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Abstract This review article presents fractional derivative cancer treatment models to show the 
importance of fractional   derivatives in modeling cancer treatments. Cancer treatment has become a 
significant research area that has attracted many mathematical models developed by mathematicians 
to represent cancer treatment   processes such as hyperthermia, immunotherapy, chemotherapy, and 
radiotherapy. However, many of these models were based on ordinary derivatives. The concept of 
fractional derivatives, which is still new to many mathematicians, is a generalized definition of a 
derivative whose order is a real number and has proved to be more effective and robust in modeling 
cancer treatments. Therefore, it is imperative to review fractional cancer treatment models to elucidate 
their significance and also predict future directions. The review was carried                 out by first presenting 22 
various definitions of fractional derivatives. Thereafter, 11 articles were selected from different online 
databases which included Scopus, EBSCOHost, ScienceDirect Journal, SpringerLink Journal, Wiley 
Online Library, and Google Scholar. These articles were summarized, and the utilization of fractional 
derivative models was analyzed. Based on this analysis, the merit of modeling with fractional 
derivative, the most                 used fractional derivative definition, and the future direction for cancer treatment 
modeling were presented. From   the results of the analysis, it was shown that fractional derivatives 
incorporated memory effects which gave it an advantage over ordinary derivatives for cancer treatment 
modeling. Moreover, the fractional derivative is a general definition for all derivatives. Furthermore, the 
review showed that the Caputo and its non-singular kernel versions are the most used in fractional 
derivative models. The current review concluded that the future direction of cancer treatment modeling 
lies in the adoption and effective use of fractional derivative models corroborated with accurate 
experimental or clinical data. 
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Radiotherapy.  

 

 

Introduction 
 
The concept of fractional derivatives in applied science modeling might sound novel, but, the fractional 
derivative is not new in applied mathematics. Although the fractional derivative name has been accepted 
by mathematicians, the concept is a generalized definition of a derivative whose order is a real number. 
Historically, the concept could be traced back to September 30, 1695, when Leibnitz wrote a letter to 
L’Hospital where he raised the question of generalizing the definition of derivatives to include non-
integers. Since this question was raised by Leibnitz, fractional derivatives had become a subject of study 
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over the years with major contributions from mathematicians like Liouville, Riemann, Weyl,  Leibnitz, 
Abel, Fourier, Grunwald, Lacroix, and Letnikov. These various contributors produced different formulae 
for the fractional derivative. Despite the age of fractional derivatives, its use might still be new to scientists 
and engineers because many are not aware of its beauty and robustness.  
 
Moreover, the fractional derivative is a generalized form of other integrals and derivatives due to its 
“backward compatibility”. According to Ross [1], a fractional derivative should have five basic properties. 
The properties include: the fractional derivative of an analytic function is analytic, when the order of the 
fractional derivative is a positive integer then it becomes an ordinary derivative and when it is a negative 
integer then it becomes an integral (backward compatibility) when the order is zero it becomes the 
function, the fractional derivative must be linear, and the law of exponents holds.  All the definitions of 
fractional derivative satisfied some of these properties, but the one that satisfied all these five properties 
is the Riemann-Liouville fractional derivative [1]. Despite these properties, all definitions of the fractional 
derivative must possess an important common feature. This important common feature is the non-
locality, which gives the fractional derivative a history or memory effect.  
 
The physical interpretation of this memory effect was explained by Du, et al. [2].  The authors used Scott-
Blair’s model to show that the fractional-order is an index of memory for the physical process. For 
instance, when the fractional order is zero, nothing is memorized, and when the fractional order is 1,  
then nothing is forgotten. However, many physical processes operate between these two extremes of 
memorizing nothing or forgetting nothing, therefore a fractional order will be most appropriate for 
modeling. As a result, the fractional derivative model should be used for describing physical processes 
over an interval. Furthermore, Du, et al. [2] used the fractional derivative model to fit the three-point 
bending test data of a viscoelastic creep of SiAYON ceramics at 12000C and 240 MPa. With a fractional 
order of 0.44, the model fitted SiAYON ceramics specimen perfectively for a time interval of 400 minutes. 
Apart from viscoelastic processes, the authors showed that the fractional derivative model is also suitable 
for modeling biological kinetics and processes with memory. This was shown by fitting the protein 
absorption kinetics of fibronectin over 1150 seconds using a model with fractional order of 0.435. The 
results showed a good fit of the model with test data. Also, the fractional derivative model was applied to 
cognitive dynamics in psychology. This was done by fitting the memorizing data implemented by 
Hermann Ebbinghaus which was reported in 1885. The model, with a fractional order of 0.71, fitted well 
with the test data. Based on these results, it can be concluded that fractional derivative models are 
suitable for describing memory-based processes in different fields. Since many real-life processes are 
memory-based, then fractional derivative models are more appropriate.  One of the most important 
memory-based physical processes is the cancer treatment process. The fractional derivative model 
considers the cancer treatment as a process occurring over an interval and accounts for its memory 
effect. More importantly, each process requires a specific fractional-order to measure its memory. The 
three processes presented by Du, et al. [2] had distinct fractional orders. Hence, the value of the 
fractional-order is the memory-index for the physical process [2].  
 
The clinical procedures used in treating or managing cancer include chemotherapy, immunotherapy, 
radiotherapy, hyperthermia, and surgery. Apart from surgery, the use of mathematical models has been 
significant in cancer treatment research. Many of these mathematical models were based on the ordinary 
derivative but fractional cancer treatment models are also gradually gaining prominence. Despite this 
prominence, the concept of a fractional derivative is still obscure to researchers and many are still not 
inclined towards the use of fractional treatment models in cancer treatment research. Therefore, in this 
review article, fractional derivative models in cancer treatment modeling are presented to show the 
flexibility and importance of fractional derivative models in cancer treatment modeling. As a result, 11 
articles based on cancer treatment with fractional derivative models are reviewed, and the various 
contributions are summarized. The inclusion criteria are articles with fractional mathematical models for 
cancer treatments like chemotherapy, immunotherapy, hyperthermia, and radiotherapy. The articles 
were selected from various online databases which included Scopus, EBSCOHost, ScienceDirect 
Journal, SpringerLink Journal, Wiley Online Library, and Google Scholar. Also included are the various 
definitions of fractional derivative from different mathematicians. Subsequently, the future direction for 
cancer treatment research is suggested.    
 
This review article is arranged in sections. In Section 2, the method used for the review is presented  
which includes the various definitions, and the summary of the selected articles from the databases. In 
Section 3, the reviewed articles are analyzed by presenting the cancer treatments and the fractional 
derivative in tabular form. Furthermore, based on the analysis, the future direction for cancer treatment 
research is suggested.  Lastly, the article is concluded with a summary of the potential implications of 
this research and suggestions for further research.  
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Methods 
 
This section presents the various definitions of fractional derivatives as well as the summary of the 
selected articles. 
 
Definitions of fractional derivatives  
  
The various definitions of fractional derivatives are given by Equations (1-22) with Equations (1-10) from 
Dalir and Bashour [3].       
 

 
1. Riemann-Liouville  
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2. M. Caputo (1967)  
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3. L. Euler (1730)  
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      (7) 

 

8. Grunwald-Letnikov 

     (8) 

 

9. Jumarie [4], modified Riemann-Liouville  

    (9) 

10.   Reisz [5] 10a; [6] 10b 

             (10a) 

   (10b) 

 
11.  Reisz-Caputo [5] 
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12. Hadamard  [7, 8] 

                     (12) 

 
13. Erdelyi-Kober [3, 9] 

Fractional integral operator  

            (13a) 

   and Fractional derivative 
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 , ,  

14. Osler [10] 

          (14) 

Where ,  , and  is an increasing and positive function on  having a 

continuous derivative  on   

 
15. Generalized fractional derivative [5, 11] 

         (15a) 

         (15b) 

             (15c) 

Where  , , , ,  

16. Conformable fractional derivative [12]  

      for all ,          (16) 

 

17. Caputo-Fabrizio [13] 

                 (17) 

Where  is a normalization function such that , , , 

  and  , ,  is a Sobolev space. 

 
18. New Caputo-Fabrizio [14] 

 

              (18) 

Where  is a normalization function  

 

19. Riesz partial fractional derivative [15]  
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             (19) 

20. Weyl fractional derivative [6] 

               (20) 

21.  (left-sided and right-sided) fractional derivative of the function , 

, , and are the fractional integrals [16] 

             (21a) 

              (21b) 

22. Atangana-Baleanu-Caputo (ABC) new fractional derivative and the Atangana-Baleanu-Riemann

      (ABR) new fractional derivative are given by equations  

 

            (22a) 

and 

            (22b) 

respectively. Where ,  , ,  is the same as in   

 Caputo-Fabrizio fractional derivative and is the Mittag-Leffler function given by 
 

               (22c) 

 

These two equations (22a) and (22b) have non-local and non-singular kernels [17]. It can be observed 
in (22a) that if the function is a constant, the fractional derivative becomes zero. 
 
Despite these various definitions for fractional derivatives, the most popular ones are the Riemann-
Liouville and the Caputo fractional derivatives. However, the Riemann-Liouville fractional derivative of a 
constant is not zero, but that of the Caputo fractional derivative is zero. Hence, the Caputo fractional 
derivative is more commonly used for mathematical modeling than the Riemann-Liouville fractional 
derivative. Also, the Caputo-Fabrizio fractional derivative of Caputo and Fabrizio [13] and [14], and the 
new fractional derivative of Atangana and Baleanu [17] are non-singular kernel versions of the Caputo 
fractional derivative.  
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Fractional cancer treatment models  
 
This section presents a summary of the selected articles with fractional cancer treatment models. The 
articles spanned from 2014 to 2020, and the selections from the online databases are in the following 
order Scopus (1 article), EBSCOHost (4 articles),  ScienceDirect Journal (1 article), SpringerLink Journal 
(1 article), Wiley Online Library (1 article), and Google Scholar (3 articles).  The summaries are presented 
below.    
 
Firstly, an interesting application of fractional derivative in cancer treatment modeling was done by 
Damor, et al. [18]. The authors used the Caputo fractional derivative for the Pennes bioheat equation to 
represent the hyperthermia cancer treatment process where the pathological tissue’s temperature is 
raised above cytotoxic temperature (410C-450C) and the healthy tissues are not overexposed. The 
success of hyperthermia depends on the knowledge of the heat transfer mechanism in the blood    
perfused tissue. Hence, the authors used the fractional Pennes bioheat model to determine the 
temperature profile and thermal damage to the treatment process over the treated region. The variables 
and parameters of the model include density, specific heat, thermal conductivity, temperature, time, and 
distance. Also included are the artile temperature rate, blood perfusion rate, metabolic heat generation, 
and the external heat source in the skin tissue. Subsequently, the fractional bioheat model was solved 
numerically with an implicit finite difference scheme while the stability of the scheme was discussed using 
the Fourier analysis. The model, with different fractional orders, was then used to simulate  temperatures 
profiles in the tissue domain. It was shown that the time required to reach the temperature 46 oC was 
less with the use of the fractional Pennes bioheat model than with the use of the classic Pennes bioheat 
model. From the results of the simulations, this time decreased as the fractional orders decreased. Also, 
when the fractional order decreases, the penetration distance and the maximum temperature increase 
in the affected region. Finally, the required value of the thermal damage was obtained from the fractional 
model by using the fractional-order of 0.7.  
 
Similarly, Kumar and Rai [19] used the fractional dual-phase-lag bioheat transfer (DPLBHT) model                       
to investigate the thermal behavior of living biological tissues during the treatment of tumors with                
thermal therapy (hyperthermia). The authors also used the Caputo fractional derivative and subjected              
the model to the Dirichlet boundary condition in the presence of metabolic and electromagnetic heat          
sources during the thermal treatment. The authors solved the model numerically with the appropriate 
physiological parameters by using the finite element Legendre wavelet Galerkin method (FELWGM).               
The finite element different scheme was used to spatially discretize the model, this discretization             
converted the model into a system of time-fractional ordinary differential equations which was then             
solved by converting to the Sylvester matrix equation using the Legendre wavelet Galerkin approach             
with the block pulse function in sense of Caputo fractional derivative. Also, different fractional orders             
were used for numerical analysis, the numerical solutions were compared with the exact solution in                 
a specific case and the results coincided. The numerical results showed the temperature distribution                 
in the tissue. From the analysis, it was observed that the temperature distribution in the tissue increased               
as the values of the fractional-order derivative increased with respect to space. Furthermore, the model 
parameters such as the time-fractional derivative, lagging times, blood perfusion coefficient, metabolic                
heat source, and the transmitted power on temperature distribution were varied and the effects on the 
temperature distribution in the skin tissue were analyzed. It was concluded that the success of thermal  
therapy for treating metastatic cancer depended on the time-fractional order derivative to precise               
prediction and control of temperature.    
 
Furthermore, the Caputo time-fractional derivative was used by Akman Yıldız, et al. [20] to model               
the effect of obesity on cancerous tumor growth when chemotherapy and immunotherapy treatments                   
were administered. The authors justified the use of fractional derivatives based on its memory                
feature, and they considered an optimal control problem which gave the minimum treatment doses                 
for the tumor population destruction. The model was a coupled system of fractional differential                      
equations (FDEs)  whose state variables include the tumor cells, the immune cells, the fat cells,                   
and the chemotherapeutic and immunotherapeutic drug concentrations. Also, the model’s control              
variables include the doses of the chemotherapeutic and immunotherapeutic drugs. The objective                  
of the optimal control problem was to find the value of cost function for the control variables which               
minimized the tumor population and the drug doses over a finite time interval. The authors                 
established the conditions for the existence of unique positive solutions and optimal solutions for                    
the model and thereafter investigated the existence and stability of the tumor-free and coexistence        
equilibrium points. The model was solved numerically by discretizing the system of FDEs using the                     
L1 method, and then the nonlinear state equation was linearized with the Newton method, after which                     
the resulting matrix system was solved iteratively. The numerical analysis was used to investigate                  
three cancer treatment strategies which were chemotherapy, immunotherapy, and the combination                  
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of the two. This was done by examining the value of the decay rate of the chemotherapeutic drug to                     
the value of the cost function. Also, the fractional orders of the Caputo fractional derivatives used for                      
the numerical analysis were 0.65, 0.75, 0.85, and 0.95. The numerical values used for the analysis              
were obtained from previous literature and estimated values. From the results of the analysis, the                 
authors concluded that the combination of immunotherapy and chemotherapy gave the optimal                        
control for the cancerous tumor in the presence of obesity.   
 
Additionally, Yıldız, et al. [21] used the fractional derivatives to formulate a fractional optimal                      
control problem (FOCP) model governed by the cancer-obesity with and without a singular kernel.                   
The author used the Caputo fractional derivative with a singular kernel and Caputo-Fabrizio fractional 
derivative without a singular kernel. The FOCP model aimed to determine the optimal doses of 
chemotherapeutic and immunotherapeutic drugs that give the minimum difference between the             
populations of the tumor cells and the normal cells. Also, the FOCP model was used to investigate                 
the effects of obesity on the choice and treatment schedules for the patients based on low and high        
caloric diets. The fractional model was a coupled system of FDEs whose variables represented the          
tumor cells, the immune cells, the normal cells, the fat cells, and the injected chemotherapeutic and 
immunotherapeutic drugs. Furthermore, the two control variables were included to obtain the optimal       
doses for the chemotherapeutic and immunotherapeutic drugs. The model parameters represented the 
treatment process which involved the growth rates, the competitions, the response rates, the decay          
rates, and the interaction between the cells and the control drugs. Subsequently, the existence and       
stability of the tumor-free and the coexistence equilibrium points. The authors then solved the fractional    
model numerically using the L1 formula. From the numerical solutions, the authors simulated different 
treatment schedules over 100 days with fractional orders 0.85, 0.9, and 0.95. The different simulated 
treatment schedules included no control, immunotherapy, chemotherapy, and combined immunotherapy 
and chemotherapy. The presented simulated solutions were the populations of the tumor and fat cells 
for low and high caloric diets under no control conditions; populations of the tumor cells, immune cells, 
fat cells, and normal cells for low caloric diet under immunotherapy; populations of the tumor cells, 
immune cells, fat cells, normal cells, as well as the drug doses for low caloric and high caloric diet during 
chemotherapy. Also simulated were the populations of the cells and the doses of the drugs for low and 
high caloric diets during a combined immunotherapy and chemotherapy treatments. Finally,  the authors 
compared the results obtained from the simulations and by the two derivatives and concluded that a 
combined therapy provided the best results while the Caputo-Fabrizio fractional derivative was more 
efficient for the fractional model.   
 
In continuation, Sweilam and AL-Mekhlafi [22] presented a Caputo fractional tumor model under        
immune suppression. The proposed model aimed to give the optimal control mechanism for the           
minimization of the tumor cells. The model was a system of 11 FDEs whose variables represented                
the interacting cells and the concentration of chemotherapeutic drugs in the bloodstream. The              
interacting cells included the tumor cells, the Natural killer (NK) cells, the CD8+ T cells, the unlicensed                 
and licensed dendritic cells, the CD4+ T cells, the (IL-2) cells, the regulatory T cells, the                   
cells, and the (IL -10) cells. Also, the model parameters represented the tumor immune suppression 
processes. These processes were partitioned into the innate immune response, the adaptive immune 
response, and the immune suppression. Subsequently, the authors introduced two control functionals            
into the model to measure the optimal control for chemotherapy and immunotherapy. The authors used 
numerical values obtained from previous publication for the model parameters, after which they gave 
necessary conditions for the existence and uniqueness of solution for the control problem. The model             
was then solved numerically with the transversality conditions by using the Nonstandard Generalized               
Euler Method (NGEM) and the Generalized Euler Method (GEM). The authors used fractional orders                
of 0.8, 0.90, 0.95, and 1 to simulate the evolution of the model state variables over time by considering              
the no treatment case and the immunosuppressive effects with the control case. Finally, the stability        
analysis of the NGEM was done and it was concluded that the NGEM was conditionally stable.  Also,           
the results of the control functionals from the methods were compared and it was shown that the                
NGEM produced better results.  
 
Another important contribution was presented by Asjad [23], the author used the fractional energy        
balance model to represent hyperthermia breast cancer therapy in a porous medium. The fractional            
model was studied with the Caputo and the ABC fractional derivatives. The author solved the model            
and obtained semi exact solutions with the use of Laplace transforms. From the solutions, the                 
steady-state time needed to reach the therapeutic temperature that causes the death of the tumor                  
cell was computed. The author also showed that the ABC fractional derivative was better suited for 
representing the memory effect of the temperature function. Also, Morales-Delgado, et al. [24]                  
presented a fractional-order cancer chemotherapy effect model. The authors introduced the                   
Caputo-Fabrizio and the Atangana-Baleanu fractional derivates in the Liouville-Caputo sense,                      

( )b-TGF
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into the classical cancer chemotherapy effect model. The model consists of four differential equations                  
whose variables represented the normal cells, the tumor cells, the immune cells, and the                  
chemotherapeutic drugs. Also, the chemotherapeutic treatment processes were represented with                       
the model parameters. The authors obtained approximate-analytical solutions for the model with the               
use of the Laplace homotopy perturbation method and the modified homotopy analysis transform               
method. The Laplace homotopy perturbation method was a combination of the homotopy analysis              
method and the Laplace transform while the modified homotopy analysis transform method was a  
combination of the homotopy analysis method and Laplace transform with homotopy polynomial. 
Subsequently, the model was solved analytically and numerically. The authors developed general             
schemes to produce approximate solutions of the fractional equations, these solutions were given in                
a series form which converged rapidly. The approximate solutions from the fractional equations agreed             
with previous results from classical equations as well as the numerical solutions, which suggested                         
that the model was well-posed and effective. Although the authors did not use real-life clinical data,              
the model can be used for analyzing the effects of chemotherapeutic drugs during cancer treatment.                  
 
Also, Baleanu, et al. [25] presented a fractional-order model for analyzing the tumor-immune             
surveillance and optimal control mechanism. The model was a system of six FDEs whose variables                
included the various interacting cells’ populations. The interacting cells comprised the NK cells, the              
activated CD8+ cytotoxic T lymphocyte (CTL) cells, and the naive tumor cells with no mechanism                              
to escape the immune cells. The remaining three model variables represented the tumors cells that                    
flee the activated CD8+ CTL cells, NK cells, and both the CTL and NK cells, respectively. The                           
tumor-immune mechanism was represented by the model parameters. These parameters represented             
the NK cells’ external influx, the CTL cells’ death rate, the tumor cells’ growth rate, the tumor cells’                  
carrying reciprocal capacity, the NK and CTL cells’ binding rates to the naïve tumor cells, the                         
CTL cells’ rate survived from CTL tumor complex, and the recruitment rates of CTL cells due to                      
the tumor complex in naive-type and wild-type respectively. The other parameters represented the                  
CTL and NK cells’ detached from the tumor complex wild-type, the tumor cells’ proportion in wild-type              
fled from CTL and NK cells, the NK cells and CTL cells’ ratio survived from the naive-type tumor cells,               
the naïve-type tumor cells ratio that flees the interplay with CTL and NK cells, and the maximum                
extraction of CTL cells by the tumor immunogenetic cells. The chemotherapy effects on the tumor                        
cells were then investigated by introducing a control variable, which represented the chemotherapy              
drug concentration, into the model. The introduced control variable turned the model to a fractional              
optimal control tumor-immune model. This chemotherapy control variable induced tumor cells’ death            
which was represented by cell death parameters. These parameters were the chemotherapy-induced            
tumor cells’ death rate which flees from activated CD8+ CTL cells, NK cells, and both CD8+ CTL and             
NK cells. Also represented were the chemotherapy-induced CD8+ CTL and NK cells’ death rates. 
Subsequently, the authors assigned numerical values to the model parameters and solved the                
tumor-immune numerically with the predictor-corrector method. The numerical solutions and the              
stability analysis were done with three types of fractional derivatives which included the Caputo,               
Caputo-Fabrizio, and the Atangana-Baleanu-Caputo (ABC) fractional derivatives. The numerical               
solutions were used to simulate the growth of the tumor and immune cells’ populations over 60 days.               
These numerical solutions were done by using the fractional orders of 0.9, 0.93, 0.96, and 0.99 with               
each of the defined fractional derivatives. The numerical simulations were done with and without 
chemotherapy control variables. The authors corroborated the model by comparing the simulated                  
results of the growth of the naive tumor cells’ populations with reported clinical data given by                  
Mahasa, et al. [26]. The orders of the fractional derivatives which coincided with the reported clinical                 
data were 0.952 for the Caputo, 0.92 for Caputo-Fabrizio, and 0.9 for the ABC fractional derivatives.               
From the results, it was concluded that the fractional model was well suited for modeling the                        
biological process, but the performance of the fractional model depended on the fractional-order                      
and the type of fractional derivative.   
 
In addition, we present the fractional radiotherapy cancer treatment models.  Dokuyucu, et al. [27]  
presented a fractional radiotherapy cancer treatment model which was a fractional version of the             
previous ordinary derivative cancer treatment model formulated by Belostotski and Freedman [28].         
Dokuyucu, et al. [27] integrated the Caputo-Fabrizio fractional derivative into the previous cancer             
treatment model. Thereafter, the authors used the fixed-point theory to establish the conditions                         
for the existence and uniqueness of solutions for the model. Therefore, based on the established             
conditions, the authors showed that the presented fractional cancer treatment model has a unique               
positive solution. Similarly, Awadalla, et al. [29] presented the same model but with a different                         
type of fractional derivative in the model. Awadalla, et al. [29] integrated the Hadamard fractional                
derivative into the cancer treatment model. The authors also established the conditions for the                   
existence and uniqueness of a positive solution for the fractional model. The fractional cancer              
treatment models presented by  Dokuyucu, et al. [27] and Awadalla, et al. [29] were limited to                 
theoretical formulations and were not corroborated with clinical or empirical data.  
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Finally, Farayola, et al. [30] presented a radiotherapy cancer treatment model based on the                    
Caputo fractional derivative. The model was formulated by improving the previous ordinary derivative            
cancer treatment model by Belostotski and Freedman [28]. The authors integrated the Caputo               
fractional derivative into the previous ordinary derivative cancer treatment model and incorporated                
the linear-quadratic with the repopulation model into it to account for the cells’ population decay due to 
radiotherapy. The model variables represented the populations of the normal and cancer cells                      
coexisting in the same region. Also, the model parameters represented the radiotherapy process               
which included the proliferation rates of the cells, the competition coefficients between the cells that               
reduce the cells’ populations, and the radiation-induced cell deaths. Thereafter, the model was used                        
to simulate the treatment process of six uterine cervical cancer patients treated with radiotherapy.                 
From the results of the simulations, the final populations of the normal and cancer cells were                           
obtained. From these final populations of cells, the final tumor volumes as well as the final volumes               
occupied by the normal cells were simulated and the simulated volumes agreed with the published              
clinical data. Also, the sensitivity analysis of the model was done to establish the relative importance               
of each model factor and it was concluded that the most sensitive controllable model factor was the         
fractional order of the Caputo fractional derivative. Thereafter, the authors also used the biologically              
effective dose (BED) formula to simulate 96 different treatment protocols from the data of the six             
patients. These simulated protocols were then used to formulate a regression equation for estimating an 
approximate fractional-order for the Caputo fractional derivative from the value of the radiation dose. 
 
 
Results and discussion 
 
This section presents a table of the summarized articles. Table 1 gives the authors, the year, the title of 
the article, the type of cancer treatment, and the type of fractional derivative used in the summarized 
articles. From the table, the future direction for cancer treatment is suggested.  

 

Table 1. Fractional cancer treatment models 

Author(s) Year Title Cancer treatment Fractional 
Derivative 

Damor, R., Kumar, S., & 
Shukla, A. 2014 

Numerical simulation of 
fractional bioheat equation in 

hyperthermia treatment 
Hyperthermia Caputo 

Kumar, D., & Rai, K. 2017 

Numerical simulation of time 
fractional dual-phase-lag 

model of heat transfer within 
skin tissue during thermal 

therapy 

Thermal therapy 
(Hyperthermia) Caputo 

Akman Yıldız, T., Arshad, 
S., & Baleanu, D. 2018 

Optimal chemotherapy and 
immunotherapy schedules for 
a cancer-obesity model with 

Caputo time fractional 
derivative 

Chemotherapy 
& 

Immunotherapy 
 

Caputo 
 

Yıldız, T. A., Arshad, S., 
& Baleanu, D. 2018 

New observations on optimal 
cancer treatments for a 

fractional tumor growth model 
with and without singular 

kernel 

Chemotherapy, 
Immunotherapy, 

& Combined 

Caputo 
& 

Caputo-Fabrizio 
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Author(s) Year Title Cancer treatment Fractional 
Derivative 

Sweilam, N., & AL-
Mekhlafi, S. 2018 

Optimal control for a nonlinear 
mathematical model of tumor 
under immune suppression: A 

numerical approach 

Immune suppression 
& 

Chemotherapy 

Caputo 
 

Asjad, M. I. 2019 

Fractional mechanism with 
power law (singular) and 

exponential (non-singular) 
kernels and its applications in 

bio heat transfer model. 

Hyperthermia 
Caputo 

& 
ABC 

Morales-Delgado, V. F., 
Gómez-Aguilar, J. F., 
Saad, K., & Escobar 

Jiménez, R. F. 

2019 

Application of the Caputo-
Fabrizio and Atangana-

Baleanu fractional derivatives 
to mathematical model of 

cancer chemotherapy effect. 

Chemotherapy 
Caputo-Fabrizio 

& 
ABC 

Baleanu, D., Jajarmi, A., 
Sajjadi, S., & Mozyrska, 

D. 
2019 

A new fractional model and 
optimal control of a tumor-

immune surveillance with non-
singular derivative operator 

Tumor-immune 
surveillance 

chemotherapy 

Caputo, 
Caputo-Fabrizio, 

& 
ABC 

Dokuyucu, M. A., Celik, 
E., Bulut, H., & 

Baskonus, H. M. 
2018 

Cancer treatment model with 
the Caputo-Fabrizio fractional 

derivative 
Radiotherapy Caputo-Fabrizio 

Awadalla, M., Yameni, 
Y., & Abuassba, K. 2019 

A new Fractional Model for the 
Cancer Treatment by 

Radiotherapy Using the 
Hadamard Fractional 

Derivative 

Radiotherapy Hadamard 

Farayola, M. F., Shafie, 
S., Siam, F. M., & Khan, 

I. 
2020 

Mathematical modeling of 
radiotherapy cancer treatment 

using Caputo fractional 
derivative 

Radiotherapy Caputo 

 
 

Future direction for cancer treatment modelling 
The cancer treatment is a process that spans over a period and the use of the fractional derivative model 
represents this entire process in a more accurate way due to its memory effect as well as its non-locality. 
From Table 1, it was shown that all the different types of cancer treatment can be modeled with fractional 
derivative models. It can also be seen that despite the various definitions of fractional derivatives, the 
Caputo fractional derivative and its non-singular kernel versions, Caputo-Fabrizio and ABC fractional 
derivatives, were used more in the models. However, the major bottleneck in using the fractional 
derivative is the choice of the fractional-order because it is the most sensitive controllable model factor 
[30] and it is also a memory-index for the specific process [2]. However, this bottleneck can be solved by 
corroborating the model with experimental or clinical data. Therefore, the future direction for cancer 
treatment modeling is the use of fractional derivative models, especially the Caputo fractional derivative 
and its non-singular kernel versions. Furthermore, to choose the appropriate fractional-order and 
guarantee more accurate results, the models should be corroborated with experimental or clinical data. 
By formulating and using corroborated fractional derivative models, \the simulated results will be more 
clinically relevant and such simulated results can be used for analyzing and predicting different cancer 
treatment protocols. Hence, mathematicians in collaboration   with clinical scientists can make impactful 
contributions to cancer treatment research.  
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Conclusions 
 

In this review article, the various definitions of fractional derivatives were presented as well as previous 
works on fractional derivative cancer treatment models. The fractional models were used for different 
cancer treatments like hyperthermia, immunotherapy, chemotherapy, combined chemotherapy and 
immunotherapy, and radiotherapy. The most used fractional derivatives in the cancer treatment models 
were the Caputo fractional derivative and its non-singular kernel versions. It was concluded that 
prospects for cancer treatment modeling lie in fractional derivative models corroborated with 
experimental or clinical data.       
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