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ABSTRACT

Conformal mapping is a useful tool in science and engineering. On the other hand exact mapping functions are unknown except for some special regions.

In this paper we present a new boundary integral equation with classical Neumann kernel associated to f° ' / f, where f is a conformal mapping of

bounded multiply connected regions onto a disk with circular slit domain. This boundary integral equation is constructed from a boundary relationship

satisfied by a function analytic on a multiply connected region. With f’ ' / f known, one can then treat it as a differential equation for computing f .
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1. INTRODUCTION

Integral equation methods for conformal mapping of
multiply connected regions is currently still a subject of
importance. Nehari [1, p. 334] described the five types of
slit region as important canonical domain regions for
multiply connected regions. They are the parallel slit region,
the circular slit region, the radial slit region, the disk with
concentric circular slits, and the annulus with concentric
circular slits. In general the exact mapping functions are
unknown except for some special regions.

Several methods for numerical approximation for the
conformal mapping of multiply connected regions have
been proposed in [2, 3, 4, 5, 6, 7, 8, 9]. Recently,
reformulations of conformal mappings from the bounded
multiply connected region onto a previous five canonical
slit domains as a Riemann-Hilbert problem are discussed in
Nasser [10]. Murid and Hu [11] formulated an integral
equation method based on the multiply connected Neumann
kernel for conformal mapping of bounded multiply
connected regions onto a disk with circular slit but the
boundary integral equation involved the unknown circular
radii.

In this paper we describe an integral equation method
for computing the conformal mapping of multiply
connected regions onto a disk with circular slits.
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This boundary integral equation is constructed from a
boundary relationship satisfied by a function analytic on a
multiply connected region.

The plan of the paper is as follows: After
presentation of some auxiliary material in Section 2, we
derive in Section 3 a boundary integral equation satisfied by
f'/f, where f is a conformal mapping of bounded
multiply connected regions onto a disk with circular slit
domain. Section 4 give a numerical implementation for
computing f’/f . In Section 5, we give three examples for
verifying our boundary integral equation that was given in
Section three. Finally, Section 6 presents a short conclusion.

2, NOTATIONS AND AUXILIARY MATERIAL

Let QO be a bounded multiply connected region of
connectivity M +1. The boundary I consists of M +1
smooth Jordan curves I, I, ..., I}, suchthat I}, ..., T,
lies in the interior of I},, where the outer curve I}, has

inner curves
The positive

counterclockwise orientation while the
I, ..., have clockwise orientation.
direction of the contour I' =T, Ul U---U I, is usually
that for which Q is on the left as one traces the boundary

(see Figure 1).
The unit tangent to I' at z 1is denoted by

T(z)= z’/ |z’| ,and if f is analytic function which maps Q
conformally onto a disk with circular slit, then we have the
boundary relationship [11, p. 1126].
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2P =-f(z) ZZfI(Z)Z,
/() |f()|T()|f,(Z)|2

Suppose that k is a complex constant, O(z) and H(z) are
complex-valued functions defined on I such that

H(z);é 0, O(z)#0 and m;)/(T(z)Q(z)) satisfies the

Holder condition on T'. Then the interior relationship is
defined as follows:
A complex-valued function P(z) is said to satisfy the

zel. (1)

interior relationship if P(z) is analytic in Q and satisfies
the non-homogeneous boundary relationship

P+(z):kT—%j %(Z)p+(z)+m;), ze, ()

where G(z) is a complex-valued function, analytic in Q
Holder continuous on I', and G(z)#0 on I.

Figure 1. Mapping of the bounded multiply connected region € of
connectivity M +1 onto a disk with circular slits.

The following theorem gives an integral equation for
an analytic function satisfying the interior relationship (2)
[12, p. 45].

Theorem 1:
Let zeIl', U (z) and V(z) be any complex-valued

functions that are defined on T'. If the function P(z)
satisfies the interior relationship, then

%{V(z)+ ule)

7(z)0(2)
N ku(z)[f Res _ﬂ} _UOLG. )

[ b i

joiv=a; (W-2)G(w)

where

+ PV

1 H(w) "
78 [ A

and the sum is over all those zeros a;, a,, ..., ay, of G

that lie inside Q. If G has no zeros in Q, then the term
containing the residue in (3) will not appear.

3. THE BOUNDARY INTEGRAL EQUATION FOR
CONFORMAL MAPPING OF MULTIPLY
CONNECTED REGIONS

This section gives an application of Theorem 1 to
conformal mapping of multiply connected regions to disk
with circular slit domain. Let f (z) be the mapping function
which maps the domain Q in the z-plane onto a canonical
domain of the disk with circular slit domain in the w-plane.
The function f is made uniquely determined by

prescribing that f (a): 0 and f '(a)> 0. Thus the function
f can be written as [10, p. 134]

1(2)=(z - a)el= e, (6)

where 7 is an analytic in QO and o is real constant.
Taking the derivative of both sides of the equation
(6) and dividing both sides by f yields

1; (()) =L he)s (e ah (o) Then

D)= ; (()) L e - ai() is amaytic n @
Thus

% - Dle)s (7)

Note that equation (1) can be written in the following form

‘f’(Z)

. T _T(Z)Z(f '(Z)jz ser )

/(z)

From equations (7) and (8), and after some arrangement

yields

T 1

Z—a

D(z)=-T(=] D(z)-

z—a

|13
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Comparison of equation (2) and equation (9) leads to
a choice of P*(z)=D(z), k=-1, 0(z)=T(z), G(z)=1,

H(Z)Z_Lz)z_%a, U()=T()0() and V(z)=1.

z—a z
Substituting these assignments into (3) leads to an integral
equation,

D(z)+ PV

AT Tl
2 ~f[(w_5)f(w) W_Z}D( )l

7 1

= 77_"(2)23(2), zel.

(10)

Note thatG(z) does not have any zeros in Q
because G(z) is a constant function so the term containing
the residue does not appear in (10). Multiply both sides of
(10) by T( ) and using the fact that T( ) ( ) |T( )| =1,

gives

L

Where
7L (2) - %{TEC)I : TE;} ]
T(z)PVﬁj o Zl(w a)dw -
T(z)PV% (W_TZ()V(Vf )dw, zel. (12)
Since

1 1 [ 11 }
(wfa)(wfz)_zfa w-z w-a]

and for zeT', aeQ by [4, p. 91]

Lj ! dw = l LJ‘ ! dw=1.Thus
27z1'rw—z 27 27 Jw—-a

1 1 1
PV— |—r—dw=— .

2m I(w—z)(w—a) v 2(z—a)

r

Substituting this result into equation (12) and using the fact
that 7 (w)dw:|dw| , gives

T(2) Ly (z) = (), 176)

z—a 2zZ-a

T(z)PVﬁ o T(v)

~z)(w-a)

|dw| zel. (13)

Let F(z)= Then D(z)=F(z)

z _ B 1
6l z)= — (14)

From equations (11), (13), and (14) we get

() LT py L j{%—

(w)|aw]+T(z) PV— j—( )

(15)

Also by using [4, p. 91] and the fact that T'(w)|dw|=dw,

gives

1 7(w)
PVEF—( ow—a)

1

W'

Substituting this result into equation (15) yields

F(z)+PV21mFJ{(£(_Zl)£(_ZﬂT( VF

jaw] = -

(w)‘dw‘

The above integral equation can also be written briefly as

T(z)
— T 1
J.Nzw |dw| Za,ze . (16)
where
F(2)=T()F(z)
lIm[T(Z)}, if z,wel',z#w
T zZ—-w
N(z,w)z
L Im Z"(t)f' ! , if z=wel.
27 |Z'(t1

The kernel N is also known as the Neumann kernel.
Note that the PV symbol is no longer required in (16) since
the integrand is continuous along the path of integration.
Since 4 =-1 is an eigenvalue of N with multiplicity M ,
by Theorem 12 in [13, p.53] the integral equation (16) is not

|14
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uniquely solvable. So we need to modify the integral
equation to solve it numerically.

A
f(z) z—a

by using the fundamental theorem [14, p. 164] and the fact
that T(w)|dw| =dw, gives

Note that a € Q and +h(z)+(z—a)h'(z) so

[ 2 (w)]emf =0, (17)

T 2

By using the same manner we can show that

I%F}(w)|dw| 0, | %F (w)|en] =0

- -Tum

(18)

We can combine the conditions (17) and (18) in the
following form

(19)

1
J{EFI (W) =0, g=1,2,...M.

Thus the integral equation (16) with the condition (19) has a
unique solution.

By solving the integral equations (16) and (19)
simultaneously for F;, we can obtain the function F and
hence determine D . With D known, one can then treat (7)
as a first order ordinary differential equation for computing
1, as follows

16)=|ole)s

}r(z).

After finding f we can calculate the radii by taking the

(20)

z—a

modulus for f .

4, NUMERICAL IMPLEMENTATION

In this section we first describe in detail a numerical
method for computing the mapping function F; for the case

of doubly connected region. Using the parameterizations
zo(t) of T, for r:0<¢r<p, and z (t) of I} for
t:0<17< f, the system of integral equations (16) and (19)
become

F (o (t))+ﬂfN (20(t) 20(s)) i (20 (s))zo (s) | s

VG026 RO

(21)

Fl(zl(t))+ﬂfN (21(6) 20 () (z0(s))Jz0 s) | s

N ECORO R A

m[T(_l(’))} Al)er,. (22)

Multiply both sides of equations (21) and (22) by |z(’)(t)|
and |zl' (t)| respectively, yields

|26 (0)] E(ZO(t))fflzé ()] N (29 (1), 20 (s))F5 (z0(s))

LAt o)

3

a0~ 0l Wb (9)

xlz{(s)lds=2i|z{)(t)|lm{ T(ZO(’))}, z()ely,  (23)

zy(t)-a
|21 ()| £z () + ﬂflzl’(t)l Nz, (1) 2o (s)) i (z(s))

x|zz><s>|ds—ﬂj‘|z;<r>|[zv<zl(z>,zl<s>> 1}Fl<zl<s»

Y

le{(S)ldS = 2i|zl'(t)| Im|: T(Zl(t))

Zl(t)_a} (e (24)

Defining

0()=[z5 ()| Fi(zo (). 1()=[()| A (2, ().

Koolty» s0)= |Z(')(f) | N(z(2), z(s)).
Kl )0 Manlha 95 )
Koty SO):lzl'(t)lN(zl(t),zo(s)),

Kl 50 Marh )= ).

27

|15
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wolt)=2ilz} (t)llm{;(tﬁ

%<f>:2f|z;(r)|1m{%}

the system of equations (23) and (24) can be briefly written
as

Ay

¢o(t)+ IKoo(toaso )¢0(s)ds _/;[Km (tmsl )¢1 (s)ds

0

(25)

:WO(t)>

Po B
¢1(t)+ IKlo(tlaso)¢o(S)dS_ IK11(11=51)¢1(S)‘13

=¥ (t) (26)

Since the functions ¢ and K in the above systems
are [ —periodic, a reliable procedure for solving equations
(25) and (26) numerically is by using the Nystrom's
method [15] with the trapezoidal rule. The trapezoidal rule
is the most accurate method for integrating periodic
functions numerically [16, pp. 134-142]. We choose
Bo=pB =27 and n equidistant collocation points

t,=(i-1)B,/n, 1<i<n
collocation points tyz(?fl)ﬁl/m, 1<i<m onlj.

onI, and m equidistant

Applying the Nystrom's method with trapezoidal rule to
discretize equations (25) and (26), we obtain

¢o(ti)+%éKoo(’i’t1)¢o(tj)_%iKol(ti’tT)qjl(t,f)

J=l

#(1; )+%Z:4K10(t7’tj)¢0(tj)_ b Zm:K“(tT,tj%(t;)

(28)

Equations (27) and (28) lead to a system of (n+m) non-

=§I/1(l;),

homogeneous linear complex equations in » unknowns
¢0(ti), m unknowns ¢, (t;). By defining the matrices

B.:'BO Koo(ti,tj), C.ﬁzﬁKOI(ti,tj),

i
J n ij m

E;‘N. :ﬁK“(IT,t“:),
J m L

X7 = ¢1(’7)v

D;, :%Klo(t7’t.i)’

Xoj :¢O(ti)’

by =wo(1:), bﬁ:'//l(t?)a
the system of equations (27) and (28) can be written as
(n+m) by (n+m) system of equations

(29)
(30)

The result in matrix form for the system of equations (29)
and (30) is

[Inn +Bnn]X0n _Cnm Xim = bOn >

Dmn Xon + [[mm _Emm]xlm = blm .

]th + Bnn - Cnm Xon bOn
= , (31)
Dmn Imm 7Emm X1m blm
Defining
Inn +Bnn _Crlm Xon
A= , X = and
Dmn Imm _Emm Xim
bOn
b=| |,
blm

the (n+m) by (n+m) system can be written briefly as
Ax=b.

5. NUMERICAL EXPERIMENT

For numerical experiments, we have used three test
regions based on the examples given in [5, 17, 18]. All the
computations are done using MATHEMATICA 7.1 (16
digit machine precision).

The test regions are annulus, circular frame and
frame of Limacon. N number of collocation points on each
boundary has been chosen. The sub-norm error results
between exact values for f’/f and their approximations

(f’/f)n are shown in Tables 1, 2 and 3.

Example 1 Annulus:

Figure 1. Annulus: with 7=0.5 and ¥ =g =¢""".

|16



Consider a frame of circular annulus 4= {z:? <|z|<1} s

~

=qg=e¢",7>0.
T, : {z(r)=cosz + isint},
I, : {z(z) = 7(cost +sinz)}.

The exact mapping functio

flz)=-e

0, ilogz +7 i
2w \2i 2
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n is given by [17]

1 inT
0, —logz+—+io
4[21' 8277, j

T
O<o<—,
2

(32)

with gz =e7 and 6, being the Jacobi Theta-functions. We

have chosen 7=0.5,

F=e™ and oc=02.

0,(7i/2)=0 [17], this implies a=¢ " = 4.

Table 1. Error norm (Annulus)

VARSI
16 1.0 (-02)
32 1.6 (-05)
64 4.6 (-11)
128 1.0 (-14)

Example 2 Circular Frame:

Figure 2. Circular Frame: with ¢ = 0.3, p =0.1.

Consider a pair of Limacon [18]

Ty: {z(t): e },

T :{z(t)zc-i—pe"}, £:0<¢

<2r,

Since

such that the domain bounded by I’y and I is the domain

between a unit circle and a circle center at ¢ with radius p .

117

Since  6,(77/2)=0 and F=g=e ™, this implies
~ _ 20

T= M and a= /1;2 . We choose a real number o
-7 1-de ¢

satisfying 0 < o < z7/2 . Then the exact mapping function

is given by

1 irt .
04(2—ilogp(z)+ = —ioc

fz)=-e : 0<o<Z (33)
0, (ilogp(z)+ﬂ+i0) 2
20 2
where p(z)= 224 with
z—1
- 2¢
(e o)== pP Ni—(e+ o))

7o 2p

el ) (1 le-pP Ni—(e+ o2 )"

Table 2. Error norm (Circular frame) with ¢ = 0.3, p=0.1,0 =0.5

S NI,
8 5.7 (-03)
16 3.3 (-06)
32 1.5 (-12)
64 1.7 (-14)

Example 3 Frame of Limacon:

)
N

Figure 3. Frame of Limacon: with ay =10, a; =5, by =3 and
by =by/4.

Consider a pair of Limacon [5, p. 307]
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I,: {z(t) =a, cost +b, cos2t+ i(ao sint + b, sin 21),

a, >0,b, >0},

I: {z(t) =a, cost+b, cos2t+ i(al sint + b, sin Zt),
a, >0,b, > O},

with a,=10, a =5, by=3 and b =0,/4 where

t:0<t<2x.The value of a,, a;, b, and b, are chosen so
that b, /b, =a,/a, and 7 =a, /a, . Since 6,(77i/2)=0 and

_ Inlay/ay)

/4

r=g=e", this implies T and

(Zb()e*za + ao)z —a}
4b,

. We choose a real number o

satisfying 0 <o <7r/2. The exact mapping function is

given by
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6. CONCLUSION

From this study, we have constructed a new
boundary integral equation for conformal mapping of
regions of connectivity M +1 onto a disk with circular
slits. The boundary integral equation for f'/f involved the

classical Neumann kernel, where f is a conformal

mapping of bounded multiply connected regions onto a disk
with circular slit domain. The advantage of our method over
[11] is that our boundary integral equation does not involve
the unknown circular radii. Discretized integral equation
leads to a system of linear equations. With f’/f known,

one can then treat it as a differential equation for computing
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