) 

  
2.2.  Sampling without Recall with infinite 

stages  
 

In this sampling scheme, there is no upper bound 
on the number of observations which can be taken but there 
is a fixed cost per observation. Let 1 2, ,...T T  be a 
sequential random sample from distribution F(t). If the 
decision maker stops the sampling process after the values 

1 1 2 2, ,..., n nT t T t T t= = =  have been taken, his reward 

will be nt cn− . Thus problem is to find a stopping rule 

which maximizes ( )NE t cN− . It can be proven that if 
the variance of the F(t) is finite, then the maximum 
expected reward *v  among all stopping rules is finite and 
there is an optimal stopping rule whose expected reward is 

*v (Degroot [10]). 
After the first observation t has been taken, the 

decision maker either can stop the sampling process or can 
continue to take more observations. If he stops the 
sampling, his reward will be the values of t minus the 
sampling cost c also if the decision maker continues the 
sampling, then he is in the same position that he was at the 
start of the sampling process but he has already spent c for 
the first observation, thus the expected reward from the 
optimal continuation is again *v  minus the cost c of the 
observation gathered. 

Thus after the first observation t has been 
observed, if *T t v= <  then the optimal stopping rule is to 
continue sampling process and if *T t v= ≥  the optimal 
stopping rule is to terminate the sampling process. The 
expected reward from this optimal procedure is 

{ }( )*max ,E t v c− , Also, the expected reward from the 

optimal stopping rule is assumed to be *v . Thus the 
following equation is concluded, 
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{ }( )* *max ,v E t v c= −                                               (4) 

Assuming f(t) is a exponential distribution with 
parameterλ   

( ) ( ) ( )1, expf t tλ λ λΓ = −∼                                     (5)  
The expected reward can be calculated as follows, 

{ }( )
( ) ( )

*

*

* *

*

0

max ,
v

v

v E t v c

v f t dt t f t dt c
∞

= − =

+ −∫ ∫
                                  (6) 

Thus, 

( ) ( ) ( )

( )

*
*

*

0

*

exp

ln

v v
t v f t dt c

c
v

λ

λ
λ
λ

−
− = =

⇒ =
−

∫
                      (7)                                                  

 
2.3.  Sampling without Recall from an 

Exponential Distribution with Unknown 
Mean 

 
Assume that a random sample 1 2, ,...T T  is taken at 

a cost of c from an exponential distribution with unknown 
mean (λ  is not known). Let the prior distribution of λ  is a 
Gamma distribution. Thus, the posterior distribution at each 
stage of the sampling process will be a Gamma distribution. 
The decision maker should find a stopping rule that 
maximizes the expected reward ( )NE t cN− . 

It can be proven that if the variance of distribution 
of each observation is finite then an optimal stopping rule 
exists and the expected reward of the optimal stopping rule 
is finite (Degroot [10]). This assumption is satisfied in the 
problem of sampling from an exponential distribution which 
has been considered here. 

Assume that the prior distribution of λ  is a 
Gamma Distribution, to use a non-informative prior by 
assuming that parameters of Gamma converge to zero, i.e., 
the prior distribution of λ  is Gamma (0, 0). 

( ) ( )0,0g λ Γ∼                                                              (8) 

Observations 1 1 2 2, ,..., n nT t T t T t= = =  are taken, It can 
be shown by Bayesian Inference that the posterior 
distribution of λ  is (Nair et al. [11]) 

( ) ( ) ( )
1

0,0 ,
n

i
i

g g n tλ λ
=

⎛ ⎞Γ ⇒ Γ⎜ ⎟
⎝ ⎠
∑∼ ∼                  (9) 

Then the marginal distribution of the next observation, t, 
can be determined as follows: 

( ) ( ) ( )

( )

0

1
10

1

1

, exp

T

nn

in
i

i nni
i

i

f t f t g d

n t
n t t d

t t

λ λ λ

λ λ λ

∞

∞ =
+

=

=

= =

⎛ ⎞
⎜ ⎟⎛ ⎞ ⎝ ⎠Γ − =⎜ ⎟

⎝ ⎠ ⎛ ⎞+⎜ ⎟
⎝ ⎠

∫

∑
∑∫

∑

  (10) 

Hence the mean of random variable T is: 

1

n

i
i

n

t

n
µ =

⎛ ⎞
⎜ ⎟
⎝ ⎠=
∑

                                                                (11) 

At each stage of the sampling process, the state of 
the process is characterized by the triple ( ), ,n tt nµ , where 

nt  is value of the last observation and nµ  is the mean 
value of the T and n is the number of observations have 
been taken. 

Let ( ), ,n nV t nµ  be the expected reward, 
without considering the amount spent on gathering samples, 
when the optimal stopping rule is continued from the 
state ( ), ,n nt nµ . 

At this stage, the decision maker either can stop 
sampling and accept the reward nt  or can take another 
observation at a cost c and then continue the sampling 
process in an optimal procedure. Thus the following 
functional equation for V is concluded, 
( ), ,

max , , , 1
1

n n

n
n

V t n

n tt E V t n c
n

µ

µ

=

⎛ ⎞⎛ + ⎞⎛ ⎞+ −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠

               (12) 

Let nα  defined as follows: 

, , 1
1

n
n

n tE V t n c
n
µα ⎛ + ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠

                        (13) 

Hence the optimal stopping rule at the state ( ), ,n nt nµ  is 
determined as follows: 
If n ntα ≤  then accept the reward and terminate the 
sampling process otherwise continue taking samples. 
It can be shown that the value of 1nα +  can be determined 

from the value of nα as follows: 
 
Lemma 1: for any value of n>0, then 

1

1
1 1

11

n nn n

i n i
i i

n n

t t
c

n

α
α α

− +

+
= =

+

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠= − +
−

∑ ∑
          (14) 
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Proof: 
According to definition of function V, 

, , 1
1

nn tV t n
n
µ +⎛ ⎞+⎜ ⎟+⎝ ⎠

can be determined as follows: 

( )1, , 1 max ,
1

n
n

n tV t n t
n
µ α +

+⎛ ⎞+ =⎜ ⎟+⎝ ⎠
                     (15) 

Thus 1nα +  can be determined as follows: 

( )( )
( ) ( )

( ) ( )

1

1

1

1

10

1 1

max ,
n

n

n

n n

n n

n n n

E t c

f t dt tf t dt c

t f t dt c

α

α

α

α α

α α

α α α

+

+

+

+

∞

+

∞

+ +

= −

⇒ + − =

⇒ − + − =

∫ ∫

∫

        (16) 

Using distribution function f(t) derived in equation (10), 
following is concluded, 

( )
1

1
1 11

1

1

1
1 1

11

n

nn

i
i

n n nnn

i
i

n nn n

i n i
i i

n n

n t
t dt c

t t

t t
c

n

α
α α α

α
α α

+

∞ =
+ ++

=

− +

+
= =

+

⎛ ⎞
⎜ ⎟
⎝ ⎠− = + −

⎛ ⎞
+⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⇒ = − +
−

∑
∫

∑

∑ ∑

    (17) 

 
Lemma 2: the extreme value of nα  exist and 

lim ln t
n tn c

µα µ
→∞

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 where tµ  is the mean of random 

variable t. 
 
Proof: 
Let *α  be the extreme value of nα , thus *α is determined 
as follows:  

*

1

1
1 1

1

lim

lim
1

nn

n nn n

i n i
i i

nn

t t
c

n

α α

α
α

→∞

− +

+
= =

+→∞

= =

⎛ ⎞⎛ ⎞ ⎛ ⎞+⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎜ ⎟− +⎜ ⎟−

⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑  

1

11

1

1

1

lim lim

1

n

i
i

nnn n

n
n

i
i

t

n

c

t

α

α

=

+−→∞ →∞

+

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟= + −
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

                    (18) 

 
Since all functions in equation (18) are continuous, thus 
following is concluded: 
 

1

11

1

1

1

lim lim

1

n

i
i

nnn n

n
n

i
i

t

n

c

t

α

α

=

+−→∞ →∞

+

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟−⎜ ⎟
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟ + −
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

                      (19) 

( )

( )

11

1

*
1

1

lim lim

1

lim

lim
lim 1

lim

n
nnn n

n

n

nn
n

nn
n

nn

c

n

c

n

µ α
α
µ

µ
α

α

µ

+−→∞ →∞
+

→∞
−

+→∞

→∞
→∞

⎛ ⎞
⎜ ⎟
⎜ ⎟= + −⎜ ⎟⎛ ⎞⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

= + −
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

 

Using mathematical methods for convergence of functions 
and according to the law of large numbers, it is concluded 
that,  

 ( )1lim lim
1

n

i
i

n tn n

t

n
µ µ=

→∞ →∞

⎛ ⎞
⎜ ⎟
⎜ ⎟ = =

−⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
 

Thus following is concluded, 
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( )

( )

*
1

1

**

lim

lim
lim 1

lim

explim 1

nn
n

nn
n

nn

t t
n

n tt

c

n

n

µ
α

α

µ

µ µ
αα
µµ

→∞
−

+→∞

→∞
→∞

→∞

+ −
⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

= =
⎛ ⎞⎛ ⎞

+ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

                            (20) 

From equations (18), (19) and (20), following is concluded, 

* ln t
t c

µα µ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                                           (21) 

If we replace 
1

tµ λ
=  in above equation, it would be 

similar to equation (7). 
 
3. SAMPLING WITH RECALL FROM AN 

EXPONENTIAL DISTRIBUTION WITH 
UNKNOWN MEAN 

 
Now, we consider the problem of sampling with 

recall. We assume that a random sample 1 2, ,...T T    is taken 
at a cost of c units per observation from a distribution F(t). 
Assume that the decision maker can select any observation 
which he has taken earlier, and accept value of that 
observation minus the total sampling cost as his reward, 
thus if decision maker stops taking samples after he has 
taken the samples 1 1 2 2, ,..., n nT t T t T t= = = , his reward 

is { }1 2max , ,..., nt t t nc− . 
At each stage of the sampling process, the state of 

the process is denoted by ( ), ,nr nµ , where r is the 

maximum value of the observations and nµ  is the average 

of the observations 1 2, ,..., nt t t  and tµ is the mean of the 
random variable T and n is the number of observations has 
been taken. 

r denotes the reward to the decision maker, without 
considering the amount spent on taking samples, if the 
optimal stopping rule is to continue from this state and the 
value of the next observation is t, then the state ( ), ,nr nµ  

is transformed into the new state ( ) , , 1
1

nn tr t n
n
µ +⎛ ⎞+⎜ ⎟+⎝ ⎠

 

where ( ) { }max ,r t r t= . 

Let ( ), ,nV r nµ  be the expected reward, Thus V 
satisfies the following equation: 

( )

( ) 1
1

, ,

max , , , 1
1

n

n n
n

V r n

n tr E V r t n c
n

µ

µ +
+

=

⎛ ⎞⎛ + ⎞⎛ ⎞+ −⎜ ⎟⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠⎝ ⎠

(22) 

Where, ( ) { }1 1max ,n nr t r t+ +=  and 1nt +   is the value of 
the next observation. 

In Lemma 3 and Lemma 4, we derive some 
properties of optimal solution for this problem. 

 
Lemma 3: 

 Suppose that ( )

1

1 1,
1

n nn n

i i
i i

t r t
U r n

n

− +

= =

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠=
−

∑ ∑
 for 

given values of r and n. if ( ),U r n c> then 

( ), ,nV r n rµ > . 
 
Proof: 
Let ( )1 , ,nV r nµ  is defined as follows: 

( ) ( ) 1
1 1, , , , 1

1
n n

n n
n tV r n E V r t n c

n
µµ +

+

⎛ + ⎞⎛ ⎞= + −⎜ ⎟⎜ ⎟+⎝ ⎠⎝ ⎠
                                                                                          (23) 

According to the definition of function V , 
function ( )1 , ,nV r nµ  will be calculated as follows: 

( ) ( )( ) { }( )1 1 1, , max ,n n nV r n E r t c E r t cµ + += − = −
                                                                                          (24) 
The value of { }( )1max , nE r t +  can be calculated by 
following equation, 

{ }( ) ( ) ( )1 1 1 1max , n n n nr
E r t r t r f t dt

∞

+ + + += + −∫     (25) 

Using the distribution function ( )1nf t +  derive in equation 
(10), the following equation is concluded, 

( )

1

1 1 ,
1

n nn n

i i
i i

t r t
r r U r n

n

− +

= =

⎛ ⎞ ⎛ ⎞
+⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠+ = +
−

∑ ∑
          (26) 

Thus it is concluded that: 

( ) ( )1 , , ,nV r n r U r n cµ = + −                                 (27) 

if ( ),U r n c>  then it is concluded that 

( )1 , ,tV r n rµ >  thus ( ), ,nV r n rµ >  , and the 
optimal decision is to continue to take samples. 

In the next Lemma, we prove that function 
( ),U r n is strictly decreasing function of r, n. with this 

property; the optimal stopping rule for this problem can be 
developed. 
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Lemma 4: ( ),U r n is approximately strictly decreasing 
function of r, n. 
 
Proof: 

By substituting 
1

n

i
i

t
=
∑ with nnµ  where 1

n

i
i

n

t

n
µ ==

∑
in the 

definition of function ( ),U r n  in equation (26), following 
is concluded:  

( ) ( ) ( ) 1

,
1

1
1

n n
n n

n

n

n

n r n
U r n

n

r nr
n n

µ µ

µ
µ

− +

−

+
=

−

⎛ ⎞ +
= +⎜ ⎟ −⎝ ⎠

                           (28)  

Since for sufficient large value of n, n tn
Lim µ µ
→∞

=  the 

variable nµ  is approximately constant and equal to tµ .  

Since function 1
n

n

r
nµ

−
⎛ ⎞

+⎜ ⎟
⎝ ⎠

is a decreasing function of n 

and function 
1

nr n
n

µ+
−

 is a decreasing function of n, thus 

function ( ),U r n  is strictly decreasing function of n. 

The first derivative of function  ( ),U r n   on r is 
calculated as follows, 

( ) ( )
( )

,
0

n
n

n
n

U r n n
r r n

µ

µ

∂ −
= <

∂ +
                                    (29)  

Since
( ),U r n
r

∂
∂

 is negative, thus ( ),U r n is strictly 

decreasing function of r, n. 
By lemma 3, it is concluded that if ( ),U r n c>  

in one stage then the optimal decision is to stop the 
sampling and accept r as reward, also by lemma 5, we know  
that by continuing the sampling, ( ),U r n  decreases thus 
remains less than c, as we expected. 
 

In Lemma 5, it is proved that the extreme value of 
( ),U r n exists and is similar to the optimal stopping rule 

in equation (21). This means the characteristics of optimal 
stopping rule in the problems of sampling without recall and 
sampling without recall are similar. 

 
Lemma 5: the extreme value of ( ),U r n  exist and 

( )lim ,
t

r
tn

U r n e
µ

µ
−

→∞
= . 

 
Proof: 
Let *U  be the extreme value of ( ),U r n , thus *U is 
determined as follows:  
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             (30) 

 
4. CONCLUSION 

 
In this paper, a category of stopping problems 

problem has been investigated. In each of these problems, 
the observations are gathered sequentially, and at each stage 
he must decide whether to stop and suffer a specified 
stopping risk or continue and the next observation at some 
specified sampling cost. The problem has been formulated 
and analyzed in the stochastic dynamic programming 
framework. We obtained the optimal stopping rules for 
different scenarios of sampling. The different characteristics 
of the value function are shown and an optimal control limit 
policy is developed. 
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