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ABSTRACT 

Conformal mapping is a useful tool in science and engineering. On the other hand exact mapping functions are unknown except for some special regions. 
In this paper we present a new boundary integral equation with classical Neumann kernel associated to ff � , where f  is a conformal mapping of
bounded multiply connected regions onto a disk with circular slit domain. This boundary integral equation is constructed from a boundary relationship 
satisfied by a function analytic on a multiply connected region. With ff �  known, one can then treat it as a differential equation for computing f .
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1. INTRODUCTION 

Integral equation methods for conformal mapping of 
multiply connected regions is currently still a subject of 
importance. Nehari [1, p. 334] described the five types of 
slit region as important canonical domain regions for 
multiply connected regions. They are the parallel slit region, 
the circular slit region, the radial slit region, the disk with 
concentric circular slits, and the annulus with concentric 
circular slits. In general the exact mapping functions are 
unknown except for some special regions.  

Several methods for numerical approximation for the 
conformal mapping of multiply connected regions have 
been proposed in [2, 3, 4, 5, 6, 7, 8, 9]. Recently, 
reformulations of conformal mappings from the bounded 
multiply connected region onto a previous five canonical 
slit domains as a Riemann-Hilbert problem are discussed in 
Nasser [10]. Murid and Hu [11] formulated an integral 
equation method based on the multiply connected Neumann 
kernel for conformal mapping of bounded multiply 
connected regions onto a disk with circular slit but the 
boundary integral equation involved the unknown circular 
radii.  

In this paper we describe an integral equation method 
for computing the conformal mapping of multiply 
connected regions onto a disk with circular slits.
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This boundary integral equation is constructed from a 
boundary relationship satisfied by a function analytic on a 
multiply connected region. 

The plan of the paper is as follows: After 
presentation of some auxiliary material in Section 2, we 
derive in Section 3 a boundary integral equation satisfied by 

ff � , where f  is a conformal mapping of bounded 
multiply connected regions onto a disk with circular slit 
domain. Section 4 give a numerical implementation for 
computing ff � . In Section 5, we give three examples for 
verifying our boundary integral equation that was given in 
Section three. Finally, Section 6 presents a short conclusion.

2.    NOTATIONS AND AUXILIARY MATERIAL 

Let �  be a bounded multiply connected region of 
connectivity 1�M . The boundary � consists of 1�M
smooth Jordan curves  M��� ,...,, 10  such that M�� ,...,1

lies in the interior of 0� , where the outer curve 0�  has 
counterclockwise orientation while the inner curves 

M�� ,...,1  have clockwise orientation. The positive 
direction of the contour M�������� �10  is usually 
that for which � is on the left as one traces the boundary 
(see Figure 1). 
 The unit tangent to �  at z  is denoted by 

� 	 zzzT ��� , and if f  is analytic function which maps �
conformally onto a disk with circular slit, then we have the 
boundary relationship [11, p. 1126]. 

http://dx.doi.org/10.11113/mjfas.v7n1.203 
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Suppose that k  is a complex constant, � 	zQ  and � 	zH  are 
complex-valued functions defined on �  such that 

� 	 0�zH , � 	 0�zQ  and � 	 � 	 � 	� 	zQzTzH  satisfies the 
Holder condition on � . Then the interior relationship is 
defined as follows: 
 A complex-valued function � 	zP  is said to satisfy the 
interior relationship if � 	zP  is analytic in �  and satisfies 
the non-homogeneous boundary relationship 

� 	 � 	 � 	
� 	

� 	 � 	 ,, �
�� �� zzHzP
zG

zQzTkzP                         � 	2

where � 	zG  is a complex-valued function, analytic in � ,
Holder continuous on � , and � 	 0�zG  on � .

Figure 1. Mapping of the bounded multiply connected region �  of 
connectivity 1�M  onto a disk with circular slits. 

The following theorem gives an integral equation for 
an analytic function satisfying the interior relationship (2) 
[12, p. 45].

Theorem 1: 
Let �
z , � 	zU  and � 	zV  be any complex-valued 

functions that are defined on � . If the function � 	zP
satisfies the interior relationship, then 
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and the sum is over all those zeros Maaa ,...,, 21  of G
that lie inside � . If G  has no zeros in � , then the term 
containing the residue in (3) will not appear. 

3.   THE BOUNDARY INTEGRAL EQUATION FOR 
CONFORMAL MAPPING OF MULTIPLY 
CONNECTED REGIONS 

 This section gives an application of Theorem 1 to 
conformal mapping of multiply connected regions to disk 
with circular slit domain. Let � 	zf  be the mapping function 
which maps the domain �  in the z-plane onto a canonical 
domain of the disk with circular slit domain in the w-plane. 
The function f  is made uniquely determined by 
prescribing that � 	 0�af  and � 	 0�� af . Thus the function 
f  can be written as [10, p. 134] 
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where h  is an analytic in �  and �  is real constant. 
Taking the derivative of both sides of the equation 

(6) and dividing both sides by f  yields  
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Note that equation (1) can be written in the following form 
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From equations (7) and (8), and after some arrangement 

yields  
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Comparison of equation (2) and equation (9) leads to 
a choice of � 	 � 	,zDzP ��  ,1��k � 	 � 	,zTzQ � � 	 1�zG ,

� 	 � 	
azaz

zTzH
�

�
�

��
12

, � 	 � 	 � 	zQzTzU �  and � 	 1�zV .

Substituting these assignments into (3) leads to an integral 
equation, 
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Note that � 	zG  does not have any zeros in �
because � 	zG  is a constant function so the term containing 
the residue does not appear in (10). Multiply both sides of 
(10) by � 	zT  and using the fact that � 	 � 	 � 	 12 �� zTzTzT ,
gives 
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Substituting this result into equation (12) and using the fact 
that � 	 dwdwwT � , gives 
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Substituting this result into equation (15) yields  

� 	 � 	 � 	
� 	

� 	 � 	 � 	

� 	 � 	 .,

2
1

�

�

�
�

�



�

�
�
�

�
�

�
�

� �
�

z
az
zT

az
zT

dwwFwT
zw

zT
zw

zT
i

PVzFzT
�

The above integral equation can also be written briefly as 

� 	 � 	 � 	 � 	 � 	 � 	16,,, 11 �

�

�
�

�� �
�

z
az

zT
az

zTdwwFwzNzF

where
� 	 � 	 � 	zFzTzF �1 ,

� 	

� 	

� 	 � 	�  
� 	!

!
!

"

!!
!

#

$

�
�
�

���

��

�
�

��
�

�
�

.if,Im
2
1

,,,if,Im1

,

3 wz
tz

tztz

wzwz
wz

zT

wzN

�

�

The kernel N  is also known as the Neumann kernel. 
Note that the PV symbol is no longer required in (16) since 
the integrand is continuous along the path of integration. 
Since 1��%  is an eigenvalue of N  with multiplicity M ,
by Theorem 12 in [13, p.53] the integral equation (16) is not 
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uniquely solvable. So we need to modify the integral 
equation to solve it numerically. 

Note that �
a  and � 	
� 	 � 	 � 	 � 	zhazzh

azzf
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by using the fundamental theorem [14, p. 164] and the fact 
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We can combine the conditions (17) and (18) in the 
following form  

� 	 ....,,2,1,0
2
1

1 MqdwwF
q

���
�� �

                     � 	19   

Thus the integral equation (16) with the condition (19) has a 
unique solution. 
 By solving the integral equations (16) and (19) 
simultaneously for 1F , we can obtain the function F and 
hence determine D . With D  known, one can then treat (7) 
as a first order ordinary differential equation for computing 
f , as follows
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After finding  f  we can calculate the radii by taking the 
modulus for f .

4. NUMERICAL IMPLEMENTATION 

 In this section we first describe in detail a numerical 
method for computing the mapping function 1F  for the case 
of doubly connected region. Using the parameterizations 
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Multiply both sides of equations (21) and (22) by � 	tz0�
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the system of equations (23) and (24) can be briefly written 
as
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 Since the functions (  and K  in the above systems 
are periodic�& , a reliable procedure for solving equations 
(25) and (26) numerically is by using the sm'oNystr ��
method [15] with the trapezoidal rule. The trapezoidal rule 
is the most accurate method for integrating periodic 
functions numerically [16, pp. 134-142]. We choose 
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Equations (27) and (28) lead to a system of � 	mn �  non-
homogeneous linear complex equations in n  unknowns 
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� 	jiji ttK
n

B ,00
0&

� ,                 � 	jiji ttK
m

C ~01
1~ ,&

� ,

� 	jiji ttK
n

D ,~10
0~

&
� ,             � 	jiji ttK

m
E ~~11

1~~ ,&
� ,

� 	it0i0x (� ,            � 	it~1i
~

1x (� ,

� 	ii tb 00 )� ,            � 	ii tb ~1~1 )� ,

the system of equations (27) and (28) can be written as 
� 	mn �  by � 	mn �  system of equations 

�  ,xx 01m0n nnmnnnn bCBI ���                � 	29  

�  .xx 11m0n mmmmmmn bEID ���                � 	30  

The result in matrix form for the system of equations (29) 
and (30) is  

,
x

x

1

0

1m

0n

�
�
�

�

�

�
�
�

�

�
�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�
�
�

�

�

�

��

m

n

mmmmmn

nmnnnn

b

b

EID

CBI
              � 	31

Defining  

,A
�
�
�

�

�

�
�
�

�

�

�

��
�

mmmmmn

nmnnnn

EID

CBI

�
�
�

�

�

�
�
�

�

�
�

1m

0n

x

x
x  and  

�
�
�

�

�

�
�
�

�

�
�

m

n

b

b
b

1

0
,

the � 	mn �  by � 	mn �  system can be written briefly as
b�xA .

5.    NUMERICAL EXPERIMENT  

For numerical experiments, we have used three test 
regions based on the examples given in [5, 17, 18]. All the 
computations are done using MATHEMATICA 7.1 (16 
digit machine precision). 

The test regions are annulus, circular frame and 
frame of Limacon. N number of collocation points on each 
boundary has been chosen. The sub-norm error results 
between exact values for ff �  and their approximations 
� 	nff �  are shown in Tables 1, 2 and 3. 

Example 1 Annulus: 

Figure 1. Annulus: with 5.0�*  and .~ �*��� eqr
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Consider a frame of circular annulus + ,1~: --� zrzA ,

0,~ ��� � *�*eqr .

� 	+ ,tittz sincos:0 ��� ,

� 	 � 	+ ,ttrtz sincos~:1 ��� .

The exact mapping function is given by [17] 
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with .0 2�� e  and 4/  being the Jacobi Theta-functions. We 

have chosen 5.0�* , �*�� er~  and 2.0�. . Since 
� 	 024 �i�*/  [17], this implies 0. �� �2ea .

Table 1. Error norm (Annulus) 
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16 1.0 (-02) 
32 1.6 (-05) 
64 4.6 (-11) 

128 1.0 (-14) 

Example 2 Circular Frame: 

Figure 2. Circular Frame: with .1.0,3.0 �� 2c

Consider a pair of Limacon [18] 
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satisfying 20 �*. -- . Then the exact mapping function 

is given by 
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where � 	
1�

�
�

z
zzp
%

% with

� 	 � 	� 	 � 	� 	� 	 2
12222 111

2

222
%

�������
�

ccc

c
,

� 	 � 	� 	 � 	� 	� 	 2
12222 111

2~

222

2

�������
�
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r .

Table 2. Error norm (Circular frame) with 5.0,1.0,3.0 ��� .2c

mn �
1

��
�

�
��
�

� �
�

�

nf
f

f
f

�

8 5.7 (-03) 
16 3.3 (-06) 
32 1.5 (-12) 
64 1.7 (-14) 

Example 3 Frame of Limacon: 

Figure 3. Frame of Limacon: with 100 �a , 51 �a , 30 �b  and 

401 bb � .

Consider a pair of Limacon [5, p. 307] 
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� 	 � 	+
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,,0,0

,2sinsin2coscos:
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11111

��

�����
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tbtaitbtatz

with 100 �a , 51 �a , 30 �b  and 401 bb �  where 

�20: '' tt . The value of 0a , 1a , 0b  and 1b are chosen so 

that 0101 aabb � and 01
~ aar � . Since � 	 024 �i�*/  and 

�*��� eqr~ , this implies � 	
�

*
�

� 01ln aa  and 

� 	
0

2
0

2
0

2
0

4
2

b
aaeba ��

�
� .

. We choose a real number .

satisfying 20 �*. -- . The exact mapping function is 

given by 

� 	
� 	

� 	
� 	34,

2
0,

2
log

2
1

2
log

2
1

4

4
2 �*.

.�*/

.�*/
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�
�
�

�
�
� ��

�
�
�

�
�
� ��

��
iizp
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iizp
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where � 	 � 	 .0 2

0

0
2

1

0
2
0 ,

2
4 ��

��
� e

b
azbazp .

Table 3. Error norm (frame of Limacon) with 1.0�.

mn � �

1
��
�

�
��
�

� �
�

�

nf
f

f
f

�

32� 3.1�(�03)�
64 2.0�(�06)�

128 5.6�(�12)�
256� 2.5�(�15)�

6.    CONCLUSION 

 From this study, we have constructed a new 
boundary integral equation for conformal mapping of 
regions of connectivity 1�M  onto a disk with circular 
slits. The boundary integral equation for ff �  involved the 
classical Neumann kernel, where f  is a conformal 
mapping of bounded multiply connected regions onto a disk 
with circular slit domain. The advantage of our method over 
[11] is that our boundary integral equation does not involve 
the unknown circular radii. Discretized integral equation 
leads to a system of linear equations. With ff �  known, 
one can then treat it as a differential equation for computing 
f .
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