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Abstract The mathematical terminology of first order polarization tensor (PT) has been widely used 
in engineering applications especially in electric and magnetic areas due to its capability to define an 
object with conductivity. In this case, a suitable method must be employed in the evaluation of first 
order PT to make sure that the tensor obtained is higher in its accuracy. Our aim in this paper is to 
provide a simple yet effective implementation method for computing first order PT which is based on 
Gaussian quadrature numerical integration involving linear interpolation method. This study provides a 
comparison between two different orders of Gaussian quadrature, which are order one and order three. 
The numerical approximation of first order PT when computed using higher order of Gaussian 
quadrature gives higher accuracy and convergence compared to the Gaussian quadrature which has 
the lower order. In this study, the validation of the results obtained by using our proposed method is 
provided by comparing it with the analytical solution derived from the previous researcher. We illustrate 
the behavior of a tensor of a sphere and ellipsoid with graphical representation.  
Keywords: Polarization tensor, Boundary integral equation, Gaussian quadrature, Numerical 
integration.  

 
Introduction 
 
Polarization tensor (PT) is an object-specific property that depends on the shape, size, orientation, and 
material [1]. In some studies, PT is simply called a tensor. PT is first described as a virtual mass of a 
moving solid in a fluid for which the solid has zero conductivity [2]. Later, this term of virtual mass has 
been generalized by researchers as in [3] where the researcher combined the infinite numbers of PT 
and named this generalization as Generalized Polarization Tensor (GPT) [4]. From the generalization, 
the first term of GPT is known as first order PT. The application of GPT can be seen where some of the 
researchers used GPT formulation in medical applications, particularly in electrical imaging. The 
simulation of cloaking devices based on PT terminology is performed by using a mathematical 
formulation of PT, for example in [5,6]. Other than that, the application of PT, especially in landmine 
detection is very common among researchers, see [1,7–11] and also electrosensing fish [12–17]. 
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Several studies [18,19] have suggested different types of methods to compute PT such as a semi-
algebraic method, finite element method (FEM) as well as boundary element method (BEM). The semi-
algebraic method has been applied to a two-dimensional case of PT, where, the research has shown 
that objects with higher conductivity would produce lower convergence of PT compared to objects with 
lower conductivity [20]. A new technique that is based on the programming scheme according to BEM  
which is BEM++ has been employed in [19] where they computed various kinds of geometry with different 
conductivity. Sukri et al. [21] implement the quadratic element approach to compute first order PT. 
  
In this study, we provide two different orders of Gaussian quadrature for computing first order PT, namely 
the one-point Gaussian quadrature and three-point Gaussian quadrature involving linear finite element 
shape functions. The comparison of the numerical approximation of first order PT between two different 
orders of Gaussian quadrature will be investigated based on their convergence rates. Three-point 
Gaussian quadrature based on linear element integration will provide higher convergence rates 
compared to the one-point Gaussian quadrature. It is obvious since the increased number of points 
inside an interval can increase the accuracy of numerical results of a problem, especially a problem 
involving integral. Since we apply these approaches to a problem involving surface integral of first order 
PT, we observe the behavior of the numerical solutions for both orders as we change the parameters of 
PT such as conductivity and the size of meshes used. The validation of the numerical results is then 
compared with the analytical solution provided by Ammari and Kang [3]. We will observe the behavior of 
the numerical results for first order PT by implementing the linear element numerical integration with a 
different number of Gaussian quadrature points. The numerical results obtained throughout this study is 
very important in ensuring that  
 
In the next section, we are going to review the formulation of the first order PT together with its analytical 
solution, the method proposed, and the formula used to analyze the convergence of the numerical 
results. The numerical results of first order PT for two types of geometry are illustrated in the graphical 
presentation where different values of conductivity and the number of mesh are used. The last section 
will summarize the study where several recommendations are stated. 
 

Methodology 
 
Formulation of first order PT 
In this section, we will review the concept of first order PT that has been studied by researchers as in 
[6,22–24]. First order PT which has been notated as 𝑀"#, is an integral that originates from a transmission 
problem which has been discussed in [3,25,26]. The solution for the integral of the first PT can be 
expressed as a matrix system with size 3 × 3 as 
 

𝑀 = '
𝑀(( 𝑀() 𝑀(*
𝑀)( 𝑀)) 𝑀)*
𝑀*( 𝑀*) 𝑀**

+.     (1) 

 
In some cases, the matrix solution of first order PT in equation (1) is used to represent the 
electromagnetic behavior for an object, for example, see [1]. The integral representation of first order PT 
can be written as  
 

𝑀"#(𝑘, 𝐵) = ∫ 𝑌#𝜙"(𝑌)56 𝑑𝜎(𝑌), 𝑌 ∈ 𝜕𝐵     (2) 
 
where 𝑖 and 𝑗 are multi-indices which equal to 1,2 and 3. The conductivity of object, 𝐵 is denoted as 𝑘 
where 𝑘 must satisfy 0 < 𝑘 ≠ 1 < +∞. 𝑌# is the element of object domain 𝐵 while 𝜙"(𝑌) is the linear 
system of the equation that can be represented as 
 

𝜙"(𝑌) = (λI − κH∗ )J((𝑉L ⋅ ∇𝑋")(𝑌).     (3) 
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From equation (3), 𝜆 is defined as 𝜆 = (𝑘 + 1)/(2𝑘 − 2) while outward normal vector of element 𝑋 in 
object domain 𝐵 is denoted as 𝑉L. 𝜅H∗  is the singular integral operator which has been defined as Cauchy 
Principal Value (𝑃. 𝑉.) and is written as 
 

𝐾H∗𝜙"(𝑋) =
(
UV
𝑃. 𝑉. ∫

〈L!JX",Y#!〉

[L!JX"[
$ 𝜙"\𝑌#]^H 𝑑𝜎\𝑌#],     (4) 

 
where 𝑋" − 𝑌# is the distance between element 𝑋 and element 𝑌. Hence, our main concern throughout 
this study is mainly in equations (2), (3), and (4). Hereafter, we are going to review the analytical solution 
that has been provided by Ammari and Kang [3] for specific geometry which is sphere and ellipsoid. 
 
The analytical solution of first order PT 
The analytical solution is derived by Ammari and Kang [3] where the researchers firstly considered the 
geometry 𝐵 to become ellipsoid. The Cartesian coordinate system of the ellipsoid is represented by _

`

a`
+

b`

c`
+ d`

e`
= 1, where 𝑎, 𝑏 and 𝑐 are the semi principle axes such that 0 < 𝑐 ≤ 𝑏 < 𝑎. Then, the first order 

PT with conductivity 𝑘 is given as 
 

𝑀(𝑘, 𝐵) = (𝑘 − 1)|𝐵| '
1/𝑑( 0 0
0 1/𝑑) 0
0 0 1/𝑑*

+,     (5) 

 
where |𝐵| is the volume of an ellipsoid while 𝑑(, 𝑑) and 𝑑* are defined as 
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From the Cartesian coordinates of the ellipsoid, by setting 𝑎 = 𝑏 = 𝑐, the first order PT for ellipsoid then 
will become the first order PT for sphere which is given by 
 

𝑀(𝑘, 𝐵) = (𝑘 − 1)|𝐵| |
3/(2 + 𝑘) 0 0

0 3/(2 + 𝑘) 0
0 0 3/(2 + 𝑘)

}.    (7) 

 
We will evaluate the numerical approximation using our proposed method and compare it with the 
analytical solution computed by using the equation in (5) and (7). For ellipsoid geometry, we can also 
validate the numerical approximation of first order PT obtained by using theorem proven by Yunos et al. 
[23]. Here, we will review the theorem that has been proven 
 
Theorem 1  Let 𝑀(𝑘, 𝐵) be the first order PT for ellipsoid 𝑥)/𝑎) + 𝑦)/𝑏) + 𝑧)/𝑐) = 1 at any conductivity 
𝑘, where 0 < 𝑘 ≠ 1 < +∞.  
a. 𝑎 = 𝑏, if and only if 𝑀(( = 𝑀)).  
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b. 𝑎 = 𝑐, if and only if 𝑀(( = 𝑀**.  
c. 𝑏 = 𝑐, if and only if 𝑀)) = 𝑀**. 
 
We will observe whether the numerical results of first order PT that are obtained for an ellipsoid satisfies 
the theorem provided by the previous researcher in [23]. 
 
Linear interpolation method using one-point and three-point Gaussian 
quadrature  
Throughout this section, we will review the linear interpolation method by using one point and three-
points Gaussian quadrature. First and foremost, the desired geometry is being triangularized by a  free 
software which is Netgen Mesh Generator that is developed by Joachim Schöberl [27]. This software 
requires us to define the geometry in . 𝑔𝑒𝑜 file. Then, by clicking the 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒 button in the interface of 
the software, it will automatically generate the triangular meshes of the geometry. There are a total of 
five different sizes of meshes options that have been provided which are 
𝑣𝑒𝑟𝑦	𝑐𝑜𝑎𝑟𝑠𝑒, 𝑐𝑜𝑎𝑟𝑠𝑒,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑓𝑖𝑛𝑒, and  𝑣𝑒𝑟𝑦	𝑓𝑖𝑛𝑒. Unfortunately, we cannot define the number of 
meshes for every geometry because the software will generate the number of meshes automatically 
based on the defined geometry.  
 

 
 
Figure 1. The representation of triangular mesh containing point 𝑃(, 𝑃) and 𝑃* changing from local 
coordinates to global coordinates. 
 
Figure 1 illustrates one triangular mesh in local coordinates containing three points (linear) in each vertex 
of the mesh where 
 

𝑃( = 〈𝑥(, 𝑦(, 𝑧(〉,	
𝑃) = 〈𝑥), 𝑦), 𝑧)〉,	
𝑃* = 〈𝑥*, 𝑦*, 𝑧*〉.     (8) 

 
From the local coordinate of 𝑥, 𝑦 and 𝑧 as in equation (8), they will be transformed into global coordinates 
of 𝜉 and 𝜂 under transformation formula as 
 

𝑥(𝜉, 𝜂) = N(𝑥( + 𝑁)𝑥) + 𝑁*𝑥*,	
= ∑ 𝑁�𝑥�,*

��(   
𝑦(𝜉, 𝜂) = 𝑁(𝑦( + 𝑁)𝑦) + 𝑁*𝑦*,	

= ∑ 𝑁�𝑦�,*
��(   

𝑧(𝜉, 𝜂) = 𝑁(𝑧( + 𝑁)𝑧) + 𝑁*𝑧*,	
                                                            = ∑ 𝑁�𝑧�,*

��(                                                           (9) 
 
where ∑ 𝑁�*

��(  is the shape function and defined as 
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𝑁( = 𝜉,	
𝑁) = 𝜂,	
𝑁* = 1 − 𝜉 − 𝜂.	                                                (10) 

 
From equation (4), the Cauchy principal integral can be represented as a 
  

𝐾H∗𝜙"(𝑋) =
(
UV
	∑ 𝑤#

〈L!JX",Y#!〉

[L!JX"[
$ 𝜙"\𝑌#]�

#�( ⋅ 𝐽(𝜉, 𝜂) ⋅ 𝑆(𝜉, 𝜂),                           (11) 

 
where 𝑤# is the area of the triangular mesh (for one-point Gaussian quadrature) but for three-points 
Gaussian quadrature, 𝑤# is the weighting points of the element 𝑌#.  𝐽(𝜉, 𝜂) is the Jacobian matrix while 
𝑆(𝜉, 𝜂) is the surface projection for object domain 𝐵. 𝐽(𝜉, 𝜂) can be expressed as  
 

𝐽(𝜉, 𝜂) = '
𝑥� 𝑥�
𝑦� 𝑦�
𝑧� 𝑧�

+,     (12) 

 
such that 𝑥� = 𝜕𝑥/𝜕𝜉,	𝑦� = 𝜕𝑦/𝜕𝜉,	𝑧� = 𝜕𝑧/𝜕𝜉, 𝑥� = 𝜕𝑥/𝜕𝜂 𝑦� = 𝜕𝑦/𝜕𝜂 and 𝑧� = 𝜕𝑧/𝜕𝜂	obtained by 
finding the partial derivative from equation (9). The surface projection, 𝑆(𝜉, 𝜂) for the triangular meshes 
is obtained by using the standard equation of a triangular plane which is 
 

𝑝𝑥 + 𝑞𝑦 + 𝑟𝑧 = 𝑑,     (13) 
 
where 𝑝, 𝑞 and 𝑟 are the vector orthogonal to the plane with 𝑥,	𝑦 and 𝑧 coordinates of the triangular plane. 
From equation (13), 𝑑 is the distance of the plane from its origin. By rearranging equation (13), it will 
yield to 
 

𝑝/𝑑	𝑥 + 𝑞/𝑑	𝑦 + 𝑟/𝑑	𝑧 = 1.     (14) 
 
Then, by letting 𝑝/𝑑	 = 𝐴, 𝑞/𝑑	 = 𝐵 and 𝑟/𝑑	 = 𝐶, equation (14) will eventually become 
 

𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 1.     (15) 
 
Since we have a linear triangular mesh (meaning to have three-point coordinates), therefore, the 
equation in (15) is expressed as  
 

𝐴𝑥( + 𝐵𝑦( + 𝐶𝑧( = 1,	
𝐴𝑥) + 𝐵𝑦) + 𝐶𝑧) = 1,	
𝐴𝑥* + 𝐵𝑦* + 𝐶𝑧* = 1.                                                  (16) 

 
We then transform equation (16) into a matrix system and then evaluate the values of 𝐴, 𝐵 and 𝐶 by 
using the simple inverse matrix method. By obtaining the values of 𝐴, 𝐵 and 𝐶, the surface projection of 
the plane which contains three points coordinates is equivalent to 
 

𝑆(𝜉, 𝜂) = ��%�H%��%

�
.                                                       (17) 

 
From equation (11), the distance between the element, 𝑋" − 𝑌# for one-point Gaussian quadrature can 
be obtained by finding the distance between the barycenter of each element. The distance between 
elements for the three-point Gaussian quadrature is obtained by finding the Gaussian points in each 
triangular element. Figure 2(a) describes the distance of element of barycenter of each element while 
Figure 2(b) shows the distance between Gaussian points of element 𝑋 and 𝑌. 
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                                         (a)                                                                              
(b) 

 
Figure 2. Representations of the distance of elements. (a) Barycenter of element 𝑋 and 𝑌. (b) Gaussian 
points of element 𝑋 and 𝑌.  
 
Let the distance of element for one-point Gaussian quadrature be 𝑋" − 𝑌#, while the distance between 
elements for three-point Gaussian quadrature be 𝑋"∗ − 𝑌#∗. Next, for the case of one-point Gaussian 
quadrature, the outward normal vector for element 𝑋, 𝑉L, can be computed by finding the cross product 
for each triangular meshes. The normal vector for one-point Gaussian quadrature is  
 

𝑉L = 〈𝑦)( ⋅ 𝑧*( − 𝑦*( ⋅ 𝑧)( 𝑥)( ⋅ 𝑧*( − 𝑥*( ⋅ 𝑧)( 𝑥)( ⋅ 𝑧*( − 𝑥*( ⋅ 𝑧)(〉.   (18) 
 
The outward unit normal vector for one-point Gaussian quadrature is defined as 
 

𝑉L =
〈𝑥, 𝑦, 𝑧〉

‖〈𝑥, 𝑦, 𝑧〉‖)
,	

=
〈𝑥, 𝑦, 𝑧〉

�𝑥) + 𝑦) + 𝑧)
.																								

 (19) 
 

The unit normal vector in equation (19) is positive in its orientation and is also guaranteed to be an 
outward unit normal vector. For the normal vector involving three-point Gaussian quadrature, since the 
direction of the vector in surface projection in (17) is similar to the direction in (19), the normal vector can 
be expressed as 
 

𝑉L∗ =
〈�,H,�〉

��%�H%��%
,																																																																							(20) 

 
where 𝐴, 𝐵, and 𝐶 come from the values computed as in equation (16). Then for one-point Gaussian 
quadrature, equation (11) will eventually become matrix with size 𝑁 ×𝑁, where 𝑁 is the number of mesh 
and is expressed as 
 

𝐾H∗𝜙"(𝑥) =
(
UV
'
𝑤(𝐾(𝑥(, 𝑦() ⋯ 𝑤�𝐾(𝑥(, 𝑦�)

⋮ ⋱ ⋮
𝑤(𝐾(𝑥�, 𝑦() ⋯ 𝑤�𝐾(𝑥�, 𝑦�)

+,   (21) 

 

where 𝐾\𝑥", 𝑦#] =
〈L£JX¤,Y¥£〉

[L£JX¤[
¦ ⋅ 𝐽\𝜉", 𝜂#] ⋅ 𝑆\𝜉", 𝜂#] while for three-point Gaussian quadrature, the singular 

integral operator will eventually lead to a matrix system of 3𝑁 × 3𝑁 which is expressed as 
 

𝐾H∗𝜙"(𝑥) =
(
UV
|
𝑤(
§𝐾∗(𝑥(¨, 𝑦(

§) ⋯ 𝑤�
§𝐾(𝑥(¨, 𝑦�

§)
⋮ ⋱ ⋮

𝑤(
§𝐾∗(𝑥�¨, 𝑦(

§) ⋯ 𝑤�
§𝐾(𝑥�¨, 𝑦�

§)
},   (22) 
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where 𝐾H∗ o𝑥"¨, 𝑦#
§p =

〈L£
©JX¤

ª,Y¥£©
〉

«L£
©JX¤

ª«
¦ ⋅ 𝐽¨\𝜉", 𝜂#] ⋅ 𝑆¨\𝜉", 𝜂#] with 𝛼, 𝛽 = 1,2	and 3 (similar to the number of 

Gaussian points). Next, after we obtained the singular integral operator for both one-point and three-
point Gaussian quadrature, we substitute equation (21) and (22) to the linear system in (3). For one-
point Gaussian quadrature, the solution of the linear system, 𝜙"(𝑌#) will have 𝑁 × 3 matrix size, while for 
three-point Gaussian quadrature, 𝜙"∗(𝑌#) the matrix size is 3𝑁 × 3. The linear system is then solved as 
mentioned earlier using the matrix inverse method. Finally, the last step is to obtain the first order PT by 
solving the integral in equation (2). By using a similar approach in handling singular integral operator in 
(4), the integral for one-point Gaussian quadrature is expressed as 
 

𝑀(𝑘, 𝐵) =®𝑤¯

�

¯�(

𝑌# ⋅ 𝐽\𝜉", 𝜂#] ⋅ 𝑆\𝜉", 𝜂#] ⋅ 𝜙"\𝑌#],	

= °𝜙"\𝑌#]±
²𝑤¯ ⋅ 𝐽\𝜉", 𝜂#] ⋅ 𝑆\𝜉", 𝜂#] ⋅ 𝑌

#	
     (23) 

where °𝜙"∗\𝑌#]±
²has size 3 × 𝑁. 𝑌#,𝑤𝑡, 𝐽\𝜉", 𝜂#] and  𝑆\𝜉", 𝜂#]	has a similar matrix size which is 𝑁 × 3. For 

three-point Gaussian quadrature, equation (4) yields to 
 

𝑀∗(𝑘, 𝐵) =®𝑤¯¨
�

¯�(

𝑌# ⋅ 𝐽\𝜉", 𝜂#] ⋅ 𝑆∗\𝜉", 𝜂#] ⋅ 𝜙"∗\𝑌#],	

= °𝜙"∗\𝑌#]±
²𝑤¯¨ ⋅ °𝐽¨\𝜉", 𝜂#]±

² ⋅ 𝑆¨\𝜉", 𝜂#] ⋅ 𝑌
#	

     (24) 
 

where °𝜙"∗\𝑌#]±
²has size 3 × 3𝑁. , 𝑌#, 𝑤¯¨, 𝐽¨\𝜉", 𝜂#] and  𝑆¨\𝜉", 𝜂#]	has a similar matrix size which is 

3𝑁 × 3. Finally, the first order PT in equation (23) and (24) will eventually have the same matrix size of 
3 × 3.  
 
Convergence of the numerical approximation of first order PT 
The main objectives of this research are to verify and validate whether the proposed approach is suitable 
to compute first order PT. Therefore, for convergence purposes, we will estimate the error of first order 
PT using the relative error formula which is 
 

Relative Error, 𝐸 = ‖´&J´‖
‖´‖

     (25) 

 
where 𝑀� is the approximated first order PT computed using our proposed approaches while 𝑀 is the 
analytical solution evaluated using the formula in equation (5) and (7). In order to study the convergence 
of the numerical results, a different number of meshes were generated for two types of geometry, 
particularly sphere and ellipsoid. 
 

Results and discussion 
 
Numerical approximation of sphere and ellipsoid 
In this section, we will present numerical results for the computation of first order PT which focuses on 
its accuracy and convergence. We implemented our algorithm in MATLAB while for the discretization 
purpose, we used a user-friendly software which is a Netgen Mesh Generator as mentioned earlier. For 
a sphere with radius 𝑟 = 0.01, the software generates a different number of meshes, which are 
44, 230, 620, 2480, and 9920. We observed that as finer meshes are used to compute first order PT, the 
numerical results showed higher in its accuracy compared to coarse meshes. Figure 3 depicted the first 
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order PT for a sphere with conductivity,	𝑘 = 1.5 computed for different points of Gaussian quadrature. It 
is observed that, by using three-point Gaussian quadrature, the numerical results tend to converge to 
the exact solution of first order PT. The relative error for both quadrature points tends to become 0. 
However, the numerical results for three-point Gaussian quadrature shows low relative error compared 
to one-point Gaussian quadrature. We can conclude that; we must use finer meshes together with a 
higher number of Gauss points to ensure that the numerical results obtained from the first order PT are 
higher in its accuracy. 
 

(a)                                                                           (b)    
c 

 
Figure 3. (a) The main diagonal 𝑀((,𝑀)) and 𝑀** of approximated first order PT of sphere for 𝑟 =
0.01, 𝑘 = 1.5 and 𝑁 = 44, 230, 620, 2480 to 9920. (b) The relative error for approximated first order PT for 
sphere using one-point and three-point Gaussian quadrature for 𝑟 = 0.01, 𝑘 = 1.5 and 𝑁 =
44, 230, 620, 2480 to 9920.  
 
We have already validated that the numerical results for three-point Gaussian quadrature is better in its 
convergence and has higher accuracy than one-point Gaussian quadrature for computing first order PT 
of the sphere. The main diagonal of first order PT for a sphere is similar to each other while for the non-
diagonal, for both one and three-point tend to 0. Next, we will study the effect of conductivity,	𝑘 on first 
order PT and how the behavior of the numerical results computed using our proposed method. 
We computed the first order PT for at different conductivity and compared the results of its main diagonal 
with the analytical solution in (6).  
 
From Figure 4(a), increase of 𝑘 would produce less accurate results of the main diagonal compared to 
the lower value of conductivity. As conductivity used is less than 1 or approaching 1, the numerical results 
depicted are higher in its accuracy compared to the numerical results as conductivity used is greater 
than 1. This may be due to the singularity of the operator (𝜆𝐼 − 𝐾H∗) as 𝑘	 is greater than 1. As we 
calculated its relative error, the computed first order PT for three-point Gaussian quadrature portrayed 
less error compared to the one-point Gaussian quadrature as in Figure 4(b). This is the result of one-
point Gaussian quadrature where we only consider the barycenter of each mesh and also the area of 
each triangular meshes in its computation. However, for three-point Gaussian quadrature, we 
implemented the concept of 𝜉 and 𝜂 which produced a better approximation of the first order PT. As 
conductivity increases, the relative error shows a stagnant graph for both numerical results which is at 
0.05 for three-point Gaussian quadrature and approximately 0.08 for one-point Gaussian quadrature. 
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            (a)                                                                                
(b) 

 
Figure 4. (a) The main diagonal of approximated first order PT of a sphere where  𝑁 = 620 and 
increasing conductivity, 𝑘 = 1.5 until 10». (b) The relative error computed for first order PT computed 
using one-point and three-point Gaussian quadrature. 
 
 

(a)                                                                          (b)    
c 

 
Figure 5. (a) The first main diagonal of approximated first order PT,	𝑀(( for an ellipsoid where  𝑁 =
170, 444, 668, 1556 and 4332 triangles at fixed conductivity, 𝑘 = 500. (b) The second and third main 
diagonal of approximated first order PT,	𝑀)) and 𝑀** for an ellipsoid where  𝑁 = 170, 444, 668, 1556 and 
4332 triangles at fixed conductivity, 𝑘 = 500. 
 
 
For the first order PT of an ellipsoid with semi principal axes 𝑎 = 2, 𝑏 = 1,	and	𝑐 = 1, we can observe that 
the first main diagonal differs from the second and third main diagonal. This satisfies the theorem made 
by Yunos et al. [22], where, from Theorem 1c, it stated that if semi principal axes of for 𝑦 and 𝑧 are equal 
to each other, 𝑏 = 𝑐, then the values of second and third main diagonal would probably be similar to 
each other. From Figure 5, the main diagonal for first order PT of ellipsoid showed higher convergence 
as we computed it using three-point Gaussian quadrature compared to one-point Gaussian quadrature. 
The numerical results for both Gaussian points are far from the exact solution since we used less number 
of surface elements which is only up to 4332 meshes. Possibly, if we use more elements (finer meshes) 
the numerical results would converge to the analytical solution.  
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 (a)                                                                              (b)    
c 

 
Figure 6. (a) The first main diagonal of approximated first order PT,	𝑀(( for an ellipsoid where  𝑁 = 444 
triangles at different values of conductivity, 𝑘 = 0.25, 0.5, 1.5, 10, 10*, 10U, 10» and 10½. (b) The second 
and third main diagonal of approximated first order PT,	𝑀)) and 𝑀** for an ellipsoid where 𝑁 = 444 
triangles at different values of conductivity, 𝑘 = 0.25, 0.5, 1.5, 10, 10*, 10U, 10» and 10½. 
 
Figure 6 illustrates the behavior of first order PT as the conductivity increased. Similar patterns can be 
noticed in both sphere and ellipsoid geometry as we increase the conductivity. At some point which is at 
conductivity, 𝑘 = 1.5	and	𝑁 = 444, the numerical solution for both points of Gaussian quadrature 
depicted similar results as its analytical solution. However, after the conductivity increased, the results 
for one point slowly diverge from its exact solution. The next section provides the conclusion of this study. 
 

Conclusions 
 
In this paper, we have introduced a simple and easily implemented method to approximate first order 
PT. To verify that our proposed method can be used to compute PT, we compute first order PT for 
objects such as the sphere and ellipsoid where their analytical solutions exist. Not only that, we validate 
the computed results by referring to the theorem that has been proven by previous research. 
From the numerical results obtained, we can observe that, as the number of surface elements increase, 
the accuracy for first order PT for both objects will also increase. Hence, finer meshes must be adopted 
in the computation of first order PT so that the results can converge to the exact solution faster. As for 
conductivity, it is shown that higher values of conductivity have resulted in a lower convergence of first 
order PT. The establishment of the study of the numerical methods to compute PT is very important 
since PT is useful for many engineering problems especially in magnetic and electrical fields. 
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