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ABSTRACT 
 
Metal nanoparticles have attracted considerable attention owing to their unusual physical and chemical properties from those of their molecular and bulk
counterparts and are fundamental to surface science applications such as catalysts, optics, photonics, sensors, and spectroscopy. Traditionally, the optical 
absorption spectra are derived from the collective oscillations of free electrons of conduction band in metal nanoparticles as a consequence of incident 
electromagnetic radiation polarizing the nanoparticles. This phenomenon, known as the localized surface plasmon resonance, is unique to metallic 
nanostructures and has been modelled by Gustav Mei in 1908 based on the Maxwell’s equations. It is the most-cited scientific paper of 20th century and this 
classical approach is still used widely. However, the theory cannot account for quantum confinement effects of the electronic structure, the fundamental
physical properties of metal nanoparticles. More satisfying treatment of photons interacting with metal nanoparticles is by a quantum theory approach. 
When UV-visible light impinging on a metal nanoparticle, occupied ground-state conduction electrons absorb photons and excite to higher unoccupied
higher energy-state of the conduction band of the particle. In this development we used time-independent Schrodinger equation of the ground-state energy 
of Thomas-Fermi-Dirac-Weizsacker atomic model and also the density function in the final Euler-Lagrange equation was algebraically substituted with the 
absorption function. The total energy functional was computed numerically for isolated silver and gold nanospheres at various sizes. The electronic
transitions within the conduction band are limited only by the Lagrange multiplier and the quantum number selection rules. The calculated absorption peaks 
fall within the experimental regimes. The results show a red-shift absorption peak increases with the increase of particle diameter corresponds to a decrease
in the conduction band energy of metal nanoparticles. 
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1. INTRODUCTION 

 
The last two decades have witnessed a significant 

rapid growth in the study of metallic nanostructures. They 
have attracted much attention because of their surface effect 
(large surface-to-volume ratio) and quantum confinement 
effects (size-dependent properties). These affect their 
chemical and physical properties such as the catalytic, 
optical, electrical, and magnetic characteristics, which are 
distinctly different from their molecular and bulk 
counterparts. Noble metal nanoparticles, in particular Ag 
and Au, exhibit a strong optical absorption of 
electromagnetic radiation in the UV-vis-NIR region [1,2]. 
This phenomenon has been a challenge in the field of 
nanoscience for the last one hundred years. According to 
the classical electrodynamics theory, the absorption is 
derived from the collective oscillations of free conduction 
electrons in a metallic nanostructure as a consequence of 
incident electromagnetic radiation polarizing the 
nanoparticle. These oscillations, known as the localized 
surface plasmon resonance (LSPR), are unique to metallic 
nanostructures and their resonance frequency is dependent 
on  the nanoparticle characteristics such as the size,  shape, 
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and chemical composition [3,4] and on the surrounding 
medium’s properties [5]. Understanding the interaction 
between electromagnetic radiation and conduction electrons 
is vital in the fabrication of metal nanoparticles to control 
their electronic and optical characteristics. In recent years, 
the LSPR induced in Ag and Au nanoparticles has shown 
extensive applications in various fields such as catalysis [6], 
optics [7], optoelectronics [8], spectroscopy [9], biomedical 
applications [10], and electrochemical sensors [11]. 
  Simulations of the properties of metal nanoparticles 
are equally important as the fabrication and characterization 
of these materials confined to small dimensions.  There are 
a variety of different theoretical models to describe the 
optical absorption of metal nanoparticles [12-14]. Among 
the classical electrodynamics models, the Mie’s theory [12], 
a solution based on the Maxwell’s equations, provides 
excellent LSPR description for a spherical metal 
nanoparticle embedded in an optically dielectric matrix for 
a particle size very much smaller than the wavelength of 
light. The Gans theory [15], an extension of Mie’s theory, is 
applicable to prolate or oblate particles averaged over all 
orientations within the dipole approximation. Alternatively, 
the optical properties of nanoparticles may be described by 
the Maxwell-Garnett theory [16] in terms of the effective 
complex dielectric functions of the particles and 
surrounding medium developed from the atomic 
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polarizability and material density. The theory also includes 
the geometry and spatial distribution of the particles with 
two resonance modes coming from randomly oriented 
prolate nanoparticles. Nevertheless, the electrodynamics-
based theory cannot account for the energy discretization of 
conduction electrons, which is the fundamental electronic 
property of metal nanoparticles. The classical theory allows 
conduction electrons to oscillate at the wavelength of 200 
nm or more in the confinement nanoparticles size of less 
than 20 nm, which physically is difficult to imagine. 

Considerable efforts have been made to calculate 
optical excitation and photoabsorption properties in metal 
nanoparticles of many-electron systems based on the time-
dependent density functional theory (DFT) [17-20]. Optical 
excitation and absorption of metal nanoparticles can 
basically be calculated using time-independent DFT, a 
ground state theory that requires the ground state conditions 
of conduction electrons and their properties [19]. This 
suggests that the optical absorption spectra of metal 
nanoparticles can be determined from the ground-state 
density through the Hamiltonion operator because it 
characterizes all of the energy states of a system. However, 
so far the direct energy states of conduction electrons of 
metal nanoparticles have not been seen in UV-vis 
absorption measurements. Instead, the absorption spectra of 
metal nanoparticles are often displayed as a broad spectrum 
originating from conduction electrons with exceptionally 
degenerate states. This is in marked contrast with excitation 
properties of metal nanoparticles such as luminescence [21] 
and fluorescence [22], where the quantized states are readily 
observed due to well-defined energy gaps between two 
occupied energy states. In the conduction band of metal 
nanoparticles, the electron-hole interaction is screened off, 
and conduction electrons behave as nearly free.  

The present paper describes a fully quantum 
mechanical calculation of the absorption spectra of Ag and 
Au nanoparticles based on time-independent DFT. The 
particle is an isolated single solid metal sphere containing N 
atoms arranged in a face-cantered cubic lattice structure. 
The total energy functional is the ground-state energy 
functional of the Thomas-Fermi-Dirac-Weizsacker atomic 
model to allow for the ground-state electron density to be 
finite at the lowest energy state of the conduction band. The 
optical absorption of conduction electrons may be 
calculated by DFT because there is a relationship between 
the electron density and the absorption. In this 
development, the electronic density function in the final 
Euler equation was algebraically substituted with the 
absorption. Our study includes calculations of Lagrange 
multipliers, lattice constants, electronic transitions, 
transition potentials, photon wave vectors, optical 
absorption spectra, and the number of atoms in Ag and Au 
nanospheres at different particle diameters. 
 
2. THEORY OF METAL NANOPARTICLES 

 
In quantum mechanical calculation, Hohenberg-

Kohn-Sham DFT [23-25] has been most widely used to 

study the electronic structures of many-electron systems 
such as nanostructures.  The early foundations of DFT are 
due to the Hohenberg and Kohn theorem [24] and Kohn-
Sham equations [25], where the ground state electron 
density ( )rρ  is the basic variable, from which all ground 
state properties could be derived.  For optical absorption of 
metal nanoparticles, the ground-state energy functional 
[ ]ρE  may be taken from the Thomas-Fermi-Dirac-

Weizsacker atomic model [23, 26-28], written as 
 

( )[ ] ( )[ ] [ ] ( ) ( ) [ ]ρρλρρ eeWTF VdvTTE +++= ∫ rrrrrr
   

(1) 
 
The first term, ( )[ ]rρTFT , is the kinetic energy of the 
Thomas-Fermi (TF) model in its original formulation of a 
local density approximation and expressed as a function of 
the electron density ( )rρ  of an infinite number of 
homogenous free electron gas systems at a given coordinate 
r, given by 
 

( )[ ] ( ) rrr dCT
kTF

3/5
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m
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h
= , the second term, ( )[ ]rρλ WT  is 

the von Weizsacker correction to the kinetic energy of the 
TF model by inclusion exchange and a correlation energy 
terms [28] for the inhomogeneity of the electron density as 
a gradient correction about the uniform gas. This is the 
correct kinetic energy functional for metal nanoparticles 
where the conduction electrons resemble a one-electron or a 
two-electron Hartee-Fock atom, given by 
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The parameter λ  may be obtained by some empirical 
arguments for the ground state energy [29-31]. The third 
term is the potential energy of the system, and the fourth 
term, expressed as [ ] [ ] [ ]ρρρ TFDee KJV −= , is the potential 
energy functional for the effective electron-electron 
repulsion. [ ]ρJ  is the classical Coulomb energy of 
electron-electron interactions, and [ ]ρTFDK  is the Thomas-
Fermi-Dirac (TFD) model, which refers to the non-classical 
exchange-correlation energy of a homogenous free electron 
gas system defined as containing all remaining quantum 
effects not captured by J and kinetic energies T.  
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By taking atomic units 1==== cemh  throughout, the 
total energy functional, in the differential form to the 
second order is 

[ ] ( ) ( )
( ) ( ) ( ) ++

∇
+= ∫∫∫ rrrr

r
r

rr dvddCE k ρ
ρ
ρλρρ

23/5
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(6) 

 
The exact ground state energy of the metal nanoparticles is 
the global minimum value of [ ]ρE , and the density ( )rρ  

that minimizes [ ]ρE  is the exact ground state density 0ρ , 
namely 

[ ]00 ρEE = = min ( )[ ] ( ){ }∫ =≥ NdE rrr ρρρ ,0:  (7) 
 
where 0E  is the exact ground state energy, [ ]0ρE  is the 
minimized energy functional [24] and N is the number of 
electrons in the conduction band. The ground-state electron 
density must satisfy the variational principle, 
 
 

[ ] ( )[ ]{ } 0=−− ∫ NdE rrρµρδ  (8) 
 
where µ is the Lagrange multiplier associated with the 
normalized density functional. For completely degenerate 
conduction electrons at absolute zero temperature, µ is the 
Fermi energy. This yields the Euler equation and is written 
as  
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The Euler equation (9) may be presented in terms of 
functional derivatives,  
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where, r , the displacement coordinate of the conduction 
electrons from the centre of nanosphere and is dependent on 
the Bohr radius 0a , atomic number Z, the principle 
quantum number n , the angular quantum number l , and 
the spin quantum number s. For completely ground-state 
conduction electrons at absolute zero temperature, µ is the 
Fermi energy. We found that the density of conduction 
electrons ( )rρ  of an atom is a function of atomic number Z  
and absorption ( )rσ . Since both ( )rρ  and ( )rσ  are 
continuous functions, the transformation of the density 

functional energy [ ]ρE  to the absorption functional energy 
[ ]σE  can be made by algebraically substituting the electron 

density function with the absorption function in the Euler-
Lagrangian equation (10). The final Euler-Lagrangian 
equation is the second order differential equation in terms of 
the absorption function and it may be solved numerically. 
 
3. NUMERICAL SIMULATION 
 

The absorption functional energy [ ]σE  of the 
conduction electrons is dependent on various factors such as 
the atomic number, atomic mass, lattice constant, electron 
potential, ground-state local wave vector, number of atoms 
that make up a spherical volume, and quantum number 
selection rules 1≥∆n for principle quantum number and 

1,0=∆l  for angular quantum number. The conduction 
electrons receive a plane electromagnetic wave x from 
photons and must overcome the ground-state 
electromagnetic wave vector nk  of the conduction 

electrons to promote to the higher energy states. nk  is 
directly proportional to the principle quantum number n and 
inversely proportional with the number of atoms N or

 Nankn /2π= , where a is the lattice constant. The Ag and 
Au nanoparticles are arranged in face-centred cubic 
structures with their lattice constant a equal to 0.408 and 
0.407 nm, respectively. The ground-state energy of the 
conduction electrons has the principle quantum number n = 
5 and 6 for Ag and Au nanoparticles respectively. The 
Fermi levels µ were calculated for Ag and Au to be 5.49 
and 5.53 eV, respectively. By using Bloch's theorem of 
( ) ( ) ( )jkNaxx expσσ =  and the Born-von Karman condition 

[32], we reach the boundary conditions at the end points of 
the nanocrystal of 00 =σ  and 0=Nσ , where the two end 
points overlapped to form a lattice loop.  

For numerical calculation, the absorption and 
wavelength in the final Euler-Lagrangian of second order 
differential equation are discretized into iσ  and ix , by 

( ) ( ) 2
11

22 /2/ ∆−+=∂∂ −+ iiixx σσσσ  and 
( ) ( ) ∆−=∂∂ −+ 2// 11 iixx σσσ , where Ni LL,2,1,0=  are 

integers representing the number of atoms that made up the 
spherical volume of a given diameter [33]. The multivariate 
equations may be solved by a trapezoid integration method 
using the Newton iterative program with a mesh size 

01.0=∆ . Numerical simulations were carried out on single 
particles of different sizes. Thus, the ground state energy of 
the conduction electrons is dependent on the principle 
quantum number, crystal structure, chemical composition, 
and number of atoms.  
 
4. RESULTS AND DISCUSSION 
 

Figure 1.1 depicts the calculated absorption spectra 
as a function of wavelength of the incident photons for Ag 
nanoparticle of 4 nm in diameter containing 50 atoms. The 
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figure shows only ten of all possible transitions from 5s to 
10s, 13s, 15s, 20s, 25s ( 6≥n , 0=∆l ) or to 10p, 13p, 15p, 
20p, 25p ( 6≥n , 1=∆l ). The absorption spectra are 
derived from the ground-state conduction electrons at the 
orbital 5s, which excite to higher conduction band energies 
at the orbital ns or np or both with many possible transitions 
at 6≥n and 0=l  or 1. Each absorption spectrum 
represents one possible transition made by 50 conduction 
electrons and for each transition produces absorption peak 

maxλ . It is interesting to note that despite many possible 
transitions, the discreteness of the conduction electron states 
does not clearly manifests itself because the absorption peak 

maxλ of each spectrum is very close to the absorption peaks 
of the other spectra.  

 

 
Figure 1.1:  Calculated optical absorption spectra of 4-nm Ag nanosphere 
showing the absorption peaks of ten transitions from 5s to 10s, 13s, 15s, 
20s, 25s ( 6≥n , 0=∆l ) and to 10p, 13p, 15p, 20p, 25p ( 6≥n , 

1=∆l ). The energy bands of s-electrons and p-electrons in the 
conduction band are confined very close to each other and any possible 
transitions with quantum number 6≥n and 0=∆l  or 1 produces the 

absorption peak revolves around maxλ = 404.79 nm corresponds to the 
conduction band energy of 3.06 eV 
 

 
We observe that the absorption peaks maxλ  of the 

transitions shown appear in the narrow wavelength regimes 
between 404.77 and 404.81 nm for 4 nm Ag nanoparticle. 
This means that at higher energy regimes of the conduction 
band of s-electrons and p-electrons are confined very close 
to each other and can overlap. At a distance near to the 
Fermi level, which is extremely far from the centre of the 
particle, the nuclear potential of the conduction electrons is 
very small and any transition with allowed quantum 
numbers will have absorption energy equal to the 
conduction band energy. The final absorption spectrum of 
the Ag nanoparticle from all possible transitions is 
somewhat broadened but revolves about maxλ = 404.79 nm 
corresponds to the conduction band energy of 3.06 eV. 

 

 
 

Figure 1.2: Calculated optical absorption spectra of 4-nm Au nanosphere 
showing the absorption peaks of ten transitions from 6s to 11s, 14s, 16s, 
21s, 26s ( 7≥n  , 0=∆l ) and to 11p, 14p, 16p, 21p, 26p ( 7≥n , 

1=∆l ). The energy bands of s-electrons and p-electrons in the 
conduction band are confined very close to each other and any possible 
transitions with quantum number 7≥n and 0=∆l  or 1 produces the 

absorption peak revolves around maxλ = 510.28 nm corresponds to the 
conduction band energy of 2.43 eV.  

 
 
Figure 1.2 depicts the calculated absorption spectra 

of ten possible transitions as a function of incident photon 
wavelength for a 4-nm Au nanoparticle containing 50 
atoms. The spectra are derived from the ground-state 
conduction electrons 6s to the orbital 11s, 14s, 16s, 21s, 26s 
( 7≥n , 0=∆l ) or to 11p, 14p, 16p, 21p, 26p ( 7≥n , 

1=∆l ). Similar to the situation for Ag nanoparticle, the 
absorption peaks maxλ  of Au nanoparticle appear in the 
narrow wavelength regime between 510.27 and 510.29 nm. 
The final absorption spectrum of the Au nanoparticle should 
be a more broader spectrum owing to many possible 
transitions allowed by quantum number selection rules 
( 7≥n and 1,0=∆l ). For the 4-nm Au nanoparticle the 
absorption peak revolves about maxλ = 510.28 nm 
corresponds to the conduction band energy of 2.43 eV. 

A red-shift of the absorption peak in metal 
nanoparticles has been well documented [34-36]. Figure 
1.3, depicts the calculated absorption spectra of Ag 
nanoparticles at different sphere diameters of 4, 5, 7, 10, 15, 
and 25 nm, simulated for one of the possible transitions. We 
kept all parameters constant, except for the ground-state 
electron energy at 5s, which is dependent on the particle 
size or the number of atoms. The absorption peaks maxλ  for 
Ag nanoparticles of diameters 4, 5, 7, 10, 15, and 25 nm 
appear at 404.79, 408.36, 412.55, 415.73, 418.42 and 
420.96 nm, respectively and are corresponding to the 
conduction band energy of 3.06, 3.04, 3.01, 2.98, 2.96, and 
2.95 eV respectively as shown in Table 1.1. 
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The increase in absorption peak maxλ  for different 
particle sizes is attributed to the increase in the number of 
atoms that make up the nanoparticles. The magnitude of the 
absorption peak maxλ  shift is relatively substantial for the 
smaller particle sizes than that the larger sizes, indicating 
the absorption phenomenon of Ag nanoparticles is 
nonlinearly size dependence [34,37,38]. The wavelength 

maxλ  red-shifts to higher wavelengths by increasing particle 
size and at the same time the spectrum becomes broaden 
with the size increases. Figure 1.4 depicts the calculated 
absorption spectra of Au nanoparticles at various diameters 
of 4, 5, 7, 10, 15, and 25 nm, which produce the absorption 
peaks at 510.28, 520.91, 533.11, 542.35, 549.74, and 556.04 
nm, respectively and are corresponding to the conduction 
band energy of 2.43, 2.37, 2.33, 2.29, 2.26, and 2.23 
respectively as shown in Table 1.1. We also observed that 
the absorption peaks maxλ  nonlinearly red-shift to higher 
wavelengths with increasing Au nanoparticle sizes. 

 

 
Figure 1.3: Calculated optical absorption spectra of Ag nanoparticles at 
various diameters of 4, 5, 7, 10, 15, and 25 nm, showing the absorption 
peaks maxλ  appear at 404.78, 408.36, 412.55, 415.73, 418.42, and 420.96 

nm, respectively. The absorption peaks maxλ  nonlinearly shift to higher 
wavelengths by increasing particle sizes and produce broader spectrum as 
the particle increases in size. 
 

The appearance of the absorption peak maxλ  at 
distinct regimes between Ag and Au nanoparticles for a 
given nanosphere size is worth mentioning. The absorption 
peaks maxλ  wavelengths of the 4-nm Ag and Au 
nanoparticles appear at 404.79 nm (3.06 eV) and 510.28 nm 
(2.43 eV), respectively, while for the 25-nm Ag and Au 
nanoparticles the peaks maxλ  appear at 420.96 nm (2.95 eV) 
and 556.04 nm (2.23 eV) respectively. The discrepancy in 
the absorption peaks maxλ  of the two nanoparticle systems 
is attributed to various factors, such as the multiplier 
parameter µ, lattice constant a, atomic number Z, number of 
atoms N, and potential energy. The Fermi levels µ 
calculated for Ag and Au to be 5.49 and 5.53 eV, 
respectively. The Ag and Au nanoparticles are arranged in a 
face-centered cubic structure and their lattice constants a 
calculated to be 0.408 nm and 0.407 nm, respectively. We 
observed that the Fermi energy and lattice constant of Ag 

and Au are about equal, but the absorption peaks maxλ  of the 
two systems are at different wavelength regimes. The 
reason is that the nuclear potential energy of the system is 
proportional to the atomic number Z and inversely 
proportional to the displacement, r . The number of protons 
in Ag and Au atoms is 47 and 79, respectively. This 
produces a stronger potential energy to Au nanoparticles 
than Ag nanoparticles. Therefore, the conduction electrons 
of Au nanoparticles are attracted stronger towards the centre 
of the particle than Ag nanoparticles, reducing the size of 
the conduction band of Au nanoparticles more than that of 
Ag nanoparticles. Consequently, the absorption peak maxλ  
of Au nanoparticles is longer than the Ag nanoparticles.  

 
 

Table 1.1:  Calculated optical absorption wavelength λmax and conduction 
band energy ECB for Ag and Au nanoparticles of various sizes. 
 

Size 

(nm) 

Ag Au 

λmax 

(nm) 

ECB  

(eV) 

λmax 

(nm) 

ECB 

(eV) 

4 404.79 3.06 510.28 2.43 

5 408.36 3.04 522.91 2.37 

7 412.55 3.01 533.11 2.33 

10 415.73 2.98 542.35 2.29 

15 418.42 2.96 549.74 2.26 

25 420.96 2.95 556.04 2.23 

 

 
 
Figure 1.4: Calculated optical absorption spectra of Au nanoparticles at 
various diameters of 4, 5, 7, 10, 15, and 25 nm, showing the absorption 
peaks maxλ  appear at 510.28, 522.91, 533.11, 542.35, 549.74, and 556.04 

nm, respectively. The absorption peaks maxλ  nonlinearly shift to higher 
wavelengths by increasing particle sizes and produce broader spectrum as 
the particle increases in size.  

 
5. CONCLUSION 
 

In summary, we successfully used a quantum 
mechanical approach to calculate the optical absorption 
spectra of isolated Ag and Au nanoparticles based upon 
time-independent DFT. The absorption is derived from UV-
visible photons impinging on the nanoparticles causing 
ground-state electrons of the conduction band excite to the 
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higher energy states and the electronic transitions restricted 
only by the quantum number selection rules. The calculated 
absorption peaks maxλ  of metal nanoparticles are sensitive 
to the particle type, which characterizes by the atomic 
number, Fermi energy, absorption, and potential energy of 
the system and on the particle size, which describes by the 
number of atoms and lattice constant.  We have shown that 
the absorption peaks maxλ  of the Ag and Au nanoparticles 
red-shift to the higher wavelengths by increasing particle 
size. The change in the wavelength shift is substantial at the 
smaller particle sizes than that the larger sizes, confirming 

the wavelength red-shift is nonlinearly size dependence. 
The quantum mechanical calculations of the absorption 
spectra, presented here for Ag and Au nanoparticles could 
be extended to other transition metal nanoparticles of 
interest in nanoscience and nanotechnology. 
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