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Abstract This study aims to provide joint modelling of rainfall characteristics in Peninsular 
Malaysia using two-dimensional copula. Two commonly regarded as important variables in the field 
of hydrology, namely rainfall severity and duration derived using the Standard Precipitation Index 
(SPI) and their univariate marginal distributions are further identified by fitting into several 
distributions. The paper uses a Bayesian framework to estimate the parameter values in the 
marginal and copula model. The approximation of the posterior distribution by random sampling has 
been done by Monte Carlo Markov Chain (MCMC). Next, the authors compared these findings with 
those based on the classical procedure. The results indicated that the Bayesian approach can be 
substantially more reliable in parameter estimation for small samples. 
Keywords: Bayesian analysis, copula, MCMC, rainfall modelling.  

 
Introduction 

 
Floods are one of the most common natural disasters that frequently occur around the world. These 
climatic phenomena are difficult to comprehend and continue to haunt modern society due to their big 
impacts on a variety of domains, including the economic, environmental and social sectors. The current 
floods in Malaysia appear to be one of the worst in recent decades. In 2017, the number of flood incidents 
recorded was 498 cases [1]. In terms of monetary, a typical flood cost RM1.2 billion in 2012 [2], more 
than damages incurred because of other disasters. Due to this, flood protection has a high priority in 
countries that are in danger. As a measure of flood mitigation, it is very significant to determine the 
probabilistic rainfalls characteristics. 
 
There are many major rainfall characteristics in floodplain management and hydrologic design such as 
severity, duration, intensity and depth. These rainfall characteristics are normally employed by various 
researchers in their hydrological studies [3-7]. As these characteristics are random in nature and taking 
into accounts some of them are associated with flood, the appropriate method to discover hydrologic 
events usually by using multivariate probabilistic analysis. However, in traditional multivariate analysis, 
each univariate marginal distribution must come from the same family and this will lead to a very limited 
number of available models. Copulas, on the other hand, present a general framework for creating 
multivariate distributions which make use of any given univariate marginals and a copula function 𝐶 that 
ties these marginals [8]. The importance of copulas is rooted in Sklar’s theorem [9] that states that any 
multivariate distribution can be represented as a copula function of its marginal distributions, making 
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copulas an attractive tool in multivariate statistical modelling. In order to construct the copula modelling, 
both marginal and copula parameter needs to be estimated. There are several technics to obtain 
parametric estimators and the most popular for classical statistics is the maximum likelihood estimation 
(MLE). However, for small sample sizes, MLEs do not always behave well and maybe substantially 
inferior to the estimators obtained by other methods. An alternative method to classical approach in 
estimating the copula parameter is Bayesian approach. 
 
Bayesian parameter estimation is a universal method for fitting models to data. It can be more reliable 
for studies with small sample sizes, while it will also lead to the same conclusions as MLE when the 
sample size approaches infinity. The advantage of a Bayesian approach compared to MLE is the use of 
whole posterior distribution instead of one representative of a family, giving more robust processes and 
completely exploiting the benefits of integration versus optimization. Bayesian analysis provides better 
results than the classical when there exists sufficient amount of prior information which should not be 
ignored and sometimes it is still performing better even with very weak prior information is used [10]. 
Importantly, when Bayesian analyses have been shown to outperform classical analyses, informative 
priors are frequently derived from subject-specific expertise or directly from previous studies [11]. 
However because of specific prior information is not always available and very limited, the main objective 
is to discover prior distributions that are not only informative but also general enough to apply to many 
situations. This class of prior distributions is classified as weakly informative prior [12,13]. Specification 
of a proper prior distribution for a parameter is the most important aspect of a Bayesian analysis that 
distinguishes it from classical analysis. The prior distribution also plays an important role in small sample 
sizes and in this case a careful study is necessary [11]. 
 
Another problem with Bayesian is the posterior distribution rarely has closed form. As copula functions 
and densities have usually nonstandard forms, copula-based bivariate distributions lead in most cases 
to analytically intractable posterior distributions. Therefore, customized Markov chain Monte Carlo 
(MCMC) scheme are necessary [14] in order to obtain a sample from the joint posterior distribution which 
allows the development of Bayesian inference. MCMC enables many researchers to solve a wide range 
of Bayesian problems which cannot be solved using analytical methods. 
 
The use of Bayesian method is widely known for its effectiveness in obtaining inferences based on 
likelihood. Some of researchers who have successfully applied the Bayesian approach to copula 
modelling are such as Huard et al. [15] who proposed a method for selecting the best bivariate copula, 
Hoff [16], Silva and Lopes [17], Craiu and Craiu [18] and Atique and Attoh-Okine [19] who have used 
Monte Carlo Markov Chain (MCMC) simulation to estimate copula parameter and Smith [20] has 
discussed Bayesian correlations for discrete and continuous data. Other important studies such as Wu 
et al. [21] and Grazian and Liseo [22] applied Bayesian copula approach in non-parametric context. 
 
Although the impact of copula modelling in multivariate analysis has been significant in many fields. Yet, 
Bayesian inferential approaches have been employed by only a few empirical analysts to date. 
Nevertheless, they show great potential for computing competent likelihood-based inference in a number 
of contexts. 
 
In this study, the authors derived bivariate rainfall distribution between rainfall severity and duration using 
the Bayesian copula method. Prior to copula fitting, the Standardized Precipitation Index (SPI), 
developed by Mckee et al. [23], was employed to defined the rainfall characteristics. Each flood event 
was characterized by firstly fitted rainfall duration and severity, separately using probability distributions, 
namely gamma, log normal, weibull, exponential and log logistic. Later on, univariate marginal 
distributions were linked by Frank Copula to create the joint distribution of rainfall duration and severity. 
 

Study area and data 
 

This study was focused on the area of Peninsular Malaysia located in the Northern latitude zone between 
1 and 6o N and the Eastern longitude zone from 100 to 103o E. This area is experiencing a warm and 
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humid climate throughout the year. The level of temperatures and rainfall is strongly influenced by 
Southwest Monsoon Wind, blowing from May to September, and Northeast Monsoon Wind that blows 
from November to March. The transitional period between the two monsoon events is known as the 
intermonsoon period which brings constant rainfalls to almost all areas of the peninsula. The annual 
rainfall is eventually tabulated to be 80% per year, ranging from 2000mm to 2500mm. 
 
As to make reliable statistical modelling, the authors have taken into account and reviewed 51 years 
records of data during the years 1965-2015. These data involved 48 rainfall stations and they have been 
obtained with collaboration with the Department of Irrigation and Drainage Malaysia (DID). All selected 
rainfall stations were located at flood-prone areas in Peninsular Malaysia [24]. 
 

Methodology 
 

In this section, the Bayesian inferential scheme, selection of prior distribution and MCMC 
simulation techniques are discussed, followed by the description of the function, density and 
Kendall Tau dependence measure for Frank Copula. This copula was selected because of its 
capability in generalizing the best copula for flood analysis study in Peninsular Malaysia [25]. 
 
Bayesian parameter estimation 
Bayesian parameter estimation involves inferring the posterior probability density function (PDF) over 
model parameters 𝜃 given the data 𝐷 for some model 𝑀. The posterior PDF is given by Bayes' theorem 
 

𝑃(𝜃|𝐷,𝑀) =
𝑃(𝐷|𝜃,𝑀)𝑃(𝜃|𝑀)

𝑃(𝐷|𝑀)  
(
1
) 

 
where the terms in the numerator are called the likelihood, 𝑃(𝐷|𝜃,𝑀), and the prior, 𝑃(𝜃|𝑀), and the 
denominator is the evidence. As the evidence does not depend on the model parameters, it can consider 
as a normalization constant for the posterior. In that case, the unnormalized posterior is just the product 
of the likelihood and prior. 
 
Bayesian copula inference 
Let (𝑋,, 𝑋-) be a bivariate random variable with joint probability function given by 
 

𝑓(𝑥,, 𝑥-|𝛹) = 𝑐2𝐹,(𝑥,|𝛹), 𝐹-(𝑥-|𝛹)𝑓,(𝑥,|𝛹)𝑓-(𝑥-|𝛹)4 (2) 
 
where Ψ is the parameter vector comprising copula and marginal distribution parameters and 𝑓6 and 𝐹7, 
𝑗 = 1,2, represent the probability and cumulative marginal distribution functions, respectively. 𝐶 is a 
cumulative distribution function and 𝑐 is a copula density, that is the probability density function calculated 
as the mixed derivative in 𝑥, and 𝑥-. 
 
Now, let 𝒙 = 2(𝑥,,, 𝑥-,), … , (𝑥,=, 𝑥-=)4 be a sample of size 𝑛 from independent and identically distributed 
data from the probability function in Equation 2, then the likelihood function is given by 
 

𝐿(𝒙|𝛹)

=@ 𝑐2𝐹,(𝑥,6|𝛹), 𝐹-(𝑥-6|𝛹)𝑓,(𝑥,6|𝛹)𝑓-(𝑥-6|𝛹)4
=

6A,
 

(3) 

 
leading to the posterior distribution 𝑔(𝛹|𝑥) ∝ 𝐿(𝑥|𝛹)𝑔(𝛹) for prior distribution 𝑔(𝛹). 
 
Prior distribution 
The type of prior used in this study was the weak informative prior (WIP). WIP distributions use prior 
information for regularization and stabilization. It aims to prevent a problem such as overfitting by 
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introducing some additional information. The use of this type of prior will perform more logical and better 
estimates than the maximum likelihood, which is still the standard approach in theoretical and applied 
statistics. 
 
Markov chain Monte Carlo (MCMC) 
It is impossible to obtain a direct posterior distribution due to its intractability form. Therefore, the authors 
characterize it by sampling, from which the best model parameters and their uncertainties can be found. 
The authors will use the Gibbs sampling technique for marginal parameters estimation and random walk 
Metropolis algorithm (RWMA) for copula parameter estimation. 
 
Random walk metropolis algorithm (RWMA) 
There are many choices of distribution which can be used as symmetric proposals, but normal distribution 
with varying 𝜎 usually provides sufficient flexibility. An important calibration or scaling issue is the choice 
of parameter 𝜎 [26], which has a great impact on the effectiveness of the RWMA algorithm. Too large 𝜎 
can bring about excessive overdispersion while too small 𝜎 leads to a chain with a very high acceptance 
rate, exhibitng a substantial bias. 
 
The RWMA method has the following algorithm. Suppose the current state of the Markov chain is 𝑋= and 
assume the density of the equilibrium distribution as h. Then the next Markov chain steps are simulated 
as follows: 
 
• Simulate 𝑌= with a distribution of 𝒩(𝜇, 𝜎). 
• Calculate 𝑟 = I(JKLMK)

I(JK)
 

• Simulate 𝑈= with a distribution of 𝒰(0,1). 
• If 𝑈= < 𝑟, then set 𝑋=L, = 𝑋= + 𝑌=, 
• Otherwise set 𝑋=L, = 𝑋=. 
 
There are no firm rules dictating how to choose the scaling parameter. Therefore, it can be adjusted to 
achieve a reasonable acceptance rate. Roberts et al. [27] recommend acceptance rates close to 0.25 
for high-dimensional models and 0.5 for one or two-dimensional models. A high acceptance rate may 
indicate a weak convergence pattern. 
 
Gibbs sampling 
Gibbs sampling acts as an alternative approach to multi-parameter problems by sampling one parameter 
given the value of another parameter [28]. Gibbs sampling which was first used by Geman and Geman 
[29] can reduce the problem related to dimensionality. The general steps for Gibbs sampling are as 
follows: 
 
Suppose 𝑓(𝜃, 𝜙) ∝ 𝜋(𝜃, 𝜙|𝑥) is the target density with data 𝑥 and two parameters 𝜃 and 𝜙. Let 𝑓,(𝜃) and 
𝑓-(𝜙) be two marginal densities and 
 

𝑔,(𝜃|𝜙) =
𝑓(𝜃, 𝜙)
𝑓-(𝜙)

		 , 𝑔-(𝜙|𝜃) =
𝑓(𝜃, 𝜙)
𝑓,(𝜃)

 
(4) 

 
are two conditional densities. If direct sampling from conditional is feasible, the algorithm is as follows: 
 
For 𝑡 = 0 choose 𝜃W arbitrarily. Then draw 𝜙W from 𝑔-(𝜙|𝜃).  
For 𝑡 = 1,2,… 
• Generate a random value 𝜃X~𝑔,(𝜃|𝜙XZ,); 
• Generate a random value 𝜙X~𝑔-(𝜙|𝜃X); 
• Use pairs (𝜃X, 𝜙X) as a sample from 𝑓(𝜃, 𝜙). 
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Frank Copula 
Bivariate Frank Copula function can be defined as: 
 

𝐶[(𝑢, 𝑣) = −𝜃Z, 𝑙𝑜𝑔 a1 +
2𝑒Z[c − 142𝑒Z[d − 14

𝑒Z[ − 1 e 
(5) 

 
and its density function: 
 

𝑐[(𝑢, 𝑣) =
𝜕-𝐶[(𝑢, 𝑣)
𝜕𝑢𝜕𝑣  

(6) 

=
𝑒Z[c2−𝑒Z[dZ[𝜃 + 𝑒Z[d𝜃4

(𝑒Z[cZ[d − 𝑒Z[c − 𝑒Z[d + 𝑒Z[)- 
(7) 

 
The value of theta for Frank Copula is closely related to Kendall’s tau value, which is the strength of 
dependence between the component of two variables as in the following equation: 
 

𝜏 = 1 +
4(𝐷(𝜃) − 1)

𝜃  
(8) 

 
through Debye’s integral 
 

𝐷(𝜃) =
1
𝜃i

𝑡
𝑒X − 1𝑑𝑡

[

W
 

(9) 

 

Results and discussion 
 

This study used the same marginal distribution in the previous research [25] for the severity 
and duration variables. Next, these two marginal distributions were combined to become a 
bivariate distribution using Frank Copula. Copula allows the marginal parameter to be estimated 
first and then the estimation of the copula parameter is performed given the marginal parameter 
value. 
 
Marginal parameter estimation 
In Bayesian marginal estimation, the conjugate prior is used for easy analytical computation. 
For Kuala Brang station for example, the severity and duration variables were modelled using 
log normal and gamma distribution respectively with the densities of the two distributions as 
follows: 
 
Log-Normal Distribution 
 

𝑓(𝑥|𝜇, 𝜎) =
1

𝑥𝜎√2𝜋
𝑒Z

(l= mZn)!
-o! ,										𝜇, 𝜎 > 0 

(10) 

 
where	𝜇 and 𝜎 are the mean and standard deviation of 𝑙𝑛(𝑥) respectively. 
 
Gamma Distribution 
 

𝑓(𝑥|𝛼, 𝛾) =
𝛾s

𝛤(𝛼) 𝑒
Zum𝑥sZ,,										𝛼, 𝛾 > 0 

(11) 

 
where 𝛼 is the shape parameter and 𝛾 is the rate parameter. 
 
For the log normal parameter estimation, normal prior is assumed for the mean, 𝜇 and gamma 
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prior for the precision parameter, 𝜏 or v,
o
w
-
. While for the gamma parameter estimation, 

exponential prior is assumed for the shape parameter, 𝛼 and gamma prior for the rate 
parameter, 𝛾. The posterior distribution was generated by using the Gibbs sampling technique. 
The results obtained for the Kuala Brang station are shown in the following diagram. Figure 1 
and Figure 2 show the trace plots of the four parameters: mean, precision, shape and rate 
generated by the MCMC algorithm, whereas Figure 3 and Figure 4 show a histogram of the 
posterior mean for the log normal and gamma distribution. 
 

 
Figure 1. Trace plot for log normal distribution 

 

 
Figure 2. Trace plot for gamma distribution 

 
Figure 3. Histograms of the posterior distributions for log normal 
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Table 1. Marginal parameter estimation for severity and duration 

 
 
 
 
 
 

N 
 

Note: 𝛼 = shape; 𝛽 = scalar; 𝜆 = lambda; 𝜇 = mean; 𝜏 = precision; 𝛾 = rate parameter 

Station Severity Duration 
 Distribution Parameter 1 Parameter 2 Distribution Parameter 1 Parameter 

2 
Meranti Log Logistic 𝛼 = 2.16 𝛽 = 2.52 Weibull 𝛼 = 1.50 𝜆 = 0.23 
Kuala Jambu Log Logistic 𝛼 = 2.18 𝛽 = 2.45 Weibull 𝛼 = 1.52 𝜆 = 0.24 
Stesen Keretapi Tumpat Log Normal 𝜇 = 1.01 𝜏 = 1.82 Weibull 𝛼 = 1.62 𝜆 = 0.22 
Kampung Ibok Log Logistic 𝛼 = 2.15 𝛽 = 2.22 Log Logistic 𝛼 = 2.76 𝛽 = 1.59 
Dungun Weibull 𝛼 = 1.25 𝜆 = 0.17 Weibull 𝛼 = 1.50 𝜆 = 0.23 
Kuala Brang Log Normal 𝜇 = 1.03 𝜏 = 1.90 Gamma 𝛼 = 3.19 𝛾 = 1.34 
Kuala Telemong Weibull 𝛼 = 1.40 𝜆 = 0.18 Weibull 𝛼 = 1.81 𝜆 = 0.24 
Marang Weibull 𝛼 = 1.39 𝜆 = 0.16 Weibull 𝛼 = 1.77 𝜆 = 0.22 
Kuala Terengganu Log Logistic 𝛼 = 2.06 𝛽 = 2.55 Weibull 𝛼 = 1.75 𝜆 = 0.23 
Kampung Rahmat Weibull 𝛼 = 1.19 𝜆 = 0.18 Weibull 𝛼 = 1.62 𝜆 = 0.23 
Banggol Exponential 𝛾 = 0.24 - Weibull 𝛼 = 1.45 𝜆 = 0.23 
Setiu Log Normal 𝜇 = 0.96 𝜏 = 1.90 Weibull 𝛼 = 1.67 𝜆 = 0.25 
Pelangi Kampung Jawi 2 Log Logistic 𝛼 = 2.21 𝛽 = 2.45 Weibull 𝛼 = 1.51 𝜆 = 0.23 
Bentong Log Logistic 𝛼 = 2.15 𝛽 = 2.50 Log Logistic 𝛼 = 2.60 𝛽 = 1.74 
Paya Membang Weibull 𝛼 = 1.42 𝜆 = 0.17 Weibull 𝛼 = 1.79 𝜆 = 0.23 
Kampung Serambi Gamma 𝛼 = 1.96 𝛾 = 0.51 Weibull 𝛼 = 1.69 𝜆 = 0.21 
Kerdau Weibull 𝛼 = 1.34 𝜆 = 0.17 Weibull 𝛼 = 1.64 𝜆 = 0.22 
Sanggang Weibull 𝛼 = 1.46 𝜆 = 0.16 Weibull 𝛼 = 1.72 𝜆 = 0.23 
Pekan Log Logistic 𝛼 = 2.22 𝛽 = 2.33 Weibull 𝛼 = 1.73 𝜆 = 0.26 
Penor Log Logistic 𝛼 = 2.19 𝛽 = 2.35 Weibull 𝛼 = 1.63 𝜆 = 0.26 
Kuala Krau Weibull 𝛼 = 1.30 𝜆 = 0.17 Weibull 𝛼 = 1.61 𝜆 = 0.24 
Paya Kangsar Weibull 𝛼 = 1.18 𝜆 = 0.19 Weibull 𝛼 = 1.53 𝜆 = 0.24 
Ladang Kuala Reman Log Logistic 𝛼 = 2.20 𝛽 = 2.37 Weibull 𝛼 = 1.40 𝜆 = 0.26 
Kuala Lipis Log Logistic 𝛼 = 2.06 𝛽 = 2.61 Weibull 𝛼 = 1.47 𝜆 = 0.22 
Kota Tinggi Log Normal 𝜇 = 0.91 𝜏 = 2.14 Weibull 𝛼 = 1.78 𝜆 = 0.24 
Sembrong Log Logistic 𝛼 = 2.33 𝛽 = 2.57 Weibull 𝛼 = 1.80 𝜆 = 0.21 
Ladang Lambak Log Logistic 𝛼 = 2.31 𝛽 = 2.13 Log Logistic 𝛼 = 2.82 𝛽 = 1.51 
Yong Peng Weibull 𝛼 = 1.46 𝜆 = 0.18 Weibull 𝛼 = 1.83 𝜆 = 0.22 
Ladang Ulu Paloh Log Logistic 𝛼 = 2.21 𝛽 = 2.24 Weibull 𝛼 = 1.60 𝜆 = 0.26 
Jementah Log Normal 𝜇 = 1.04 𝜏 = 1.67 Gamma 𝛼 = 2.58 𝛾 = 1.02 
Segamat Weibull 𝛼 = 1.37 𝜆 = 0.15 Weibull 𝛼 = 1.84 𝜆 = 0.20 
Empangan Labong Log Logistic 𝛼 = 2.19 𝛽 = 2.43 Weibull 𝛼 = 1.56 𝜆 = 0.24 
Pusat Pertanian Endau Log Logistic 𝛼 = 2.24 𝛽 = 2.17 Weibull 𝛼 = 1.60 𝜆 = 0.29 
Stor Jps Endau Log Normal 𝜇 = 0.97 𝜏 = 1.86 Weibull 𝛼 = 1.60 𝜆 = 0.22 
Parit Nibong Log Logistic 𝛼 = 2.31 𝛽 = 2.22 Weibull 𝛼 = 1.57 𝜆 = 0.28 
Rantau Panjang Log Normal 𝜇 = 1.02 𝜏 = 1.44 Log Logistic 𝛼 = 2.49 𝛽 = 1.86 
Jeniang Weibull 𝛼 = 1.45 𝜆 = 0.17 Weibull 𝛼 = 1.82 𝜆 = 0.22 
Telok Rimba Log Logistic 𝛼 = 2.30 𝛽 = 2.26 Weibull 𝛼 = 1.59 𝜆 = 0.26 
Jasin Log Normal 𝜇 = 0.87 𝜏 = 2.00 Gamma 𝛼 = 2.93 𝛾 = 1.48 
Jalan Empat Log Logistic 𝛼 = 2.07 𝛽 = 2.53 Log Logistic 𝛼 = 2.58 𝛽 = 1.85 
Ladang Bukit Bertam Gamma 𝛼 = 2.17 𝛾 = 0.62 Weibull 𝛼 = 1.66 𝜆 = 0.20 
Batu Kurau Log Logistic 𝛼 = 2.48 𝛽 = 2.15 Weibull 𝛼 = 1.78 𝜆 = 0.27 
Ladang Sepang Log Normal 𝜇 = 0.87 𝜏 = 2.58 Weibull 𝛼 = 2.01 𝜆 = 0.23 
Sungai Mangg Log Logistic 𝛼 = 2.39 𝛽 = 2.55 Weibull 𝛼 = 1.67 𝜆 = 0.21 
Ladang Bukit Kerayong Log Logistic 𝛼 = 2.07 𝛽 = 2.55 Weibull 𝛼 = 1.42 𝜆 = 0.22 
Ladang Tuan Mee Weibull 𝛼 = 1.39 𝜆 = 0.15 Weibull 𝛼 = 1.75 𝜆 = 0.20 
Tanjung Karang Log Normal 𝜇 = 0.97 𝜏 = 1.68 Weibull 𝛼 = 1.57 𝜆 = 0.23 
Sungai Bernam Log Normal 𝜇 = 0.88 𝜏 = 2.19 Weibull 𝛼 = 1.84 𝜆 = 0.24 



 
 
 
 

 
361 

Kamaruzaman et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 17 (2021) 354-364 

 
Figure 4. Histograms of the posterior distributions for gamma 

 
Based on the trace trajectories in Figure 1 and Figure 2, it shows a good sampling property, 
which means good mixing. The complete results of marginal parameter estimation for all 48 
stations for severity and duration can be referenced in Table 1. 

 
Frank Copula parameter estimation 
For estimating the Frank Copula parameter, gamma prior is assumed for theta, 𝜃. The copula 
parameter is estimated given the marginal parameter value using RWMA technique. When 
dealing with RWMA, the standard deviation parameter value should be tuned carefully in order 
to gain a reasonable acceptance rate. The results of the estimated parameters and their 
acceptance rates for all stations are shown in Table 2. In general, all stations have a decent 
acceptance rate, ranging from 0.46 to 0.54 percent. 
Performance of Bayesian approach 
This section describes the effectiveness of the Bayesian method in estimating the parameters of a 
distribution. When the studies involved large sample sizes, there were no significant differences were 
noted between Bayesian and frequentist. However, the Bayesian method can be more reliable for studies 
with small sample sizes. To test the performance of this method with one obtained from frequentist 
method [25], comparisons were made between simulation data from Bayesian approach and the 
frequentist approach towards the observation data using mean absolute error (MAE) goodness of fit. 
The results obtained are shown in Figure 5. 
 

 
 

Figure 5. Comparison of mean absolute error (MAE) between Frequentist and Bayesian approach 
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                Table 2. Frank Copula parameter estimation values 
 

Station Theta Acceptance Rate 
Meranti 19.76 0.48 
Kuala Jambu 19.12 0.49 
Stesen Keretapi Tumpat 19.17 0.47 
Kampung Ibok 22.96 0.54 
Dungun 23.16 0.48 
Kuala Brang 18.84 0.47 
Kuala Telemong 23.32 0.50 
Marang 20.64 0.49 
Kuala Terengganu 21.99 0.49 
Kampung Rahmat 21.64 0.51 
Banggol 21.54 0.52 
Setiu 15.37 0.47 
Pelangi Kampung Jawi 2 21.95 0.53 
Bentong 26.66 0.54 
Paya Membang 21.71 0.47 
Kampung Serambi 22.33 0.50 
Kerdau 26.08 0.54 
Sanggang 22.92 0.53 
Pekan 19.43 0.50 
Penor 21.29 0.49 
Kuala Krau 24.49 0.52 
Paya Kangsar 28.17 0.52 
Ladang Kuala Reman 18.97 0.48 
Kuala Lipis 20.63 0.52 
Kota Tinggi 20.47 0.49 
Sembrong 22.20 0.53 
Ladang Lambak 18.29 0.49 
Yong Peng 23.74 0.51 
Ladang Ulu Paloh 21.17 0.47 
Jementah 19.35 0.49 
Segamat 22.33 0.54 
Empangan Labong 21.19 0.52 
Pusat Pertanian Endau 20.19 0.49 
Stor Jps Endau 20.48 0.52 
Parit Nibong 19.06 0.48 
Rantau Panjang 20.64 0.54 
Jeniang 25.84 0.48 
Telok Rimba 22.72 0.54 
Jasin 23.84 0.51 
Jalan Empat 23.88 0.53 
Ladang Bukit Bertam 20.25 0.49 
Batu Kurau 22.00 0.48 
Ladang Sepang 19.85 0.49 
Sungai Mangg 21.81 0.52 
Ladang Bukit Kerayong 21.32 0.53 
Ladang Tuan Mee 17.88 0.50 
Tanjung Karang 22.16 0.51 
Sungai Bernam 20.24 0.46 
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Based on the graph in Figure 5, it is clear that the Bayesian parameter estimation gives better results. 
Lower MAE values were successfully recorded for almost all stations. Factors such as the type of prior 
use have succeeded to reduce the gap in data estimation errors. 

 

Conclusions 
 

Two types of distributions, namely marginal distribution and copula are estimated using Bayesian 
analysis which is an alternative method for estimating the distribution parameters. The Bayesian 
parameter estimation was carried out in two stages using MCMC simulation based on Gibbs and RWMA 
sampling techniques. Bayesian inference through MCMC simulation is fair and suitable to be used for 
various sample sizes. In contrast to the frequentist analysis of [25], it is more likely to produce biassed 
results due to the small sample size. In this situation, Bayesian analysis is able to provide better results 
because of prior distributions can dominate the likelihood. This was supported by the result in the 
goodness of fit tests that the Bayesian analysis has a smaller MAE value compare to frequentist. 
 
Another advantage of using Bayesian is the use of entire posterior distribution instead of one 
representative of a family, providing more stable procedures and fully utilizing the benefits of integration 
versus optimization. 
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and Drainage Malaysia (DID).   
 

Conflicts of interest 
 

The authors declare that there is no conflict of interest regarding the publication of this paper. 
 

Funding statement 
 

The work is financed by MyBrain15 Scholarship provided by the Ministry of Higher Education of Malaysia 
 

References 
 

[1] Department of Statistics Malaysia. Compendium of Environment Statistics 2018. Department of Statistics 
Malaysia 2018, pp. 1–4. 

[2] Department of Irrigation and Drainage Malaysia. Flood Management - Programme and Activities: Available: 
https://www.water.gov.my/index.php/pages/view/419?mid=244 (12 November 2017). 

[3] Wazneh, H., Arain, M. A., Coulibaly, P. & Gachon, P. Evaluating the Dependence between Temperature and 
Precipitation to Better Estimate the Risks of Concurrent Extreme Weather Events. Advances in Meteorology 
2020,1–16. 

[4] Zhang, L., Singh, V. P. Bivariate Rainfall Frequency Distributions Using Archimedean Copulas. Journal of 
Hydrology 2007, 332(1–2), 93–109.  

[5] Abdul Rauf, U. F., Zeephongsekul, P. Modelling Rainfall Severity and Duration in North-Eastern Victoria Using 
Copulas. 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011, 
3462–3468.  

[6] Daneshkhah, A., Remesan, R., Chatrabgoun, O., Holman, I. P. Probabilistic Modeling of Flood 
Characterizations with Parametric and Minimum Information Pair-Copula Model. Journal of Hydrology 2016, 
540, 469–487.  

[7] Ozga-Zielinski, B., Ciupak, M., Adamowski, J., Khalil, B., Malard, J. Snow-Melt Flood Frequency Analysis by 
Means of Copula Based 2D Probability Distributions for The Narew River in Poland. Journal of Hydrology: 
Regional Studies 2016, 6, 26–51.  

[8] Nelsen, R. B. An Introduction to Copulas, 2nd ed.; Springer: New York, 2006; pp. 1-272, 9780387286785  
[9] Sklar, A. Fonctions de répartition à n dimensions et leurs marges. Publications de l'Institut de statistique de 

l'Universit é de Paris 1959, 8, 229–231.  



 
 
 
 

 
364 

Kamaruzaman et al. | Malaysian Journal of Fundamental and Applied Sciences, Vol. 17 (2021) 354-364 

[10] Shemyakin, A. & Kniazev, A. Introduction to Bayesian Estimation and Copula Models of Dependence, First 
Edition. New Jersey, 2017: John Wiley & Sons, Inc. 

[11] McNeish, D. On Using Bayesian Methods to Address Small Sample Problems. Structural Equation Modeling 
2016, 23(5): 750–773. 

[12] Gelman, A. Prior distributions for variance parameters in hierarchical models (Comment on Article by Browne 
and Draper). Bayesian Analysis 2006,1(3): 515–534. 

[13] Gelman, A., Simpson, D. & Betancourt, M. The prior can often only be understood in the context of the likelihood. 
Entropy 2017,19(10): 1–13. 

[14] Gamerman, D. & Lopes, H. F.  Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference, 2nd 
Edition. London, 2006: Chapman and Hall. 

[15] Huard, D., Évin, G. & Favre, A. C. Bayesian copula selection. Computational Statistics and Data Analysis 2006, 
51(2): 809–822. 

[16] Hoff, P. D. Extending The Rank Likelihood for Semiparametric Copula Estimation. The Annals of Applied 
Statistics 2007, 1(1): 265–283. 

[17] Silva, R. d S. & Lopes, H. F. Copula, marginal distributions and model selection: A Bayesian note. Statistics 
and Computing 2008, 18(3): 313–320. 

[18] Craiu, M. & Craiu, R. V. Bayesian inference for copula models. UPB Scientific Bulletin, Series A: Applied 
Mathematics and Physics 2008, 70(3): 3–10. 

[19] Atique, F. & Attoh-Okine, N. Copula Parameter Estimation Using Bayesian Inference for Pipe Data Analysis. 
Canadian Journal of Civil Engineering 2018, 45(1): 61–70. 

[20] Smith, M. S. Bayesian Approaches to Copula Modelling. Journal of the American Statistical Association 2011 
forthcoming. 

[21] Wu, J., Wang, X. & Walker, S. G. Bayesian Nonparametric Inference for a Multivariate Copula Function. 
Methodology and Computing in Applied Probability 2014, 16(3): 747–763. 

[22] Grazian, C. & Liseo, B. Approximate Bayesian inference in semiparametric copula models. Bayesian Analysis 
2017, 12(4): 991–1016. 

[23] Mckee, T. B., Doesken, N. J., Kleist, J. The Relationship of Drought Frequency and Duration to Time Scales. 
Eighth Conference on Applied Climatology, Anaheim, California, 17-22 January 1993; 179–184. 

[24] Department of Irrigation and Drainage Malaysia. Updating of Condition of Flooding in Malaysia. National 
Register of River Basins 2003, Vol. 2, 1–209. 

[25] Kamaruzaman, I. F., Wan Zin, W. Z. & Mohd Ariff, N. A Generalized Bivariate Copula for Flood Analysis in 
Peninsular Malaysia. Malaysian Journal of Fundamental and Applied Sciences 2019, 15(1): 38–49. 

[26] Knyazev, A., Lepekhin, O. & Shemyakin, A. Joint distribution of stock indices: Methodological aspects of 
construction and selection of copula models. Applied econometrics 2016, 42: 30–53. 

[27] Roberts, G. O., Gelman, A. & Gilks, W. R. Weak convergence and optimal scaling of random walk Metropolis 
algorithms. Annals of Applied Probability 1997, 7(1): 110–120. 

[28] Tierney, L. Markov Chains for Exploring Posterior Distributions. The Annals of Statistics 1994, 22(4): 1701–
1762. 

[29] Geman, S. & Geman, D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. 
IEEE Transactions on Pattern Analysis and Machine Intelligence 1984, PAMI-6(6): 721–741. 

 


