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Abstract This article applies the Wakeby distribution (WAD) with high-order L-moments 
estimates (LH-moments) to annual extreme rainfall data obtained from 99 gauge stations in 
Thailand. The objective of this study is to investigate appropriate quantile estimates and return 
levels for several return periods, 2, 5, 10, 25, and 50 years. The 95% confidence intervals for the 
quantiles determined from the WAD are derived using the bootstrap technique. Isopluvial maps of 
estimated design values that correspond to selected return periods are presented. The LH-
moments results are better than estimates from the more primitive L-moments method for a large 
majority of the stations considered.  
Keywords: L-Moments, LH-Moments, Wakeby Distribution, Higher-Order Statistics, Bootstrap 
Resampling. 

 

Introduction 
 
The statistical modelling of extreme rainfall is important in the design of water-related structures such as 
agriculture. More generally, it provides us an information about weather modification and monitoring 
climate change (Huff and Angel, 1992). In particular, hydro-meteorologists can fit various statistical 
frequency distributions to historical rainfall data in order to estimate the magnitude of maximum rainfall 
at various recurrent intervals. 
 
The rainfall between the months of August to October in Thailand is the time intereval that we are 
interested in this article. As elsewhere, extreme rainfall events can become natural disasters in Thailand, 
contributing to crop losses or property damage and general human misery (Deka et al., 2009). Khamkong 
(2012) and Khongthip et al. (2013) have previously modelled annual monthly maximum rainfalls in upper 
northern Thailand via generalised extreme value distributions (GEVD), Keawmun et al. (2015a), 
Keawmun et al. (2015b), and Busababodhin et al. (2015a) likewise modelled annual daily and monthly 
maximum rainfalls in northeastern Thailand. 

 
To the best of our knowledge, no study has yet employed any other statistical distribution to model rainfall 
data in Thailand. However, empirical evidence related to the condition of separation (Matalas et al., 1975) 
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suggests that flood distributions are well described by the Wakeby distribution (WAD) with  and 

, i.e. the WAD provides a rather more plausible description of flood sequences to better represent 
the long stretched upper tail structures of flood distributions, as well as the tail structures of other 
hydrologic phenomena (Landwehr et al., 1980). Moreover, the WAD can be considered as a parent flood 
distribution quite widely. It successfully used in hydrology, especially in modelling extreme events. 
Another study by Wilks and McKay (1996) concluded that the WAD provides the best representation of 
extreme snowpack water equivalent. Its application to rainfall maxima was investigated by various 
authors. Park et al. (2001) used the WAD with the method of L-moments estimates for summer extreme 
rainfall data in South Korea. Oztekin (2007) measured upper right tail estimate performances for annual 
extreme and partial duration precipitation series at 31 stations in the northeastern and southeastern 
United States, and found that L-moments of the WAD mostly gave better results than beta-K and beta-
P distributions and sometimes produced comparable results using bootstrap resampling to extrapolate 
the right tail behaviour. Zalina et al. (2002) and Su et al. (2009) simulated extreme precipitation over the 
Yangtze River Basin using the WAD, and concluded that it can adequately describe the probability 
distribution of precipitation extremes from both daily observational precipitation data at 147 stations in 
the Yangtze River Basin during 1960-2005 and projected daily data of 79 grid cells from the ECHAM5/ 
MPI-OM model. 
 
In addition, Seckin et al. (2011), Soukissian (2013), Yao et al. (2013) and Rahman et al. (2015) employed 
the WAD for flood frequency and rainfall analyses. Busababodhin et al. (2015b) employed LH-moments 
to estimate WAD parameters. Simulations showed that LH-moments estimation performed better than 
L-moments estimation, and they proceeded to investigate annual maximum flood and wave height data.  
 
Here we apply the WAD and the LH-moments method introduced by Busababodhin et al. (2015b) to 
extreme rainfall data in Thailand, to obtain reliable quantile estimates for several return periods that we 
define return period in the Section Quantile Estimation. The 95% confidence intervals for the quantiles 
are obtained by the bootstrap resampling technique. Isopluvial maps of the quantiles at selected return 
periods suitable for planners and meteorologists are presented. Section Climatology and Data in this 
article describes the climatology and descriptive statistics of the annual daily precipitation in Thailand. 
Section LH-Moments Estimation from the Wakeby Distribution presents LH-moments estimation of the 
WAD with our methodology and results. The quantile estimation by the bootstrap technique and 
isopluvial maps of the quantiles at the selected return periods are provided in Section Quantile 
Estimation, and Section Conclusions summarises our results.  
 

 
Climatology and Data 
 
Climatology 
Thailand is tropical and the climate is also affected by the seasonal winds of the southwest and northeast 
monsoons. Rainfall in Thailand mainly occurs during the southwest monsoon, under the influence of the 
Inter-Tropical Convergence Zone (ITCZ) and tropical cyclones that produce heavy precipitation. The 
southwest monsoon typically starts in May, and brings a stream of warm moist air from the Indian Ocean 
towards Thailand producing abundant rain over the country, especially on the windward side of the 
mountains. The ITCZ first moves to the south during May, and then rapidly northwards to southern China 
around June or early July, when a dry spell occurs in northern Thailand. The ITCZ then again moves 
south to lie over northern and northeastern Thailand in August, and over the central and southern parts 
in September and October. The northeast monsoon typically starts in October, bringing cold and dry air 
from anticyclones over the Chinese mainland to much of Thailand, especially the north and northeast 
higher latitude areas but it causes milder weather and abundant rainfall along the southern-east coast, 
so the rainy season in southern Thailand generally differs from that in upper Thailand. During the 
southwest monsoon, heavy rainfall over the southern-west coast peaks in September, and at the 
southern-east coast in November until January. Tropical cyclones usually move across Thailand about   
3 - 4 times a year, although not during January to March.  
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According to historical records, from 1951 to 2011 the northeast was hit by tropical cyclones 88 times 
and the south 53 times, with relatively higher frequencies in September and October. The heaviest 
cyclone damage usually occurs in the south e.g. tropical storm “HARRIET” hit Nakhon Si Thammarat 
province in October 1962, typhoon “GAY” hit Chumphon province in November 1989, and the latest was 
the typhoon “LINDA” that hit Prachuap Khiri Khan province in November 1997. The annual rainfall for 
most areas of the country is 1,200 - 1,600 mm. However, some areas on the windward side including 
Trat province in the east and Ranong province on the southwest coast receive more than 4,000 mm 
each year. In 2014 Thailand was not directly hit by any tropical cyclone and the total average rainfall was 
1520.4 mm, 4% below normal. However, there were several tropical cyclones in the area that indirectly 
influenced the weather e.g. typhoon “RAMMASUN”, typhoon “KALMAEGI” and tropical storm “SINLAKU” 
that led to abundant rainfall and flash floods in late July, mid-September and late November, respectively, 
see Thai Meteorological (2014). In 2016, the majority of Thailand was warmer and larger rainfall than 
usual. The 1981-2010 normal annual rainfall averaged over the country is 1,718.1 mm, but in 2016 it 
was 130.4 mm (8%) above. Moreover, rainfall of Thailand was affected by 6 tropical cyclones with 2 
tropical cyclones that hit Thailand when they were depressions, namely the tropical storm “Rai” on 13 
September and the tropical storm “Aere” on 14 October, 2016. Besides, rainfall in Thailand was 
increasing by the indirect affected of the tropical depression in the middle Vietnam in late June, the 
tropical storm “MIRENAE” in late July, the tropical storm “DIANMU” in the middle of August, and the 
tropical depression in Cambodia in early November, see Thai Meteorological (2016). The weather of 
Thailand in 2017 was very unusual. The average annual rainfall was 27 percent higher than normal and 
the highest in 67 years (1951-2017). The total rainfall throughout the month and the total rainfall 
throughout the year were higher than the previous statistical measurements. In addition, there were 
many tropical cyclones, depressions and typhoons moved into Thailand such as tropical storm "TALAS", 
tropical storm "SONCA" and typhoon "DOKSURI" and so on, see Thai Meteorological (2017). In 2019, 
Thailand had less rainfall than it used to occur. Only January and August had more rainfall than usual, 
as a result of the influence of tropical cyclone that moved into Thailand. It started with tropical storm 
"PABUK", which was the first tropical cyclone that moved to Thailand in January in 69 years. In August, 
there were two storms entered in Thailand, that were tropical storm "WIPHA" moved into the northern 
region and tropical storm "PODUL" moved into the northeast region of the country. Because in 2019 
there was less rain than normal, Thailand to had a higher temperature than usual every month in many 
areas with the highest temperatures breaking the previous record, see Thai Meteorological (2019). 
 
Data 
In this article, we consider the time series of annual maximum precipitation constructed from 
monthly rainfall data during 1984 to 2019, from each of 99 stations throughout Thailand, 
maintained by the Thailand Meteorological Administration, see Figure 1. In Table 1, we 
selected stations with the two highest and lowest maximum rainfalls in each region to show 
sample analysis. When divided by climate characteristics, Thailand can be separated into 6 
regions as follows: northern, northeastern, central, eastern, southern-east coast and southern-
west coast.  
 
The station codes, names and locations, sample sizes (n), sample statistics including 
minimum, maximum, medians and interquartile ranges (IQR) of annual maximum precipitation 
(AMP), skewness and kurtosis of data computed from the time series are shown in Tables 1 
and 2, respectively. 
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Table 1. Region, station code, station name, latitude and longitude for sample stations in Thailand 

 

Region Code Name Latitude Longitude 

Northern 

328301 Lampang Agromet. 18.3166667 99.2833333 

330201 Phrae 18.1666667 100.1666667 

376401 Umphang 16.0247222 98.8644444 

380201 Kamphaeng Phet 16.4866667 99.5269444 

Northeastern 

431201 Nakhon Ratchasima 14.6419444 101.3213889 

354201 Udon Thani 17.3769444 102.8094444 

357301 Nakhon Phanom Agromet. 17.4430556 104.2736111 

436401 Nang Rong 14.5833333 102.8000000 

Central 

400301 Tak Fah Agromet. 15.3491667 100.5302778 

402301 Chai Nat Agromet. 15.1500000 100.1833333 

455201 Queen Sirikit National Convention Center 13.7263889 100.5600000 

455601 Don Muang 13.9072222 100.5966667 

Eastern 

423301 Chachoengsao Agromet. 13.5155556 101.4580556 

440201 Arunya Prathet 13.7000000 102.5833333 

480201 Chanthaburi 12.6166667 102.1133333 

501201 Trad 11.7802778 102.8780556 

Southern-east coast 

500301 Nong Plub Agromet. 12.5888889 99.7344444 

552301 Nakhon Si Thammarat Agromet. 8.3591667 100.0594444 

568501 Songkhla 7.1822222 100.6075000 

568502 Hat Yai 6.9180556 100.4333333 

Southern-west coast 

532201 Ranong 9.9833333 98.6166667 

564201 Phuket 7.8833333 98.4000000 

566201 Lun Ta (Krabi) 7.5333333 99.0500000 

570201 Satun 6.6500000 100.0833333 
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Figure 1. The location of weather stations in Thailand 
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Table 2. Station code, sizes, minimum, maximum, median, interquartile range (IQR) of AMP, skewness and kurtosis for 
sample stations in Thailand from monthly rainfall data during 1984 to 2019 

 
Code Size 

(n) 
Minimum 
(unit; mm) 

Maximum 
(unit; mm) 

Median 
(unit; mm) 

IQR 
(unit; mm) Skewness Kurtosis 

328301 36 6.70 114.40* 20.73 70.25 -0.33 4.95 

330201 36 43.30 218.20 22.75 80.10 2.07 8.15 

376401 36 33.90 124.70 16.53 70.85 0.61 3.99 

380201 36 49.20 248.90* 18.70 83.25 2.69 11.68 

431201 36 50.10 129.70** 32.60 76.40 0.55 2.17 

354201 36 54.20 274.50* 31.50 90.90 2.37 9.88 

357301 36 71.50 272.60 53.00 124.00 1.18 3.96 

436401 36 45.70 130.50 31.53 90.25 0.03 2.30 

400301 36 52.90 116.70 28.23 81.35 0.14 1.92 

402301 36 41.00 107.80** 21.55 69.90 0.35 2.53 

455201 36 40.20 216.80* 52.58 93.95 0.82 3.19 

455601 36 58.40 210.70 33.68 98.60 1.71 6.56 

423301 36 49.00 144.60 32.33 79.05 0.95 3.22 

440201 36 45.70 142.80** 17.88 74.80 1.18 5.09 

480201 36 84.70 394.90 59.48 138.75 2.22 9.32 

501201 36 127.50 445.30* 139.58 225.00 0.58 2.20 

500301 36 45.20 226.00 37.73 83.60 1.36 4.20 

552301 36 64.90 615.60* 104.60 146.60 2.08 8.15 

568501 36 71.20 521.80 115.85 155.35 1.46 5.09 

568502 36 51.00 219.40** 31.75 100.80 1.21 4.14 

532201 36 116.50 249.70* 37.03 162.70 0.48 3.10 

564201 36 70.00 180.70** 45.85 102.45 0.75 2.44 

566201 36 73.00 241.60 41.25 122.10 1.33 4.55 

570201 36 67.00 207.80 43.90 108.05 0.94 3.58 
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Results and discussion 
 
LH-Moments Estimation from the Wakeby Distribution  
LH-moments are expected to characterise the upper part of distributions well, as they generally 
emphasise high upper distribution quantiles rather than lower quantiles (Wang, 1997). LH-moments 
estimation procedure is more reliable than the classical method of moments estimation, particularly for 
small sample sizes, and is usually computationally more tractable than maximum likelihood estimation. 
The definition of LH-moment with order  for as defined by Wang(1997) are  
 

                                                                                          (1) 

where . 

 
Furthermore, Park et al (2001) showed the use of linear combination moments instead of conventional 
product moments and the resistance to the presence of any outliers present in the sample, due to the 
occurrence of heavy rainfall and typhoon events, means the method is quite robust.  
 
The Wakeby distribution quantile function has the form  
 

                                                                            (2) 

where ,  is the location parameter and  and  are other parameters. The 
parameter  largely relates to the scale of the variable while  and  are exponential parameters 
defining the shape of the quantile function. The parameterisation explicitly exhibits the WAD as a 
generalisation of the generalised Pareto distribution for which  or  and provides estimates of 
the  and  parameters that are more stable under small perturbations of the data.  
 
The population LH-moments of the WAD, see Busababodhin et al. (2015b): 
 

                                                                                        (3) 
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When , the LH-moments reduce to L-moments. Here we consider the following constraints for the 
existence of LH-moments for the WAD, which are the same as the constraints for the WAD function.  It 

is assumed that  and the range of  is  if  and , or  if 

 or . For  to be a valid quantile function, the conditionals  and  must 

also hold (Hosking, 1986). 
 

The sample LH-moments are obtained from the given observational data, see Busababodhin et al. 
(2015b). No explicit solution of the simultaneous equations is possible in the WAD, but the equations 
may be solved by an augmented Lagrangian adaptive barrier minimisation algorithm for optimising 
smooth nonlinear objective functions with nonlinear constraints. Varadhan (2012) introduced a nonlinear 
optimisation algorithm in the statistical software R for nonlinear constraints, involving the optimisation 
function “auglag” in the R package “alabama”. The elaborated form is an augmented lagrangian adaptive 
barrier minimisation algorithm for optimising smooth nonlinear objective functions with nonlinear 
constraints.  
 

The order ( ), parameter estimates (LH-moments) of the WAD, and the Kolmogorov-Smirnov’s 
goodness-of-fit statistic D (KS-D) at each station are given in Table 3. The p-values here are computed 
by the formula from Press et al. (1996, p.618), as if the parameters of the WAD are specified. If the 
estimated p-value is less than 0.1, then a more accurate way in the simulation is to compute the true p-
value, see Ross (1990, section 9.2). It can be seen from Table 3 that, there are 2 stations with p-values 
less than 0.1 which are 0.054 and 0.052 at sites 455601 and 552301, respectively. There are only 3 
stations (or 12.5%) with  and 21 stations (or 87.5%) with other values of . Therefore, there is a 
strong evidence that the WAD modelling with LH-moments method approach is more accurate for each 
of the stations than the L-moments method. Figure 2 shows the order  of the WAD for weather stations 
in Thailand and Figure 3 shows the relative frequency histogram with various  values corresponding 
to LH-moments for the WAD at station 455201. 
 

From Figure 3, solid black line is for eta = 0, red dashed for eta = 1, green dashed for eta = 2, blue 
dashed for eta = 3, and gray dashed for eta = 4. The result shows relative frequency histogram at station 
455201 when using LH-moments ( ) for the WAD. We can see that are 
almost fit to the relative frequency histogram of real data set. However, the  is the best fit to the 
real data set that imply LH-moments method is better than L-moments method.  
 
Quantile Estimation  
The quantile or the design value corresponding to a return period of T years (T years return value)  is 
defined by the magnitude x(F)  with .  The design values were computed via Eq.(2) , and the 
confidence interval of the return value q(T)  was obtained by the bootstrap resampling technique.  The 
design values and 95% confidence intervals corresponding to 2, 5, 10, 25 and 50 years computed from 
the annual extreme rainfall at each station are presented in Table 4.  We use the Percentile Bootstrap 
confidence interval with the number of replications 2000. For more discussion on bootstrap confidence 
intervals for predicted rainfall quantiles, see Dunn (2001) .  Isopluvial ( rainfall frequency)  maps of the 
estimated design values corresponding to selected return periods of 2, 5, 10, 25 and 50 years for the 
AMP using the values from the 99 stations are presented in Figures 4 to 8, respectively. 
 

The highest return values were for the sites in the windward side of the eastern and southern-east coast 
parts of Thailand, due to the influence of typhoons or tropical storms.  Thailand is subject to tropical 
depressions further inland, although some mountain ranges obstruct the wind, and in the southern-east 
coast there is also a relatively high risk of typhoons and tropical storms. In Table 4, it shows that, the site 
501201 at Trad shows the highest return values of 2, 5, 10, and 25 years and the site 552301 at Nakhon 
Si Thammarat Agrome shows the highest return value of 50 year, with a large range of confidence 
intervals compared to the real data in Table 4.  Moreover, both of these stations also show the top two 
highest rainfall. In general, the quantile estimation from our estimation and distribution approach is similar 
to the real rainfall data.  
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Table 3.  Station code, order, parameter estimates (LH-moments) of the WAD, and KS-D’s statistic computed from the 24 stations in 
Thailand. 

 

Code 
Order 
( ) 

parameter estimate 
KS-D p-value 

     

328301 2 45.087 40.841 3.019 13.364 0.011 0.126 0.617 

330201 1 55.475 23.567 2.756 17.439 0.287 0.139 0.491 

376401 1 42.860 65.516 3.639 11.052 0.121 0.150 0.392 

380201 1 67.557 1.485 7.350 15.748 0.361 0.169 0.256 

431201 2 60.356 -70.340 2.828 77.086 -0.751 0.139 0.491 

354201 1 63.683 29.527 3.442 20.536 0.312 0.130 0.581 

357301 2 83.181 1.088 15.983 58.388 -0.103 0.083 0.948 

436401 1 60.640 5.796 11.305 53.303 -0.678 0.083 0.946 

400301 0 52.885 -0.540 16.007 52.660 -0.885 0.078 0.980 

402301 1 51.823 1.121 15.983 31.926 -0.449 0.095 0.903 

455201 1 53.919 3.830 6.033 61.668 -0.241 0.076 0.985 

455601 2 58.731 46.391 1.484 9.279 0.424 0.224 0.054 

423301 0 52.422 117.628 18.364 30.301 -0.181 0.115 0.723 

440201 1 50.598 49.984 3.166 11.127 0.196 0.181 0.188 

480201 1 83.112 64.622 2.149 27.879 0.299 0.163 0.262 

501201 3 98.637 1.056 15.981 236.555 -0.622 0.166 0.244 

500301 1 50.432 7.767 14.230 46.070 -0.002 0.087 0.926 

552301 0 54.940 83.433 2.397 68.550 0.209 0.225 0.052 

568501 2 80.932 4.608 4.782 100.016 0.018 0.111 0.724 

568502 3 62.592 1.021 15.996 46.588 -0.054 0.149 0.364 

532201 1 131.508 3.505 6.241 46.952 -0.324 0.139 0.491 

564201 3 77.520 1.233 7.386 45.015 -0.182 0.066 0.997 

566201 1 81.869 42.181 4.407 34.990 0.034 0.070 0.995 

570201 2 81.172 1.565 7.245 38.234 -0.101 0.125 0.625 
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Figure 2. The order, , of the WAD for weather stations in Thailand. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Relative frequency histogram and probability functions fitted for AMP data at station 455201 when 
using LH-moments for the WAD. 
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Table 4.  Station code, return level ( unit, mm)  corresponding to various return periods (T)  computed from the time series of annual 
extreme rainfall for 24 stations in Thailand. 

 

Code Order 
( ) 

Return level (unit; mm) 

T = 2 T = 5 T = 10 T = 25 T = 50 

328301 2 66.25 
(13.25, 72.34) 

80.21 
(30.27, 92.13) 

89.77 
(38.19, 103.97) 

102.42 
(46.77, 115.80) 

112.06 
(51.16, 122.75) 

330201 1 76.13 
(14.64, 84.53) 

99.60 
(38.66, 118.82) 

120.92 
(51.13, 145.06) 

156.35 
(64.26, 188.52) 

190.05 
(71.18, 226.76) 

376401 1 67.41 
(12.62, 72.55) 

80.45 
(32.31, 88.11) 

90.21 
(43.47, 99.19) 

104.38 
(53.80, 115.07) 

116.18 
(58.05, 127.48) 

380201 1 80.16 
(14.06, 107.33) 

102.12 
(38.41, 129.48) 

124.30 
(51.45, 156.10) 

163.56 
(65.23, 204.14) 

203.20 
(72.10, 255.07) 

431201 2 80.65 
(20.02, 83.78) 

107.76 
(43.33, 110.44) 

119.98 
(55.87, 122.67) 

129.02 
(66.07, 132.47) 

132.73 
(72.53, 136.98) 

354201 1 87.36 
(10.55, 96.71) 

115.16 
(37.59, 136.67) 

141.45 
(54.50, 170.15) 

186.13 
(71.38, 224.56) 

229.51 
(80.68, 271.58) 

357301 2 122.32 
(4.47, 133.91) 

169.88 
(51.09, 197.81) 

203.00 
(72.38, 234.36) 

243.32 
(91.94, 271.71) 

271.40 
(103.19, 294.51) 

436401 1 90.63 
(30.52, 96.69) 

113.36 
(52.01, 119.30) 

123.25 
(64.36, 127.59) 

130.88 
(75.78, 132.70) 

134.20 
(82.40, 135.86) 

400301 0 80.14 
(23.01, 87.81) 

98.04 
(41.59, 104.35) 

104.61 
(47.91, 108.53) 

108.92 
(52.76, 112.05) 

110.50 
(54.48, 114.68) 

402301 1 70.91 
(13.53, 82.56) 

88.49 
(29.89, 101.14) 

97.73 
(39.33, 111.64) 

106.27 
(50.27, 121.03) 

110.76 
(57.00, 125.19) 

455201 1 93.91 
(3.28, 105.17) 

136.83 
(42.97, 151.73) 

163.54 
(60.91, 178.22) 

192.66 
(74.61, 209.32) 

210.78 
(80.73, 229.84) 

455601 2 86.29 
(8.57, 99.17) 

108.53 
(32.85, 123.50) 

125.16 
(45.32, 146.41) 

153.48 
(57.52, 181.60) 

182.89 
(66.24, 213.66) 

423301 0 78.56 
(2.04, 83.37) 

101.12 
(24.61, 108.23) 

115.86 
(37.57, 123.56) 

132.70 
(50.76, 141.36) 

143.71 
(58.32 154.76) 

440201 1 72.89 
(15.70, 79.60) 

87.35 
(36.05, 100.02) 

98.76 
(46.98, 115.97) 

116.32 
(56.80, 136.24) 

131.86 
(62.05, 151.88) 

480201 1 127.88 
(7.48, 140.73) 

169.89 
(51.84, 193.48) 

205.39 
(75.84, 238.32) 

264.13 
(100.10, 305.39) 

320.44 
(112.68, 375.12) 

501201 3 231.90 
(26.79, 248.30) 

339.25 
(121.51, 356.28) 

388.19 
(171.37, 399.65) 

427.64 
(215.88, 432.81) 

445.62 
(236.95, 446.37) 

500301 1 82.88 
(7.25, 96.68) 

124.98 
(42.78, 154.32) 

156.76 
(55.11, 186.60) 

198.69 
(66.83, 225.28) 

230.35 
(75.55, 253.84) 

552301 0 134.26 
(8.55, 169.12) 

220.13 
(80.81, 280.89) 

292.26 
(114.23, 368.94) 

404.31 
(142.29, 501.47) 

504.40 
(154.72, 624.23) 

568501 2 151.62 
(8.98, 173.14) 

245.22 
(80.60, 297.34) 

317.04 
(113.13, 371.88) 

413.37 
(139.11, 468.84) 

487.30 
(154.08, 536.93) 

568502 3 94.35 
(3.27, 103.99) 

134.47 
(48.64, 154.10) 

163.53 
(62.57, 188.15) 

200.30 
(77.45, 220.43) 

226.94 
(85.78, 239.23) 

532201 1 161.21 
(30.40, 163.24) 

190.97 
(63.83, 187.72) 

208.28 
(85.03, 203.32) 

225.94 
(106.66, 224.25) 

236.23 
(120.21, 240.90) 

564201 3 107.00 
(4.87, 110.65) 

140.48 
(40.63, 147.66) 

162.34 
(58.42, 170.75) 

187.31 
(74.99, 195.61) 

203.61 
(83.26, 213.38) 

566201 1 113.14 
(9.67, 124.17) 

147.89 
(44.88, 168.79) 

174.21 
(61.83, 199.82) 

211.13 
(76.42, 236.99) 

240.97 
(86.07, 261.96) 

570201 2 106.98 
(7.12, 113.85) 

138.19 
(40.89, 147.24) 

159.96 
(56.44, 169.95) 

186.50 
(70.46, 194.99) 

205.00 
(78.21, 212.38) 

h
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Figure 4. Isopluvial map of the estimated design value (unit; mm) corresponding to 2-year return period 
 

 
 

Figure 5. Isopluvial map of the estimated design value (unit; mm) corresponding to 5-year return period 
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Figure 6. Isopluvial map of the estimated design value (unit; mm) corresponding to 10-year return period 

 
 

 
 

Figure 7. Isopluvial map of the estimated design value (unit; mm) corresponding to 25 year return period. 
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Figure 8. Isopluvial map of the estimated design value (unit; mm) corresponding to 50-year return period. 
 

Conclusions 
 

Extreme rainfall has posed a significant challenge for statistical modelling. Recent research on the GEVD 
using several methods of estimation (L-moment, MLE, and probability weighted moments) to model 
extreme rainfall involved three distribution parameters. Park et al. (2001) used the WAD instead of the 
K4D to avoid problems of fit when the shape parameter is above −1, in modelling summer extreme 
rainfall over the Korean peninsula via L-moments estimates from 61 gauging stations. They obtained 
reliable quantile estimates for several return periods, although a study comparing these estimates from 
the WAD is ongoing. Here we have modelled extreme rainfall in Thailand by the Wakeby distribution and 
the method of LH-moments. Design values corresponding to various return periods and their confidence 
intervals have been obtained for annual maximum rainfalls on a day to day basis, and isopluvial maps 
of the design values have been derived. Based on the η values, we conclude that the LH-WAD estimates 
are better than those obtained using the L-moment WAD for 87.5% of the chosen stations. Stations 
experiencing the greatest rainfalls, in southern-east coast Thailand and the Trat station in the eastern 
part, correspond to the top two return values. Moreover, confidence intervals from the bootstrap 
resampling technique also largely represent the true values for 24 sample gauge stations. We therefore 
conclude that our approach can be applied to model extreme rainfall in Thailand, although we do not 
claim that our method is the best possible and further consideration of skewness family distributions is 
ongoing. 
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