Journal of Fundamental Sciences Vol. 6, No. 2 (2010) 154-159.

ISSN 1823-626X T

Journal of Fundamental Sciences m—

available online at http://jfs.ibnusina.utm.my

Approximate solution of a nonlinear system of integral equations using modified
Newton-Kantorovich method

Z K. Eshkuvatov*?, A. Akhmedov*®, N.M.A.Nik Long"? O.Shafiq

!Institute for Mathematical Research, Universiti Putra Malaysia, Malaysia, *Department of Mathematics, Faculty of Science, Universiti Putra Malaysia,
3Department of Process and Food Engineering, Faculty of Engineering, UPM.

Received 3 May 2010, Revised 29 September 2010, Accepted 7 October 2010, Available online 2 November 2010

ABSTRACT

Modified Newton-Kantorovich method is developed to obtain an approximate solution for a system of nonlinear integral equations. The system of
nonlinear integral equations is reduced to find the roots of nonlinear integral operator. This nonlinear integral operator is solved by the modified Newton-
Kantorovich method with initial conditions and this procedure is continued by iteration method to find the unknown functions. The existence and

uniqueness of the solutions of the system are also proven.
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1. INTRODUCTION

Solving the nonlinear integral equations is an
important issue in the engineering and technology fields.
Determining the roots of an equation has attracted the
attention of pure and applied mathematicians for many
years ([2, 4, 5]). Many problems may be formulated in
terms of finding zeros. These roots cannot in general be
expressed in a closed form. Thus, in order to solve
nonlinear equations, we have to use approximate methods
[1], and the necessity of their approximate solutions was
emphasized in [3]. One of the approaches for solving
nonlinear integral equations is Newton-Kantorovich
method. In 1939, Kantorovich [6] published a paper on
iterative methods for functional equations in a Banach space
and applied this theory to derive a convergence theorem for
Newton's method. Later, in 1948, he [7] established a
semilocal convergence theorem for Newton's method in a
Banach space, which is now called Kantorovich's theorem
or the Newton-Kantorovich theorem. Newton’s method
which is defined by

X,=x, ~[P'c)'Px,) (n20)(x,cQ) 1)

has been used extensively by many authors to generate a
sequence {x,}(n>0) converging to x* This method was
proposed by Newton in 1669, for finding the roots of
polynomials P,(x).
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2. DESCRIPTION OF THE METHOD

In this paper we consider the adaptation of [4] for the
system of nonlinear integral equations

x()- ] H(,o)x"(r)dr =0,
y (1) (2)

j K(t,o)x"()dr=f (),

y(t)

where n>2, 0<#, <t<T, with given functions

H(,7), K(t,z')eC[t f(t)eC[toyw] and

unknown functions x(z) € C[toyw], y(t) e Clloyw] such

0 ,ao]x[to ,oo] !

that y(¢)<t.

The aim of the work is to find the unknown functions
x () and y(¢) in (2). So, we introduce the operator
notations

P(X)=(P(X ) P,(X))=(0,0), X = (x(1), »(t))
O<t,<t<T, 3)

then the system (2) on the interval [¢,, 7] can be reduced
to the operator equation
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P(x@#),y@)=x{)- j[ H((t,o)x"(r)dr =0,
y ()

Py(x @),y @) =1 ()- J K(,7)x"(r)d7 =0.
y(t)

To solve (3), we use the modified Newton-Kantorovich
method by writing the approximate equation in the form

PI(Xo)(X = X))+ P(Xo) =0, X, =(x,(1), 3, (1)), (4)
where X, = (x,(¢), y,(¢)) is the initial point, and the
derivative P'(X,) of the nonlinear operator P (X ) at

the point X is determined by the matrix

(24 (24
ox oy
' (x0.%0) (x0.30)
P(Xo)=
| on
ax (x0,%0) ay (x.50)

Consequently, we have

A (@)D (0) =R 70,
(x0,0) (x0.,)0)

o, o .

g (x0.30) (AX(t)) ’ a (x0.30) (Ay(t)) B PZ (xo (t), yo (t))'

where Ax(r) = x; (1) = xo (£) . Ay(#) = y1(1) = o (1)
and (X, (t), ¥, (¢)) is the initial given point.

To find x,(t) and y,(t) we evaluate P'(X ) by the
definition, i.e.

(2
ox

_ |imP1(xo +5x,90) = P(x0,50)

s—0 Ky

(xg.¥0)
Xot)+sx(t)- ]. H(@,o)[x,(r)+sx (2)]"dz
=Iim1 yolt)
520 ¢ t
—x,(t)+ j H(,o)x!(r)dr
Yolt)
x| HEAm @ (e =B (r0,50),
Yol(t)

@ :|in,,P1(x01y0+5y)_P1(x01yo)
S*)OI S
(x0.0)
{xo(t)— [ HEx;@dr—x,(0)+ [ HE D (e
i Yol () 0)
=1llim
50 Ky
Yolt)ts ()
H(t,7)x, (2)dt
=lim Yolt)
50 Ky
=H(t,yo)xe o)y ) =5, (x0.3,)-
Likewise,
Lol o [ Ko @ (=P (v
X oy o)
oP ., ,
- =k (t,y,)xe (vo@)y )="P), (xq,50)-
(x0.50)

Therefore system (5) reduces to the system of linear
Volterra integral equations

Ax (t) - IH(t,z-)nxé”l(z')Ax(r)dT+H(f,yo(t))xS(yo(f))Ay(t)
Yolt)
= j[ H(t,t)x{ (t)dr—x,(),

yolt)

- J K (t,0)mx g (2)Ax (2)d T+ K (2,5 (1))x g (v 0)Ay (1)
Yolt)

= .[K(t,r)x{f(r)df*f(f)-

yolt)

(6)
Solving (6) in terms of Ax (t) and Ay (¢), we obtain

(x,(t),y,(t)). By continuing this process, we obtain a

sequence of approximate solutions (x (), (t)) from
the following system:

t

Ax, ()= [ H(t, o)y (2) A, (2)dT + H(t, 3, ()% (o () Ay, (£)
o
H(t! T)x:z—l(r)df - xmfl(t) ’

- _[ K(t, r)mxg (0)Ax,, ()7 + K (t, o ()35 (3o (1) Ay, (1)

Yol(t)
t
1

Vm

K(t,7)x,,(2)dr - 1 (0),
0

()
where Ax, (¢) = x,, (6) = x,4 (1) and Ay, () = y,, (1) =y, (1)
m=23,....
Furthermore, by multiplying the first equation in (6) by
(=K (t,y,(t)) and the second equation by H (¢, y,(t))
and adding the two-equations together, we get
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’ K@, )H{, o)) | 12
—Ax(t)+nl il){H(t,r)—w (DA(7)dr
K, 0)H(t, (1)) , oy H(,3,(0)
‘JJ Ko@) ’)}% 010y
€))
Let G(¢),K,(¢,7) and Fy(¢) be defined by
G(t) — H(tlyO(t)) ,
K(t,y,(t))

K, (¢t,7)=H(t,7)-K(,7)G() ,

t
Fye)= [ K. 0)xg (@)dr+f ()G (€)=x,(t)-
vol(t)
Then Eqg. (8) can be written in the form
t
Ax (t)-n j Kt 0)x2 () Ax (D)d T =Fy(t). 9)
Yolt)
Eq. (9) is a linear Volterra integral equation of the second
kind. It is known that the Eq. (9) has a unique solution
(see [8, 9]). Solving Eq. (6) in terms of Ay(¢) yields

j H(,2)[xg (@) +nx ) M (2)Ax (z) fo— (xo(r)+Ax<r))( )

Av (¢ Yo()

y - H v ok (750)
Eq. (7) can be solved in the same way as solving (6), that is,
performing similar operations as we have done for solving
(6) we arrive at the equations in the form

Ax, (1)—n j K, (t,7)x; (¢)Ax, (r)dr = F, ,(£),
Yo(1)
Ay, (&)= H(ty(t;L)x”(y(t)){n _[ H(t,7)x) 7 (2)Ax, (r)dr - Ax, (t,)

+ | H(r,-,r)x::,Ar)dr—x,,,l(r,-)}

Y (6)

and therefore, we obtain a sequence of approximate
solutions X, =(x, (¢),, (?))-

Let us introduce the following classes of functions:

Let C}, ., be a class of continuous functions f*(¢)

defined on the interval [#,, o) .

Let C be a set of all continuous functions

[1g,0)x[tg,®)
w (¢t ,u) defined on the interval [¢,,0) x[¢,,0) .

Let C} denote the class of continuous first derivative

t [tg,)

function defined on[#,, ), such that

Clim =1y () eCl iy () <t}.
Let
C={X =(x@Or©):xO)y O C ).

with the norms

Jax |, =max{lacl, ol |

X le: = max {fe L Iy Ol

where  Ax (1) =x (1) =x,(t), Ay () =y (1) =y, ().
and the norm is understood as Chebyshev norm.
The main result of the paper is

Theorem 1: Let f0eq, ., and H(t,7),K(, T)EC[, o]
such that x (¢) € C[, oy Y (t) eC} and let the ball

0= (XX <]

t[tg, o)

i. ||AX||£77,foraII x,y€Qy,
ii. K(t,7) and H(¢,r) are bounded and continuously
differentiable functions on [z,,00) x[#,,)

1+v1-2h
h

i, h:Kn<%,and e 7, then system (2)

has a unique solution X", and the sequence
X, X,0)=(,¢).y,),m=0} of

successive approximations

Ax,()=n j K, (t,7)x; " (0)Ax,, (r)dz + F, (1),
(1)
1 ’ )
Ay, (t) = H(tyo(t))x(yo(t))L '[(1 H(t,7)x,, ((7)dr —(x, ,(6) + Ax, (1))
+n j H(t,r)xgl(r)Axm(r)dr},
Yo(1)
(11)
where Ax, (1) =x,(t)—x, ,(?) and

Aym (t) = ym (t) - ymfl(t) '
X o =(x,(),y,(t)) converges to the unique solution X 5
and the rate of convergence is

i s%(l—\/l—Zh)Ml, m >

m=2, 3..., starting from

\Y
©

Proof: We define the operator

SX)=X-T,P(X).

Hence, the successive approximations of X =S (X) is
X,,=S(X,) (m=01.)

so that for the initial X', we have

S(XO)ZXO_FOP(XO)’

and therefore

[ToP (o) =S (X 0) =X of =X, =X o| = [AX || <77

Now we prove |[,P"(X)|<K for all X eCy. The

second derivative P"(X,)(X) of the nonlinear operator

(12)
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P(X) at the point.x, is described by the 3-dimensional

array P"(X ,)X =(P,P,)X insense of bilinear operator.
0°P, O°P,
2
ax (x0.70) ax ay (x0:70)
b= 2 2 '
o0°P, 0°P,
2
8‘)/ ax (x0:¥0) 8‘)/ (x0.¥0)
o°P, O°P,
2
ax (x0.¥0) 8x8y (x0:70)
P = 2 2
0°P, 0°P,
2
ay ax (x0.50) ay (x0.50)

Al the second derivatives of P" (XX Y ) are computed by
the following relations:

78 :EQ}%[EX(%+§c,yo)(my)—1¥x(%,yo)(xy)]
(%.30)
—gﬁ{«r)— [ A @)+ Made—xo)+ [ HE, r)m@*i(r)x(r)dr}
() ()
=-sin=Y) | o0 @x(oner,
1)
oe 1 _
ol =M [R (o +9)) B (006 ))]
(%.30)
:Igm% x()— j H(t, D (@0)x(0)dr—x() + j H(z, r)n)q)'l(r)x(z')dz':l
- Jo(O+9(0) ()
=, 35O (o OX0H )
i [ B Gt + 5%, 30)(53) = B, (i 75
W,y FOSE '
:yg@[H<r,yo(z))[%uo(r)>+sf(yo(t))]"—H(r.yo(z))xg(yo(t»]
=nH(t, )55 o)X o)
oP 1 _
e R EACSIRE ) CRRACR I C)
(%.30)

=[ H(t 3@ 0o 0)+H €3,0)% 060) [y0)

In the same way we find the second derivatives of
B, (X,Y) by the definitions

oB -1 _

| =M o+ ) ) B, (5, 30)( )

(%.30)

=—n(n-1) j. Kz, T))%ﬁZ(T)X(T)X(T)dT;

3()

&P - _
2 =nK (t,yoO)xs " (o ))x o))y ) ;

axay (x0.¥0)

2 2

Oh, and ok are valid since y (¢) is bounded.
Ox Oy Ox Oy

2 2 2 2
o'k : 6_1’22 oh and 0°h, are valid since x (¢) is
ox? Ox° Oyox Oy Ox

bounded. Note that the norm of each component of the
matrices P, (X,,Y,) and P,(X,,Y,) are bounded and all

the conditions of Kantorovich theorem [8, page 532] are
satisfied and hence:
1-J1-2h
:Tﬂ . Eq. (4)

has solution X* and Newton-Kantorovich process
Eqg. (11) converges to X*, and

1+v1-2h
h

(@ for thns% and r>r,

b forh=K77<1 and r<n = n,X*isa
2 1

unique solution of Eq. (12) in Qo , and the rate of
convergence is given by

[x - x| s%(l—\/l—Zh)Wl,

This completes the proof of the Theorem 1.

m=0,12,...

o°P, = Iiml[Pz’y (xp + 5%, 1) (X, ) = B, (x5, ¥6) (x, )]
e (x0:30) 520
=nK(t, y,())x3 " e ()X (o (D) () ;
&p| 1 o
? (%0:30) ) !J_n)gg[g}(xo,yo +)(x.5) PZ'_V(xOIJ’o)(x!y):'

=[ Kt o @)% 0D+ K (€, 35 ()3 00 | 10)
3. RESULTS and DISCUSSION

Due to (6) and (9) it follows that the solution of (7) has the
same procedure to be found depends on the having the
solution of the equation

v, ()= [ Ky@.ox ) (@A, (T =F, () (13)
yol(t)
where
K@t r)=H({t,7)-K(t,7)G(¢),
t
Fa()=x,,0)~f (O)G@)- [ K@,0)x) o)z
Vma(t)

Therefore, we have to solve the linear Volterra integral
equation of the second kind. On the closed interval [¢,,7 ],
we introduce a grid of the points
T -t

0 i=0,..

N

Then Eq. (13) at the grid becomes

t, =ty +ih, h=

N .
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Ax,, (t,) = F,_1(to),
Ax, (t) - I K, (t, r)nx) () Ax, ()dr
Yo(t)

i1 U

=2 [ Kt 0 (@) A, ()T = F, 4 (¢), i=1,..,N.

(14)
Next let v, =[,(#,)]and

{tv-’ t <y0(t')<t'_’
t, =4
i ti!

i1 Syt <t,.
Then the system (14) can be represented in the form

Ax, () - j K, (¢, 7)nxi M (2)Ax, (r)dT
yo(t)

i1 L

- Z _[ K, (t, 7)nx) ™ (7)Ax, (r)dr =

J=g;

En—l(ti)v l—l, ,N

(15)
By computing the integrals in (15) by the trapezoidal
formula we have two cases.
Case 1: If v, # i, we obtain, forall i =1,2,..., N

Axm(tl)*[tv' _Zn(t,)

](Kl(zﬂyo (63 (o (DAY, (o (1) + Ky (1,1, g (1, )Ax,, (1,))

G { +: 1 n-! -]
72[%](&@,,:,)% A, (1) + Kyl ) (1,005, (1))

J=v;
{t ~t,
2

Solving this equation in terms of Ax  yields

0t 005,00+ Kl 00, 0)) = o0

st e 8 (K s 0, €,)

Ax, ()=
1—(“ b 1)1( ot I,

Where

! {#][ Ko e ol ))[(“(")"’

DAY, (1, )+, — ot )AY, 0, )]

L, 7t“71

+K 0, e, )0, 6,)]
i-2

B=Y (

Case 2: Butif v, =i

““T’”](Kl(r, A () KL g )8, )
, then

50 0 0 GO D) O O] )
From the mean value theorem, we have

A, (o ()t —1,1) = j Ax,, (x)dx

By dividing the integral into two intervals (¢, v, (t,))
and (y,(¢,),2,), using the trapezoidal formula for each
integral, we obtain

Axm (yo (ti)) — (yo (ti) —

Therefore, (16) becomes

tifl)Axm (tifl) + (tl
L=ty

— o (ti))Axm (ti)

Ax, (tr') =

! [["”‘”]K(z e ooo»[”(” E ]Ax,,,(zﬂ)
1—["L°(")jkl<r,,r,)mgfl(z,) 2

[f ‘°(”]K(r o 1(yo(r»[’ ‘°(”j+F,,,,(t)}

,1

So, for Ay, (t) we again introduce a grid of points to (10)
and therefore (10) becomes

]

1 { j H(t, r)nxi H(2)Ax, (r)dz - Ax, (t,)

Ay, (4) = ;
H(t, vy (£))x5 (3o (1)) ()

+ ‘l[ H(t, 7)x, (t)dr—x, (¢, )}

Y ()
17)
And by applying Trapezoidal formula to Eq. (17), we
obtain:
Ifv, #i ,then
_r
H {1 yo(t))x" (30 (8,))
+(t,, 7ymfl(zi))
2

Ay, (1) = [ (%, (6)+Ax, (1)

(3 a5 a0 O + H 1,2, 4(6,))

+@Z{,(H ()X () + H )X, 4 (2))

7o)
2

(t/'+12_t7) i(H(ti,t,)nxg’l(t,)

J=v;

(H (o6 (o6 DA, G (0) + H (1, n (1, )Ax, 1, )

+ A, (8, + H (1,005 (2,.0) A%, (.1))

andif v, =1, then

1
Ay, ()= m[_(

+w s O (0 (O) + H (1), 0))

(Q 7yo(t,))
2

%,4(t)+&x, (1))

(1,

(H (@ yo e )mxg ™ (o () A%, (3 (1)) + H (6,1 )n (1) A, (t,))}

4., CONCLUSION

In this paper we have constructed the modified Newton-
Kantorovich method (4) to solve the system (2) in terms of
the unknown functions x(z) and y(¢) by reducing (2) to
linear VIE of the second kind. We have proven the
existence and uniqueness of the solution of the system of
NIEs. The Convergence theorem presented explains how
the method converges and what the rate of convergence is.
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